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Abstract

Ore grade is one of the main variables that characterise an
orebody. Almost every mining project begins with the
determination of ore grade distribution in three-dimensional space,
a problem often reduced to modelling the spatial variability of ore
grade values. So far, this has been achieved following the
geostatistical approach, and more precisely, it’s main process of
structural analysis. Structural analysis in geostatistics is a very
powerful tool, however, it is also quite difficult and time-
consuming requiring a large amount of knowledge.
        This paper describes a neural network approach to modelling
ore grade spatial variability, inspired by the geostatistical process
of structural analysis. The developed system consists of several
modules responsible for different aspects of the modelling. It is
tested using data from a real undeveloped deposit. The results
obtained from the system show that neural networks offer a valid
alternate approach to the problem of ore grade estimation, while
requiring considerably less knowledge and time.

1 Introduction

A mineral ore deposit is a very complex structure with many parameters involved,
the most important one being the distribution of ore grades. At the early stages of a
mining project, the distribution of ore grades has to be determined to enable the
calculation of ore reserves within the deposit and to aid the planning of mining
operations throughout the entire life of a mine. The estimation of ore grades/reserves
is a very important and money-consuming stage in a mine project. The profitability
of the project is often depending on the results of grade estimation.

For the last three decades the mining industry has adopted and applied
geostatistics as the main solution to problems of evaluation of mineral deposits.
Geostatistics provide powerful tools for modelling most of the aspects of an ore
deposit. Formalised by Matheron in 1962, geostatistics is defined as the statistical
study of natural phenomena aiming at their reconnaissance and estimation [1]. The
geostatistical methodology begins with two major steps: structural analysis and



kriging. Structural analysis is a study of the directional interdependencies of sample
grades, whereas kriging is a local estimation technique, which assigns weights to
samples that minimise the estimate error.

The samples taken from a mineral deposit at the exploration stage usually come
in the form of drillhole assays. These are the outcome of various analyses on the
core retrieved from drillholes. Assay values generally include sample co-ordinates
(easting, northing, and elevation), length of sample, and ore grades and/or other
parameters. The purpose of structural analysis is to model the spatial variability of
ore grade (or any other parameter) using these assay values. This involves
constructing models of variograms for different directions through the volume of the
orebody. It is a well-known fact within the field of grade/reserve estimation that the
results of variogram modelling depend on the ‘skills’ of the modeller. Structural
analysis leads to the construction of an anisotropy model of the orebody with respect
to its ore grade values. This model is then used to select samples for the estimation
of ore grade in unknown locations usually arranged in a block model of the deposit.
Each block may contain, apart from its co-ordinates and size, parameters estimated
using kriging or some simulated geological interpretation. The method of
geostatistics is a very complicated one, requiring intensive computation and a large
amount of experience from the modeller’s side.

2 Neural Network System Development for Ore Grade
Spatial Variability Modelling

2.1 Neural Networks and Grade Estimation

Neural networks (NNs) have been successfully applied to ore grade estimation in the
past [2,3,4 and 5]. So far, all the NN approaches to ore grade estimation treated the
relationship between the location of a sample and its grade as a complex function.
The proposed system models ore grade spatial variability in order to perform grade
estimation. In other words, the system ‘learns’ the variability of ore grade in certain
directions in space before it is used to estimate ore grades in unknown points.

2.2 Neural Network System Architecture

The building unit of the proposed modular NN system is the Radial Basis Function
(RBF) network. The model of RBF networks is motivated by the characteristics
found in many parts of biologic nervous systems and also by work on interpolation
with radial basis functions [6]. Function approximation is one of the areas where
they have been applied with success [7,8,9 and 10]. The choice of RBF networks for
ore grade estimation is dictated by their locally tuned response characteristics and
certain qualities that allow the production of local reliability measures. The structure
of the RBF network is that of a feedforward, single hidden layer, fully
interconnected network. A non-linear basis function is centred around each hidden
unit weight vector, which also has an adaptable range of influence. The output of a



hidden unit is given as a radial function of the distance between each pattern vector
and each hidden unit weight vector [11]. The output of the RBF network is a scalar
product between the vector of hidden unit outputs and weight vectors attached to the
output units. The performance of RBF networks depends on the choice of non-linear
basis function, the number of basis functions used, their location, and the width of
their receptive field.

The developed system consists of three basic units. The first consists of a
number of RBF networks used for modelling the spatial variability of ore grades.
They are trained on patterns produced by searching the dataset in certain directions
(e.g. west, north, east, south, upper, and lower). These patterns have three inputs -
grade, distance, and length of the neighbour sample in each direction - and an
output, the grade at the point where the network is being trained. The partitioning of
3D space in these six sectors matches the special characteristics of the deposits
sampling scheme. Further subdivisions could be considered if there were enough
samples to justify them. Following this partitioning, there are six RBF networks
each one trained with patterns from different directions. These networks share the
same non-linear function (thin plate spline), error distance measure (Euclidean), and
method of initial RBF centres positioning. They are all, however, different as to the
number of centres and the centres positions. This is due to the varying complexity of
the mappings that each one is trying to achieve as well as the irregularities in the
sampling geometry. It should be noticed that samples in the same drillhole are
normally much closer to each other than to samples in other drillholes.

Figure 1: Modular neural network system architecture.

The second unit is an RBF network trained on patterns consisting of the
outputs from the RBF networks of the first unit as inputs and the previous network
output (target grade). This second unit learns which directions are more significant
and performs a final adjustment to the system’s output. Figure 1 shows a diagram of
the system’s architecture.

The third unit is an RBF network trained on patterns derived directly from the
assay values. These patterns have three inputs, the co-ordinates of a sample, and one
output, the grade. This unit is used only where there are not enough samples to
provide any directional information such as at the edges of the sampling area.



3 Data Source and Processing

The dataset used for the development of the proposed system is a public domain set
from a large undeveloped copper/gold deposit. These orebodies occur in the form of
chains of lenses (fractions of the deposit) developed along shear fractures in
metasomatised host rocks, which include gneissic granites, mica schists and
metasomatites. The set contains 77 drillholes providing a total of 3600 observations
on lithology, bleaching, structure and assays. Figure 2 shows the drillholes together
with the lenses in the area. The system is trained and tested on each lens
individually, i.e. only samples inside the volume of each lens are used to train and
test the system each time.

Figure 2: 3D view of the drillholes and orebodies. The drillholes are coloured according to
gold assays (screenshot from Vulcan Envisage software, Maptek).

The dataset was searched for samples that have adequate neighbour samples in
the directions mentioned before. A missing point tolerance was set arbitrarily to
three points and averaging was performed to fill the empty sectors and provide
complete and consistent patterns for training and testing. From the part of the dataset
that satisfied this constraint, 66% was used for training, 20% for validation and 14%
for testing the first and second units of the system. The remaining points (those with
less than three neighbours) were used to test the third unit which, however, was
trained over the entire training set. Testing points for the first and second unit were
selected to cover the whole range of grades and extents of the orebodies.

4 Application of Neural Network System

4.1 Training and Validation

Training the RBF networks involved positioning the initial centres, altering their
receptive field and then increasing their number after a complete pass of the training
patterns and the error calculation using the validation patterns. The RBF networks of



the first unit varied from 1 to 100 centres, with the best networks after the complete
training process having from 23 to 74 centres depending again on the complexity of
the mappings. The second unit’s RBF network was found to perform better with 8
centres. Figure 3 shows maps of the dependencies of each network’s activation to its
inputs. The maps from the first unit represent in essence the model of ore grade
spatial variability, as learned by the system. The maps from the second unit show the
significance of first unit’s outputs as well as their relationship to the final estimate.

Figure 3: Activation maps of 1st and 2nd unit RBF networks (light colour for high activation).

4.2 Testing

The complete and trained system was tested on the testing set. The errors on the
system’s estimations were 0.17 RMS and 12% mean absolute. Figure 4 shows the
data fit performed by the system during testing.

Figure 4: Data fit performed by the trained neural network system on gold grade testing
values.
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Clearly the system performs well without considerable over or underestimation of
gold grades. It seems to be performing better on the average area of grades with a
slight overestimation on high grades.

5 Conclusions

This paper has shown how a modular neural network system can be developed to
model ore grade spatial variability and then be used to estimate ore grades in
unknown locations. The system’s architecture was explained and its main
components were analysed. A basic discussion on the theory behind ore grade
estimation and spatial variability modelling was also given. The results obtained
from the system have shown clearly the potential of this approach, even in the case
of such a complex deposit as the gold lenses used in this paper. It should be noticed
that the system was developed without performing any statistical analysis on the
dataset and without using any information on its geological background, which
shows some of the advantages of this approach over geostatistics. The system has
also been tested on other deposits, with better performance both in two and three
dimensions.
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