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Abstract

Ore grade estimation is a key aspect in the evaluation of a
mineral deposit. In this paper an alternative approach to
currently applied methods of ore grade estimation is
presented. This alternative approach involves a modular
neural network system integrated in a state of the art 3D
resource modelling package. The need for a new method
of ore grade estimation comes from the difficulties in
applying conventional methods such as geostatistics.
These methods require a lot of assumptions, knowledge,
skills and time to be effectively applied while their results
are not always easy to justify. The aim of the proposed
system, called GEMNet II is to provide fast and reliable
ore grade estimation, with minimum assumptions and
minimum requirements for modelling skills. GEMNet II
has been tested on a number of real deposits.  The results
obtained so far have shown that it can provide with a very
fast and robust alternative to the existing time-consuming
methodologies for ore grade estimation.

Introduction

Artificial neural networks find their way to an increasing
number of industrial applications.  The mining industry is
no exception to this fact.  Neural network methodologies
have been developed and applied to various aspects of
mining and mining related problems.

Ore grade/reserve estimation is one of these problems and
has always been the subject of extensive research [1, 2, 3,
and 4]. Geostatistics is the main approach to ore grade

estimation.  It is the result of at least three decades of
research carried out by people from various fields like
geology, mathematics and engineering.  In spite of the
extensive development and wide support, geostatistics
prove to be very difficult to learn and apply efficiently and
also very time-consuming.

The special characteristics of artificial neural networks
make them a natural choice for the problem of ore grade
estimation.  GEMNet II is trying to utilise these
characteristics to provide with a technique that is easy to
learn and understand user friendly, and reliable.  GEMNet
II is interfaced with VULCAN, a suite of 3D modelling
programmes for the earth resources industry, which allows
the visual validation of the results and their direct use in
the process of reserves estimation.

Development of the neural networks for GEMNet II is
carried out using the Stuttgart Neural Network Simulator
(SNNS).  SNNS provides with the learning algorithms,
neural network topologies, and a number of tools for batch
training of the networks and conversion of trained
networks into C code.  The use of SNNS aided the
development of prototype networks and allowed for their
integration with the complete system.

Radial Basis Function Networks in
GEMNet II

Radial basis function networks (RBF) have certain
characteristics that make them ideal for the problem of ore
grade estimation [5].  RBF networks have been



successfully applied for function approximation
[6,7,8,9,10,11]. GEMNet II is treating ore grade
estimation as a problem of function approximation with
the functions being the ore grade spatial variability and
spatial distribution. The RBF networks used in GEMNet II
share the same non-linear basis function, the Thin Plate
Spline. During the initialisation of the networks, the
centre vectors are positioned in the input space using
Kohonen training.  All input patterns are normalised to
represent vectors with length 1 as required for Kohonen
training.  Training is carried out by Batchman, which is
one of the tools available with SNNS for batch training of
networks [12].  Batchman is called using a number of
training scripts part of the GEMNet II system. During
training, the networks are synthesising an approximation
of ore grade spatial variability in different directions in
3D-space and ore grade spatial distribution.  In other
words, the networks learn the input-output mapping from
the exploration data samples presented to them.

GEMNet II system architecture

As already mentioned, GEMNet II is a very modularised
system (Figure 1). There are three modules of RBF
networks each responsible for a different aspect of ore
grade estimation.  These modules receive input from a
data control module which is accepting two types of input
files from VULCAN, containing drillhole samples and
block model centroid co-ordinates, as well as specification
files, containing additional information to customise the
estimation procedure to the user's needs.

The drillhole samples file contains records consisting of
sample co-ordinates, ore grade analysis, and sample
length, and is used for the construction of training
patterns and input patterns for the estimation process.
The block model centroids file contains records consisting
of block centroid co-ordinates and is used for the
construction of the input patterns for the estimation
process.

The essence of GEMNet II operation is in the way of
constructing the training patterns.  There are three
different types of patterns formed, targeted to the three
different neural network modules of the system.
Searching the area around each sample for neighbour
samples forms the first (Stage 1) type of patterns.  The
sampling space is divided in six subspaces (north, south,
east, west, upper, and lower) originating from the training
sample's co-ordinates as shown in Figure 2. The
exploration data processing module is searching for
samples in these subspaces and forms patterns consisting
of the ore grade, distance and length of the neighbour
sample as inputs, and ore grade of the training sample as
output.  There are a number of patterns formed for each
training sample providing enough information for
modelling the effects of neighbour sample's grade,
distance, and length to the training sample's grade.

The training patterns formed at this stage are used for
training the Stage 1 module consisting of six RBF
networks each responsible for one of the six subspaces.  In
real deposits with real sampling schemes there are always
samples usually at the edges of the sampling area that
have no neighbour samples in some of these subspaces.
GEMNet II will still create patterns for those that do have
neighbours.  The missing estimate from the RBF network

Figure 1: GEMNet II modular architecture.

Figure 2: Neighbour sample search method
used in GEMNet II.



responsible for an empty subspace is provided from the
Stage 2 RBF network.
The Stage 2 module consists of a single RBF network with
four inputs - the training sample co-ordinates and sample
length - and one output, the ore grade of the sample.  This
network learns the relationship between co-ordinates in
3D-space and ore grade and therefore requires no
information on neighbour samples and can be used when
these are missing.

The Final stage module consists of a single RBF network
with six inputs - the outputs/estimates of Stage 1&2
modules - and one output, the training sample's ore grade.
Training patterns for Final stage module are formed after
training of Stage 1 and Stage 2 is finished.

The exploration data control module is also forming input
patterns to be used during ore grade estimation on the
basis of a block model of the deposit.  The drillhole data
file is searched using exactly the same procedure only this
time the place of the training samples is taken by the
block centroids.  The other difference of course is the lack
of output vectors in the patterns.  These input patterns are
presented to the trained networks and the output of the
Final stage network is directed to the block model in
VULCAN for further processing and visualisation.

Integration of GEMNet II with SNNS and
VULCAN

As mentioned before, training of networks is achieved
using Batchman in SNNS.  GEMNet II comes with
standard SNNS templates for untrained networks, which
are used as the starting point for Batchman.  GEMNet II
also creates pattern files fully compatible with SNNS and
provides the training scripts for calling Batchman.  The
output of Batchman is the fully trained SNNS network
topology files, which are then passed to the C code
extraction tool in SNNS, the SNNS2C.  SNNS2C creates
standard ANSI-C code.  Once converted to C code, the
neural networks are compiled and used for the ore grade
estimation process, which is the final stage of the
operation of GEMNet II.

The interface with VULCAN consists of commands and
options already existing in the package and options that
were added specifically for GEMNet II.  VULCAN
provides options for construction of drillhole composite
files, which GEMNet II can read directly and use for the
development of the training patterns.  VULCAN also
includes options for exporting the centroid co-ordinates of
the blocks from the block model of a deposit.  The user

can specify various criteria for the selection of blocks to be
included, e.g. blocks inside an orebody or a part of the
mine design.  The same criteria can be applied to the
drillhole samples included in the composite samples file.
This way it is possible to limit grade estimation in
GEMNet II to a specific part of the deposit using a specific
part of the available data, which are relevant with it.
Figure 3 shows a general picture of GEMNet II operation.

Figure 3: GEMNet II system operation.

There are several options that were build into VULCAN
specifically for GEMNet II that can be accessed through
the GEMNet menu in VULCAN - Envisage.  Choosing
one of these options calls one of the scripts coming with
GEMNet II, which are written in Perl language.  These
scripts are called Lava scripts in VULCAN.  They usually
lead to a panel that the user can fill with the specifications
for the estimation or changes in the default architectures
of the neural networks.

The Run option calls GEMNet II to start, using the
specifications as given in the two specification panels.
GEMNet II runs in a separate console window were
several messages from GEMNet II and the SNNS tools are
printed.  At the end of the run the user can save these
messages in a text file for future reference.



The output of GEMNet II is a file containing block
records that consists of block centroid co-ordinates, ore
grade estimate, estimate reliability indicator, and stage
number.  The reliability indicator is just a general way of
checking the validity of an estimate by calculating the
variance of the individual RBF networks estimates for the
specific block.  High variance means low reliability and
vice versa.  The stage number indicates whether the
estimate is provided by the combination of Stage 1, 2 and
Final or solely by Stage 2 as in the case of a block far from
the sampling area.  The user can actually specify the
maximum number of empty subspaces for Stage 1 that can
be tolerated before the estimate is completely assigned to
Stage 2, bypassing the Final stage.
The output file is imported back to the block model.  The
user has to add variables to the block model so that it can
accept the neural estimates and the two parameters
mentioned, before importing of the output file.  It is then
possible to see on screen the block model of the deposit
coloured by the reliability indicator and identify areas
where the estimation process fails to provide reliable
results (Figure 4).

Figure 4: Block model in VULCAN coloured by
GEMNet II estimate reliability indicator.

These areas can be isolated from the rest of the orebody
and re-estimated using different specifications.  The block
model can also be coloured by the stage number showing
the part of GEMNet II responsible for the estimate.  The
combination of the two visual representations of the
estimation process can guide the modifications of the
network and estimation specifications towards a better
result.

Application of GEMNet II

GEMNet II has been applied to a number of case studies
using exploration data from real deposits [5,13]. The data
were obtained directly from the actual exploration
programme and not using a simulation process. At the
same time a complete geostatistical analysis has been
carried out using exactly the same data. Cross-validation
has been used in both approaches to examine the
performance of the estimation process. In the case of
GEMNet II, a percentage of the original drillhole data has
been kept out of the training process to use it as a testing
basis (usually around 15% of the data).  The reason for not
running cross-validation on the entire drillhole data set as
normally happening in geostatistics is to ensure that the
neural networks have not been trained with the samples
used in this process and to allow for a more objective way
of comparing the two approaches.  The same data were
used to cross-validate kriging (the geostatistical estimation
process).  The results of cross-validation have shown that
GEMNet II can provide equally good and sometimes even
better results with geostatistics.  In all cases the difference
in absolute error between the two approaches has been up
to a maximum of 5%. The difference in the development
and application time of the two estimation processes has
been, in all cases, significant.

GEMNet II, in the worst case, required a couple of hours
to adjust the estimation process to the data at hand (by
training the networks) and provide estimates for the block
model.  A complete geostatistical analysis and a kriging
run are usually measured in days of work. Geostatistics
also require a larger knowledge base from the user to be
able to apply them efficiently.  In comparison the
knowledge requirements of GEMNet II are very low since
the system is extracting a great part of this knowledge
from the data presented to it. There are many points
during the geostatistical approach that the users have to
use their own judgement and make decisions that will
affect significantly the results obtained.  In GEMNet II the
interaction with the user is kept to a minimum not
allowing for the introduction of user errors or
misjudgements in the estimation process.  Therefore
GEMNet II provides estimates that depend completely on
the data at hand.

Conclusions

This paper has shown how GEMNet II, a highly
modularised system utilising neural network technology,
has been developed and applied to mineral ore grade
estimation.  The main components of the system as well as



the system's operation were analysed.  The aims of the
system were explained and a brief comparison with the
already established approach was given.  The benefits of
the GEMNet II approach were discussed in depth.
Research work currently carried out at the AIMS Research
Unit includes a series of case studies.  These case studies
will enable the identification of the types of deposits that
the system can be applied to as well as the assumptions
inherited by the system as a consequence of it being based
on function approximation.
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