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Abstract 

Concentrations of ambient air particles have been found to be associated with a 
wide range of effects on human health. PM10 concentrations are usually used as 
a standard measure for air pollution. Increase in the level of PM10 has been 
associated with increases in mortality and cardio respiratory hospitalisations. 
Therefore, prediction of ambient levels in certain environment is of great 
importance, especially in urban and industrialised areas. The present work aims 
to develop an adaptive system based on Artificial Neural Networks (ANN) that 
will allow the prediction of the maximum 24-h moving average of PM10 
concentration. A special ANN architecture is employed, the Time Lagged Feed 
forward Network (TLFN), with genetically optimised topology and learning 
parameters. This type of network is able to process information over time and 
produce time-varying nonlinear mappings from the chosen input variables to the 
predicted value. The network is trained and testified by hourly data collected at 
two air pollutant – monitoring stations in an urban and nearby industrial location 
in northern Greece. The initial study presented in this paper involves a small 
subset of the available data that were used to validate the approach and the 
chosen ANN architecture.  
Keywords: PM10 concentration, prediction, time lagged feed forward neural 
network, genetic optimisation. 



1 Introduction 

The level of particulate matter (PM) has been of concern in the area of Kozani in 
northern Greece as several studies confirmed that these particles may induce 
severe effects on public health [5, 10]. Kozani is the most populated and 
industrialised area of West Macedonia. The town is located in the southern part 
of the Eordea basin and is the centre of significant industrial activity. A number 
of lignite power stations are operated within the basin (Figure 1). It has been 
shown [11, 13, 14], that under certain atmospheric conditions, pollutants emitted 
by these power stations reach the town of Kozani. Urban pollution sources also 
contribute to the problem of air quality in the town [12]. The prediction of 
maximum hourly PM10 concentrations can be beneficial in the efforts to monitor 
and control the effects of PM10 on the health of the local population. 
 

 
Figure 1: The topography of Eordea basin greater area, showing the location 

of Kozani and the pollutant point sources (PS). 
 

1.1 Data Sources 

The PM10 concentration measurements used in this study were carried out in the 
commercial centre in Kozani and are referred to a three month period, from 8/02 
to 10/02. The PM10 measurements were made using a beta absorption (FAG FH 
62 I-N) monitor having a specific sampling head for PM10 [13]. This monitor is 
based on the principle of β-ray absorption by particles, sampled through the 
instrument and collected on a fibreglass filter tape. Dust concentration 



calculations are performed automatically and displayed by the instrument. 
Automatic zero was provided for each measurement cycle by obtaining the beta 
absorption on the same portion of the filter tape before and after the sample was 
deposited. A sequenced calibration foil of known absorption was used for span 
check. The PM10 data were collected with a 1-hr time resolution. The 
meteorological data used have been taken from the meteorological station 
located in the same place. 

1.2 Data Analysis 

The PM10 concentrations were at relatively high levels in all studies in the area 
of Kozani [11, 12, 13, and 14]. Each yearly average was found to be higher than 
the US Environmental Protection Agency (EPA) limit value. There was some 
variation in the highest mean seasonal concentrations between warm and cold 
periods. During a 24-hr period, the mean diurnal variation showed relatively high 
concentrations, which exceeded the value of 50µg/m3 during the whole day. A 
complex system of PM sources and meteorological conditions modulates the 
levels of particulate pollution. A synoptic climatology approach showed that the 
highest concentrations were associated with stagnant conditions, when the 
accumulation of pollutants due to urban activities and power plants results in 
very high concentrations. The wind speed was also associated with high 
concentration episodes [12]. 

1.3 Data Processing 

As mentioned above, we consider measurements of hourly averages of PM10 
concentrations obtained from the commercial center of an urban and nearby 
industrial location. These measurements were obtained in a three-month period. 
For each of the 90 days considered, four hourly PM10 measurements are taken at 
0:00, 06:00, 12:00 and 18:00 hours (PM00, PM06, PM12 and PM18). The 
maximum PM10 concentration between the 19:00 hour of the previous day and 
18:00 hour of the current day is also calculated (24MAXPM). A number of 
environmental parameters are taken into account including: 

 the minimum 1-h average relative humidity between 19:00 hour of the 
previous day and the 18:00 hour of the current day (24MINRH), 

 the maximum temperature over the same time period (24MAXTM) 
 the difference between the maximum and minimum temperature over 

the same time period (24DIFTM) 
 the average wind speed over the same time period (24AVGWS) 

Forecasted meteorological variables are also taken into account: 
 minimum 1-h average of relative humidity for the next day 

(NDMINRH), 
 maximum temperature for the next day (NDMAXTM), 
 difference between the maximum and minimum temperature for the 

next day (NDDIFTM), 
 and the average wind speed for the next day (NDAVGWS). 



All these measured parameters and forecasts are used as inputs to the neural 
network based prediction system presented in this study. The required prediction 
output from the network is the maximum of the 24-h moving average of PM10 
concentration for the next day that will be obtained at 18:00h of the current day. 
The choice of inputs was motivated by similar studies [1, 2, 6, 8, and 15]. 

2 Time Lagged Feedforward Neural Networks 

Standard feed forward networks based on supervised learning have a long-term 
memory built during learning and stored in the synaptic weights of the network. 
These structures however are not suitable for problems with a temporal 
dimension such as the prediction of PM10 concentrations. Such problems require 
some form of a short-term memory to make the network dynamic. One simple 
way of building short-term memory into the structure of a neural network is 
through the use of time delays, which can be implemented at the synaptic level 
inside the network or at the input layer of the network [4]. 
  Time Lagged Feedforward Networks (TLFN) offer a powerful 
architecture for the prediction of patterns that evolve over time, with the 
response at a particular instant of time depending not only on the present value 
of the input but also on its past values. There are two types of TLFN networks: 
focused and distributed. Focused TLFN networks are limited to maps that are 
shift invariant, i.e. they are only suitable for use in stationary (time-invariant) 
environments. The problem of PM10 prediction is a time variant one as all input 
variables change with time. The distributed TLFN architecture overcomes this 
limitation by distributing the implicit influence of time throughout the network. 

2.1 Distributed TLFN Network 

Distributed TLFN networks rely on the use of a spatiotemporal model of a 
neuron, namely, a multiple-input or distributed neuronal filter. This model uses 
finite-duration impulse response (FIR) filters as synaptic filters. As such, the 
multiple inputs neuronal filter provides a powerful functional block for 
spatiotemporal signal processing built around a single neuron.  Each memory 
neuron in the distributed TLFN is effectively processing information over time 
by working with the projections of the neuron activations of the previous layer 
on its local linear memory space [9]. The size of each memory space (i.e., the 
number of bases) is determined by the number of memory taps.  

2.2 Distributed Neuronal Filter 

The distributed neuronal filter builds on the processing power of the finite-
duration impulse response (FIR) filter of order p, shown in Figure 2. The FIR 
filter is one the basic building blocks in digital signal processing [3, 7].  



 
Figure 2: Finite-duration impulse response (FIR) filter. 

 
 
The processing power of the FIR is extended by the use of multiple inputs, m0 in 
number, as depicted in Figure 3. The spatiotemporal model of the distributed 
neuronal filter is also referred to as a multiple input neuronal filter [4]. 

 
Figure 3: Distributed (multiple-input) neuronal filter. 

 
 
The neuron has m0 primary synapses, each of which consists of a linear discrete 
time filter implemented in the form of an FIR filter of order p; the primary 
synapses account for the spatial dimension of signal processing. Each primary 
synapse has (p + 1) secondary synapses that are connected to its respective input 
and the memory taps of its FIR filter, thereby accounting for the temporal 
dimension of signal processing (Figure 4). 
 



 
Figure 4: Synaptic structure of a distributed neuronal filter. 

 
 
The spatiotemporal processing performed by the neuronal filter in Figure 5 can 
be expressed mathematically in terms of its output, yj(n), as 
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Where wji(l) is the weight of the lth secondary synapse belonging to the ith 
primary synapse, xi(n) is the input to the ith primary synapse at time n, and bj is 
the bias applied to the neuron. The overall structure of the distributed TLFN 
network is shown in Figure 4. 

 
Figure 5: Distributed TLFN network architecture. 

 
 
A supervised learning algorithm is necessary to train a distributed TLFN 
network, in which the actual response of each neuron in the output layer is 
compared with a desired response at each time instant. In this study, the temporal 
back propagation algorithm is used to train the distributed TLFN networks as 



described by Haykin [4]. The optimum number of hidden nodes as well as the 
learning parameters are determined using genetic optimisation. 

3 Application 

The application of the distributed TLFN network described above to the PM10 
data is split into three main stages: genetic optimisation, training and validation, 
and testing. These stages are completely separate from each other. The first two 
stages correspond to the development of the TLFN network based on the 
available data while the third stage will give a measure of the validity of the 
approach using part of the available data that was hidden from the development 
stages. 

3.1 Genetic Optimisation 

The first stage of the network development is the choice of the optimum number 
of hidden nodes and the choice of the most suitable learning parameters for the 
learning algorithm. In this study the following components of genetic 
optimisation are used: 

• Selection: Selection is a genetic operator that chooses a chromosome 
from the current generation’s population for inclusion in the next 
generation’s population.  Before making it into the next generation’s 
population, selected chromosomes may undergo crossover and/or 
mutation (depending upon the probability of crossover and mutation) in 
which case the offspring chromosome(s) are actually the ones that make 
it into the next generation’s population. In this study selection is based 
on the Roulette selection operator – the chance of a chromosome 
getting selected is proportional to its fitness (or rank). 

• Crossover: Crossover is a genetic operator that combines (mates) two 
chromosomes (parents) to produce a new chromosome (offspring).  The 
idea behind crossover is that the new chromosome may be better than 
both of the parents if it takes the best characteristics from each of the 
parents.  Crossover occurs during evolution according to the Crossover 
Probability. This probability should usually be set fairly high (0.9 is a 
good first choice). In this study the One Point crossover operator is 
used – a crossover point is randomly selected within a chromosome 
then the two parent chromosomes interchange at this point to produce 
two new offspring. 

• Mutation: Mutation is a genetic operator that alters one ore more gene 
values in a chromosome from its initial state. This can result in entirely 
new gene values being added to the gene pool. With these new gene 
values, the genetic algorithm may be able to arrive at a better solution 
than was previously possible.   Mutation is an important part of the 
genetic search as it helps to prevent the population from stagnating at 
any local optima. Mutation occurs during evolution according to the 
probability defined in this cell. In this study the Mutation Probability is 



set to 0.01. The mutation operator is the Uniform – it replaces the value 
of the chosen gene with a uniform random value selected between the 
user-specified upper and lower bounds for that gene. 

The genetic optimisation resulted to 10 hidden units, a learning step of 0.55 and 
a momentum of 0.7. A total of 100 generations and 50 different chromosomes 
were developed during the genetic optimisation. The best architecture of the 
TLFN was passed to the next development stage, training and validation. 

3.2 Training and Validation 

Due to the relatively small number of available samples, training and validation 
required a very little time to complete. Of the 90 available samples, 50 were used 
for training, 27 for validation and 13 for testing. All input variables were 
normalised. Training and validation are processes that operate concurrently. The 
mean square error (MSE) produced after each training step based on the entire 
validation set (batch method) is used for adjusting the TLFN’s parameters using 
the temporal back propagation algorithm. The training procedure is stopped after 
a maximum of 1000 epochs (complete propagations of the entire training set) or 
once the MSE on the validation set shows no signs of improvement. The learning 
curve (Figure 6) shows an ideal progression of the training process. The 
network’s generalisation improved with time and the MSE was decreasing on the 
training and validation set, meaning that over-fitting the training set was avoided. 
The MSE of the fully trained TLFN was 0.081 on the training set, 0.09 on the 
validation set (18% and 24% respectively). 

 
Figure 6: Learning curve of the optimised TLFN trained with PM10 data. 

 

3.3 Testing 

Testing the fully developed TLFN network was based on the 13 values hidden 
from the development process. The network was used to predict the maximum 
24h PM10 value for the next day for 13 days that were not part of its 
development. This way the true predictive capabilities could be determined. The 



network produced a MSE of 0.082 (24.9%). The network was able to be 
unbiased in the predictions and was able to maintain the same levels of accuracy 
experienced on the training and validation set (Figure 7).  
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Figure 7: Scatter diagram of TLFN’s predictions on the three parts of the dataset. 

4 Discussion and Conclusions 

In this paper a new approach for predicting the maximum 24h PM10 
concentration based on a temporal model of neural network has been presented. 
The structure and operation of the Time Lagged Feedforward Network was 
analysed as well as its advantages over other neural network architectures. 
Genetic optimisation was used to derive the best possible TLFN network for the 
available data. The predictive power of the optimised TLFN network has been 
tested on a small dataset consisting of PM10 measurements from an urban area 
and nearby power plant. Testing was based on part of the data that were hidden 
from the network’s development stages. The results showed the potential of the 
approach as well as the validity of the choice of the TLFN architecture as the 
basis for a PM10 prediction system. 
 Future work will include further analysis of the contribution of each 
input variable to the system’s performance and the application of the system on a 
much larger dataset spanning over many years of measurements. Certain aspects 
of the network’s architecture also need further investigation such as the size of 
the network’s short-term memory (number of memory taps). This will become 
more feasible with the use of the larger dataset. 
 Once this research work is complete, the fully developed TLFN will be 
deployed at the Laboratory of Atmospheric Pollution and Environmental Physics 
of the Technological Education Institute of West Macedonia. The system will 
receive measurements from multiple sources in real-time mode and give a 
prediction for the maximum daily PM10 concentration of the following day. 
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