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ABSTRACT: Radiometric normalization is a necessary pre-processing step since the acquired satellite images 

contain uncertainties such as atmospheric effect and surface reflectance. For most historical experiments, the 

associated atmospheric properties may be difficult to obtain even for planned acquisitions. Relative normalization is 

an alternative method whenever absolute reflectance properties are not required. The key to relative normalization is 

the selection of pseudo-invariant features (PIFs) in an image. PIFs of a bi-temporal image is a group of pixels which 

are statistically nearly-constant over the period of the bi-temporal image acquisitions. Several methods, such as 

manual selection, histogram matching, and principal component analysis, had been proposed for PIFs extraction. Yet, 

a change in pixel’s spectral signature before and after normalization, called spectral inconsistency, is detected 

whenever those PIFs extraction methods, associated with a regression process, are performed. To overcome this 

shortcoming, the commonly used PIFs selection, called multivariate alteration detection (MAD), is utilized as it 

considers the relationship among bands. Further, a constrained regression is adopted to enforce the normalized pixel’s 

spectral signature to be consistent as possible. This approach is applied to multi-temporal Landsat-8 imageries. 

Moreover, spectral distance and similarities are utilized for evaluating the consistency of the normalized pixel’s 

spectral signature. 

 

1. INTRODUCTION 

 

Satellite images acquired from the same terrain at different times contain valuable information for regular monitoring 

of the earth’s surface, allowing us to describe the land-cover change, vegetation health, natural hazard events, etc (Lu 

et al., 2004; Coppin et al., 2004). However, those images often contain some uncertainties due to changes in satellite 

sensor calibration, differences in illumination and observation angles, variation in atmospheric effects, and changes 

in target reflectance (Du et al, 2002). 

 

Images normalization is necessary to do as true changes in the image between two acquisition dates are difficult to 

interpret. Two techniques, absolute and relative, have been developed to correct the acquired images for preserving 

radiometric accuracy. 

 

The absolute technique aims to transform the digital number into bottom-of-atmosphere reflectance. To do so, this 

technique relates the digital numbers in satellite image data to reflectance at the surface of the landscape. It requires 

sensor calibration coefficients, an atmospheric correction algorithm, and related input data, (Du et al., 2002). Fraser 

et al. (1989), Kaufman (1988), and Kneizys et al. (1983) have resulted in a number of atmospheric correction 

algorithm that can provide a realistic estimation of the scattering and absorption on the satellite image. However, it 

is difficult to apply the algorithm due to the minimum knowledge of atmospheric properties. For most historical 

experiences, the atmospheric properties are difficult to acquire and even are not available (Due et al., 2002). 

 

A relative technique based on the radiometric information is an alternative whenever absolute surface reflectance 

properties are not required (Canty et al., 2003). This technique aims to put all the images on a common radiometric 

level (Du et al., 2002). Many methods have been proposed for the relative radiometric normalization of multispectral 

images taken under different atmospheric conditions at different times. In common, those methods contain two 

associated statistical steps. They are to select pseudo-invariant features (PIFs) and to extract regression coefficients, 

respectively. 

 

PIFs is a group of pixels in which their digital numbers are statistically suffering small change over two different 

image acquisition dates of the same terrain. A number of methods have been proposed for PIFs. All proceed under 

the assumption that the relationship between the at-sensor reflectance properties recorded at two different times from 

regions of constant reflectance is spatially homogeneous and can be approximated by linear regression (Du et al., 

2002). 

 

Hall et al. (1991) and Schott et al. (1988) are manually inspecting PIFs. This method normalizes images of the same 

areas through the landscape elements whose reflectance is not changed over time. Caselles and Garcia (1989), Conel 
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(1990), Coppin and Bauer (1994) have used similar procedures. However, the results might be not reliable since they 

are subjective to the capability of one who was selecting PIFs. 

 

Du et al. (2002) utilized principal component analysis (PCA) to select PIFs. This technique addresses major and 

minor axis of a principal component. The pixels around the major axis are considered as PIFs. Further, Lin et al. 

(2015) insert iterative weighting scheme to PCA for obtaining a more robust set of IPs. However, each band is 

processed independently in this technique. 

 

Nielsen et al. (1998) and Canty et al. (2004) proposed the use of multivariate alteration detection (MAD) to extract 

PIFs of bi-temporal images. This technique is invariant to linear and affine scaling. The procedure is simple, fast, and 

completely automatic and compares very favorably with normalization using hand-selected, time-invariant features. 

However, Nielsen (2008) and Zhang et al. (2004) found that the existence of changed pixels may affect uncertainties 

since these pixels are inserted in the calculation of mean and covariance matrix. Hence, an iterative-reweighted 

strategy is utilized in order to defeat this challenge (Nielsen, 2007; Canty et al., 2008). 

 

Whenever PIFs has been selected, one should further extract linear regression coefficients for putting all the images 

on a common radiometric scale. Du et al. (2002) utilized ordinary least squares regression (OLS) technique, proposed 

by Yang and Lo (2000), with quality control to extract linear regression coefficients. With a larger than 0.900 of 

linear correlation coefficients, the OLS performs well. However, this technique allows for measurement uncertainty 

(error) in one image only. In case of radiometric normalization, one should assume that the measurement uncertainty 

is involved in all images. Therefore, Canty et al. (2004) investigated orthogonal regression to perform actual 

normalization, as it treats the data symmetrically. Since it processes each band independently, this may further cause 

a shortcoming called spectral inconsistency. 

 

 
Figure 1. Spectral inconsistency of a pixel’s spectral signature before and after normalization 

 

Spectral inconsistency is an inconsistency problem occurred on spectral signature after the image is normalized, 

as shown in Figure 1. Blue and green lines are the spectral signatures of before and after normalization of the images, 

respectively. Red arrows indicate the occurrence of spectral inconsistency. Before normalization, the spectral 

signature of band number 2-4 shows a going down pattern. However, the opposite pattern occurs after the image is 

normalized. 

 

2. METHODOLOGY 

 

2.1 PIFs Selection using Iteratively-reweighted MAD (IR-MAD) 

 

Suppose we have multi-temporal images, X and Y which have p number of bands and n number of pixels. To make a 

linear combination, we assume a and b are a pair of multiple vectors for band i of image X and Y, respectively. Thus, 

we will have some matrices shown in Eq. (1). 

 

𝑎 = (

𝑎1

𝑎2

⋮
𝑎𝑝

) 𝑏 = (

𝑏1

𝑏2

⋮
𝑏𝑝

) 𝑈1𝑥𝑛 = 𝑎𝑝𝑥1
𝑇 𝑋𝑝𝑥𝑛 , 𝑉1𝑥𝑛 = 𝑏𝑝𝑥1

𝑇 𝑌𝑝𝑥𝑛 (1) 

 
 



Specifically, we seek linear combinations such that 𝑉𝑎𝑟(𝑈 − 𝑉) will be maximum subject to constraints 𝑉𝑎𝑟(𝑈) =
𝑉𝑎𝑟(𝑉) = 1 and 𝐶𝑜𝑣(𝑈, 𝑉) > 0. Note that under these constraints 𝑉𝑎𝑟(𝑈 − 𝑉) = 2(1 − 𝜌), where 𝜌 (Eq. (2)) is the 

correlation of the transformed vector 𝑈 and 𝑉. 

 

𝜌 = 𝐶𝑜𝑟𝑟(𝑈, 𝑉) =
𝐶𝑜𝑣(𝑈, 𝑉)

√𝑉𝑎𝑟(𝑈)𝑥𝑉𝑎𝑟(𝑉)
=

𝑎𝑇∑𝑋𝑌𝑏

√𝑎𝑇∑𝑋𝑋𝑎𝑏𝑇∑𝑌𝑌𝑏
 (2) 

 

By using Lagrange multipliers, this leads to the coupled generalized eigenvalue problems (Eq. (3)). 

 

∑𝑋𝑌∑𝑌𝑌
−1∑𝑌𝑋𝑎 = 𝜌2∑𝑋𝑋𝑎 

∑
𝑌𝑋∑𝑋𝑋

−1 ∑𝑋𝑌𝑏 = 𝜌2∑𝑌𝑌𝑏 
(3) 

 

Thus, the desired projections 𝑈1𝑥𝑛 = 𝑎𝑝𝑥1
𝑇 𝑋𝑝𝑥𝑛  are given by the eigenvectors 𝑎1 … 𝑎𝑝  corresponding to the 

generalized eigenvalues 𝜌1
2 ≥ ⋯ ≥ 𝜌𝑝

2  of ∑𝑋𝑌∑𝑌𝑌
−1∑𝑌𝑋  respect to ∑𝑋𝑋 . Similarly the desired projections 𝑉1𝑥𝑛 =

𝑏𝑝𝑥1
𝑇 𝑌𝑝𝑥𝑛  are given by eigenvectors 𝑏1 … 𝑏𝑝  of ∑

𝑌𝑋∑𝑋𝑋
−1 ∑𝑋𝑌  with respect to ∑𝑌𝑌  corresponding to the same 

eigenvalues. Nielsen et al (1998) refer to the 𝑝 difference components 𝑀𝐴𝐷𝑖 = 𝑈𝑖 − 𝑉𝑖.  

 

𝑛𝑚𝑎𝑑 = ∑ (
𝑀𝐴𝐷𝑖

𝜎𝑀𝐴𝐷𝑖
⁄ )

2
𝑝

𝑖=1

 (4) 

 

We can select all pixel coordinates which satisfy 𝑛𝑚𝑎𝑑 < 𝑡, where 𝑡 is a decision threshold. Under the hypothesis 

of no-change, the 𝑛𝑚𝑎𝑑 (Eq. (4)) is approximately chi-squared distributed with 𝑝 degrees of freedom. We chose 𝑡 =
𝒳𝑝,𝑃=0.01

2 , where 𝑃 is the probability of observing that value of 𝑡 or lower. The pixels thus selected should correspond 

to truly PIFs. Thus, the overall radiometric differences between the two images can be attributed to linear effects. 

 

The iteratively-reweighted scheme of MAD is further adopted. Different to Nielsen (2007) who sets initial weight 

equal to 1 for each pixel, we consider to utilize similarity measurement, e.g. spectral angle (Eq. (5)). Spectral angle 

ranges from 0° to 90° in which smallest value means the spectral signatures of two corresponding pixels are absolutely 

similar and highest value means the opposite. This aims to strengthen pixel which exhibits smaller change.  

 

𝑆𝐴 = cos−1
∑ 𝑌𝑖𝑌′𝑖

𝑝
=1

√∑ 𝑌𝑖
2 ∑ 𝑌′𝑖

2𝑛
𝑖=1

𝑝
𝑖=1

 
(5) 

 

Further, in the iteration process, Nielsen (2007) utilized probability function of chi-squared distribution in 

determining the weight’s value of each pixel. We further take another different weighting strategy in this following 

step. Eq. (6) implies the weighting strategy in the iteration process of this study. It aims to strengthen pixels with a 

smaller value of 𝑛𝑚𝑎𝑑. 

 

𝑤𝑗 =

[(
𝑛𝑚𝑎𝑑𝑗 − 𝑛𝑚𝑎𝑑𝑚𝑖𝑛

𝑛𝑚𝑎𝑑𝑚𝑎𝑥 − 𝑛𝑚𝑎𝑑𝑚𝑖𝑛

∗ 99) + 1]

100
 

(6) 

 

2.2 Constrained Regression 

 

After obtaining PIFs, orthogonal regression is performed. This aims to find the normalization coefficient, slope 𝛼 and 

intercept 𝛽. In this step, the number of 𝛼 and 𝛽 are equal to the number of bands. Thus, it leads us to have 𝛼 =

[𝛼1 𝛼2
… 𝛼𝑝], 𝛽 = [𝛽1 𝛽2 … 𝛽𝑝], and their regression qualities 𝑟2 = [𝑟1

2 𝑟2
2 … 𝑟𝑝

2], where those are 

sequenced following this constraint 𝛼1 > 𝛼2 > ⋯ > 𝛼𝑝. 

 

In the afore condition, each band’s regression might result in a good quality. However, as shown in Figure 2, the 

elements’ value of 𝛼 and 𝛽 are random. This may lead to the inconsistency problem. A one linear regression approach 

might be the solution of the inconsistency problem. However, each band’s regression might be suffering a bad 𝑟2. 

Thus, we proposed to combine the advantage of those two approaches. This combination is to maintain the quality of 

each band’s regression while preserving the pixel’s consistency. 

 



  
Figure 2. Left: the illustration of linear regression results at time the original approach is conducted; Right: one 

linear regression approach to defeat the inconsistency problem, yet the qualities of band’s regressions are bad; 

Center: proposed approach which combines the advantage of those two previous approaches 

 

In reaching this goal, we prefer to constrain the regression’s coefficients by applying cost function with three 

weighting schemes. Those weighting schemes aim to preserve the spectral consistency while maintaining the 

performance of each regression. This further is called as constrained regression. 

 

Several assumptions are provided in this constrained regression process. The assumptions are explained as follows: 

1. Each two sequenced elements of 𝛼 and 𝛽 should change gradually. 

2. Gradients (Eq. (7)) of 𝛼 and 𝛽 should be constant.  

 

𝜵𝜶 = [𝛻𝛼1 𝛻𝛼2 ⋯ 𝛻𝛼𝑛−1] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜵𝜷 = [𝛻𝛽1 𝛻𝛽2 ⋯ 𝛻𝛽𝑛−1] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑤ℎ𝑒𝑟𝑒 𝜵𝜶𝒏 = 𝛼𝑛+1 − 𝛼𝑛 

(7) 

 

3. Laplacians (Eq. (8)) of 𝛼 and 𝛽 should be equal to 0 (zero).  

 

𝜵𝟐𝜶 = [𝛻2𝛼1 𝛻2𝛼2 ⋯ 𝛻2𝛼𝑛−2] = 0 

𝜵𝟐𝜷 = [𝛻2𝛽1 𝛻2𝛽2 ⋯ 𝛻2𝛽𝑛−2] = 0 
(8) 

 

The first weighting scheme utilizes the Laplacian form and purposes to fix the inconsistency problem as well as to 

maintain the initial values of 𝛼 and 𝛽 not to change a lot. As shown in Eq. (9), the 𝜔 can be adjusted following which 

purpose we need to prioritize. The illustration of the first weighting scheme is shown in Figure 3. 

 

𝐹1 = 𝜔[𝛼 + 𝛽] + (1 − 𝜔)[∇2𝛼 + ∇2𝛽] (9) 
 

 

 
Figure 3. The illustration of the first weighting scheme result 

 

The second weighting scheme utilizes the coefficient of determination of each band. This scheme aims to distribute 

the uncertainties into all bands on a considerable degree. The band which has a higher coefficient of determination 

will be distributed less uncertainty, and vice versa (see Eq. (10)). The illustration of second weighting scheme is 

shown in figure 4. 

 



𝐹2 = 𝜑[𝛼 + 𝛽]; 𝑤ℎ𝑒𝑟𝑒 𝜑𝑖 =

[(
𝑟𝑖

2 − 𝑟𝑚𝑖𝑛
2

𝑟𝑚𝑎𝑥
2 − 𝑟𝑚𝑖𝑛

2 ∗ 99) + 1]

100
 

(10) 

 

 
Figure 4. The illustration of the second weighting scheme result 

 

Further, the third weighting scheme utilizes the bands which are involved in the indexing strategy. This scheme aims 

to distribute fewer uncertainties to the involved bands and more uncertainties to the uninvolved bands. Besides, it 

prioritizes the involved band(s) not to suffer a high decreasing of 𝑟2  (see Eq. (11)). This weighting scheme is 

illustrated on Figure 5. 

 

𝐹3 = 𝜅[𝛼 + 𝛽]; 𝑤ℎ𝑒𝑟𝑒 𝜅𝑖 = {
𝜅,   𝑏𝑎𝑛𝑑𝑛 = 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑

1 − 𝜅, 𝑏𝑎𝑛𝑑𝑛 ≠ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
 (11) 

 

 
Figure 5. The illustration of the third weighting scheme result 

 

Those weighting schemes will be processed under the iterative scheme as shown in Figure xx. The iteration stops 

when the value of each element of 𝛻2𝛼 and 𝛻2𝛽 is close to zero. 

 
Figure 6. Iterative-weighting process of proposed approach 

 

Hence, distance and similarity measurements are utilized for evaluating the proposed approach. Those measurements 

are to figure out how far the radiometric level is moving and to find how similar the spectral signature before and 

after an image is normalized. We adopt Euclidean distance (Eq. (12)) and spectral angle (Eq. (5)), which introduced 

by Carvalho Junior et al. (2013), to display the evaluation. 

 

𝐸𝐷 = √∑ (𝑌𝑖 − 𝑌′𝑖)
2

𝑝

𝑖=1
 (12) 



 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

The spectrally-consistent relative radiometric normalization is performed to bi-temporal Landsat 8 images. Those 

images are taken in Mexico. One of them is the reference image while other be the target image as shown in figure 7. 

Several experiments will be conducted by adjusting 𝑡, 𝜔, and 𝜅. 

 

   
(a) (b) (c) 

Figure 7. (a) Reference image; (b) target image; and (c) mixture image of reference (left) and target (right) 

 

3.1 Normal Thresholding 

 

In the beginning, we experiment a normal thresholding by adjusting 𝑡 equals to 4. The PIFs image is shown in figure 

8 (a). Black pixels imply the changed pixels while others are PIFs. As shown in table 1, the correlations are more 

than 0.9500 and it indicates the selection of PIFs is excellent. The 𝛼 and 𝛽 are in random condition with 𝑟2  more 

than 0.9000. Since the SA value of this condition is high (3.6589°), the proposed approach need to be implemented. 

 

When implementing the proposed approach, we adjust 𝜔 equal to 0.8. It results 𝛼 and 𝛽 to be in systematic condition 

and makes the SA value is decreasing. This means the consistency of the spectral signatures becomes better. Yet, it 

still suffers a worse 𝑟2  than previous. As shown in figure 9 (a) and 9 (b), it is difficult to find differences between 

those image results. However, those results are statistically different as shown by their ED values. 

 

  
(a) (b) 

Figure 8. The PIFs selection images of (a) normal and (b) strict thresholding 

 



Table 1. Statistical experimental results for normal thresholding 

𝒕 4 

Experiments 
PIFs 

Quality 

Original approach 
𝜔 = 0.8 

𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

𝜔 = 0.2 

𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

𝜔 = 0.2 

𝜅 = 𝑠𝑜𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 

𝛼 𝛽 𝑟2   𝛼 𝛽 𝑟2   𝛼 𝛽 𝑟2   𝛼 𝛽 𝑟2   

Band 1 0.9698 0.8999 445.9188 0.9393 0.8532 846.5126 0.8213 0.8523 809.9602 0.7386 0.8338 611.6281 -1.0510 

Band 2 0.9710 0.9094 288.9864 0.9418 0.8534 846.6143 0.9133 0.8525 810.1852 0.8827 0.8340 612.1021 -0.0030 

Band 3 0.9736 0.9329 -40.8806 0.9467 0.8542 847.5153 0.9340 0.8533 812.2874 0.9292 0.8361 618.1425 0.6188 

Band 4 0.9719 0.9199 -30.2257 0.9423 0.8535 846.7663 0.9327 0.8526 810.5326 0.9332 0.8344 613.0308 0.8015 

Band 5 0.9658 0.9235 -196.8320 0.9307 0.8538 847.1536 0.9178 0.8530 811.4350 0.9141 0.8353 615.6471 0.7674 

Band 6 0.9750 0.9412 -484.3847 0.9503 0.8543 847.6377 0.9310 0.8535 812.5771 0.9271 0.8365 619.0450 0.8207 

Band 7 0.9742 0.9227 -175.6958 0.9473 0.8537 846.9526 0.9381 0.8528 810.9648 0.9373 0.8348 614.2857 0.8569 

Band 8 0.1037 0.2429 3819.9000 -10.5021 0.8532 846.4721 -148.3172 0.8523 809.8818 -66.5246 0.8336 611.5182 -448.0712 

Band 10 0.9732 0.9659 2302.4000 0.9481 0.8544 847.7023 -20.9773 0.8536 812.7303 -21.5551 0.8368 619.4392 -29.6850 

Band 11 0.9641 0.9279 3293.3000 0.9297 0.8540 847.3480 -28.6432 0.8532 811.8924 -29.4786 0.8357 616.9718 -40.9011 

ED 
Mean 

3229.3219 5129.2000 5256.8000 6622.0000 

SA 3.6589 1.4775 1.4157 1.0743 

 

    
(a) (b) (c) (d) 

Figure 9. Normalized images of (a) original approach; and proposed approach with (b) 𝜔 = 0.8, 𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡; (c) 𝜔 = 0.2, 𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡; and (d) 𝜔 = 0.2, 𝜅 = 𝑠𝑜𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 

 

 



Table 2. Statistical experimental results for strict thresholding 

𝒕 1 

Experiments 
PIFs 

Quality 

Original approach 
𝜔 = 0.2 

𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

𝜔 = 0.8 

𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

𝜔 = 0.8 

𝜅 = 𝑠𝑜𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 

𝛼 𝛽 𝑟2   𝛼 𝛽 𝑟2   𝛼 𝛽 𝑟2   𝛼 𝛽 𝑟2   

Band 1 0.9721 0.9028 404.1797 0.9442 0.8714 551.7454 0.6663 0.8705 577.6717 0.7024 0.8604 459.2344 -0.2104 

Band 2 0.9735 0.9169 196.6764 0.9470 0.8715 552.0562 0.8591 0.8706 577.8356 0.8755 0.8605 459.4672 0.4369 

Band 3 0.9744 0.9464 -192.8185 0.9487 0.8721 554.4135 0.9288 0.8713 579.0188 0.9320 0.8613 461.4819 0.7799 

Band 4 0.9710 0.9333 -197.4064 0.9416 0.8716 552.5359 0.9323 0.8707 578.0807 0.9306 0.8607 459.8680 0.8926 

Band 5 0.9650 0.9433 -491.4205 0.9299 0.8719 553.7820 0.9176 0.8711 578.7053 0.9168 0.8611 460.9437 0.8763 

Band 6 0.9777 0.9521 -669.8495 0.9552 0.8724 555.3590 0.9429 0.8716 579.4860 0.9422 0.8616 462.3102 0.9181 

Band 7 0.9735 0.9373 -389.3681 0.9462 0.8718 553.1327 0.9357 0.8709 578.3812 0.9335 0.8609 460.3861 0.9210 

Band 8 0.1271 0.2800 3630.8932 -7.5445 0.8713 551.6371 -64.8367 0.8704 577.6064 -35.1480 0.8603 459.1536 -543.8476 

Band 10 0.9735 0.9801 1886.1157 0.9466 0.8725 555.5706 -18.0917 0.8717 579.5903 -18.2470 0.8618 462.4747 -22.2727 

Band 11 0.9633 0.9473 2772.1178 0.9259 0.8722 554.9588 -26.4891 0.8714 579.2886 -26.7595 0.8615 461.9527 -32.4912 

ED 
Mean 

3278.9000 4977.2000 4956.3000 5912.5000 

SA 3.6966 0.9528 0.9152 0.7815 

 

    
(a) (b) (c) (d) 

Figure 10. Normalized images of (a) original approach; and proposed approach with (b) 𝜔 = 0.2, 𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡; (c) 𝜔 = 0.8, 𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡; and (d) 𝜔 = 0.8, 𝜅 = 𝑠𝑜𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 

 



To maintain the 𝑟2, we further readjust 𝜔 to 0.2. This leads to a better 𝑟2. Besides, this also leads to have a better SA 

value. Hence, we adjust 𝜅 to soil index. It results a better 𝑟2   and SA value. However, the results image suffers 

difference as it shown in Figure 9. Overall, the experiment with 𝜔 = 0.2 and 𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 are most suitable for the 

normal thresholding. 

 

3.2 Strict Thresholding 

 

In this section, we would like to utilize a very good PIFs by utilizing a strict threshold. 𝑡 is adjusted to 1. Figure 8 (b) 

shows the PIFs selection result of the strict thresholding. Similar to previous result, black pixels imply the changed 

pixels and the others are PIFs. Table 2 implies PIFs selection showing a good performance and having a better quality 

of PIFs selection than normal thresholding. 

 

In the beginning, the original approach is conducted. The 𝛼 and 𝛽 are in random condition. Further, we adjust 𝜔 to 

0.2. It results the 𝑟2 suffering only low change while the SA becoming smaller. As shown in Figure 10 (a) and 10 (b), 

it is difficult to find differences between those image results. However, those results are statistically different as 

shown by euclidean distance.  

 

We further adjust 𝜔 to 0.8. This leads us to have a better result. As shown in table 2, the 𝑟2  changed a few and SA is 

decreasing. Further, when we adjust 𝜅 to soil index, the result becomes better. However, it displays that the result 

image is different to the others since the 𝑟2  becomes worst. Overall, the experiment with 𝜔 = 0.8 and 𝜅 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

fits for the strict thresholding case. 

 

4. CONCLUSION 

 

The spectrally-consistent relative radiometric normalization has been conducted to bi-temporal images of Landsat 8. 

The results showed this proposed approach can successfully maintain the regression quality while preserving the 

consistency of a pixels’ spectral signature after normalization. The 𝑟2  of our approach is not changed a lot and the 

SA value becomes much better. 
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