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ABSTRACT:

Remote sensing using Synthetic Aperture Radar(SAR) is one of the most commonly used methods for detecting and
characterizing oil spills in seas and oceans. However, distinguishing true oil spills from false look-alike features like
biogenic oil  is  a major challenge.  The aim of this study is to use polarimetric  decompositions like H/A/alpha
decomposition to separate oil spill areas from look-alike features using Maximum Likelihood Classification (MLC)
and  Markov  Random Field  (MRF)  classification  methods.  The  classification  algorithm is  applied  to  a  quad-
polarized  Ground  Range  Detected  (GRD)  dataset  of  Uninhabited  Ariel  Vehicle  Synthetic  Aperture  Radar
(UAVSAR) sensor of an experimental oil spill in Norway. The dataset contains a strip of plant oil and three strips of
different types of crude oil-water emulsions with varying concentrations of oil. Polarimetric features are extracted
using covariance matrix, coherency matrix and H/A/alpha polarimetric decomposition. An MRF classifier is trained
and its parameters are optimized over the image. The kappa value in the case of MLC was 0.295 and 0.266 in case
of MRF. Using the MRF classifier on features results does not significantly improve classification of different type
of oil spills. The confusion between classes increases as the level of dilution in the oil-water emulsion increases.
The procedure works well in separating oil spills from water. It also helps to better characterize oil spills which
have higher concentration of oil. The incidence angle effect also contributes to the misclassification of oil spills in
the area. This can be rectified by applying incidence angle correction.

INTRODUCTION

Oil spill  is  a  release of  mineral  oil  in  a  water  body from offshore drilling rigs,  oil  tankers  or underwater  oil
pipelines.  After getting introduced into the water, oil usually forms a thin film over the water surface which is
referred to as oil spill, marine surface slick or oil slick. However, oil spill can also be present as thick layers on the
water surface as oil-water emulsions which seldom sink down to the sea bed  (Dell’Amore, 2015). The oil spills
move both horizontally over the water surface and vertically inside the water. Wind and surface water current are
the two major factors responsible for the spread of oil over the water surface.  There are several factors which
influence the oil spill impact on the environment. Amongst all of them, the crucial ones are its rate and direction of
movement, its location relative to human and marine species habitats, its type and its extent over the ocean surface.

Oil  spills  cause many harmful  consequences  for  the marine and coastal  ecosystems  (Chang,  Stone, Demes, &
Piscitelli, 2014). A well-known oil spill event in recent history was the Deepwater Horizon oil spill in 2010. It
resulted in 4.9 million barrels of oil getting spilt in the Gulf of Mexico over a period of 5 months (Weber, 2010). It
caused a huge impact on the living flora and fauna of the gulf (Beyer, Trannum, Bakke, Hodson, & Collier, 2016).
Many animals, including birds, sea turtles, mammals and fishes died as a result of this oil spill (CNN, 2010). It also
impacted on the lives of people living along the coast by hampering tourism and fisheries industries of the region.
Therefore,  it  is  necessary  to  anticipate  and  prepare  for  oil  spills  to  limit  their  adverse  consequences  on  the
environment.

To curtail the impact of oil spill, it is important to identify its location and characterize it (i.e. to distinguish it from
similar look-alike features, e.g. marine algae) as accurately as possible. Early and accurate detection ensures quick
and targeted response to the affected location. It also helps in efficient allocation of relief efforts and resources.
Moreover,  having  knowledge  about  the  type  of  oil  getting  spilled  assists  decision  makers  in  choosing  the
appropriate method for oil spill cleanup. Therefore, there is a demand of efficient and reliable methods for accurate
detection and characterization of oil spills.

Active Remote Sensing sensors such as Synthetic Aperture Radar (SAR) is one of the most efficient and widely
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used methods in oil spill detection. As compared to passive remote sensing methods such as in visible range (Wang,
Pan, Zhan, & Zhu, 2010), infrared (IR) range  (Pinel & Bourlier, 2009), near infrared (NIR) range  (Bulgarelli &
Djavidnia, 2012), and ultraviolet (UV) range, SAR sensors are independent of the sun to collect imagery, and hence
also work during night. Moreover, SAR can provide images in all-weather conditions because of the capability of
radar  waves  penetrating  through  clouds.  Therefore,  SAR remote  sensing  is  one  of  the  most  commonly  used
methods for detecting and characterizing oil spills (Fingas & Brown, 2014).

SAR remote sensing of sea surfaces is based on the interaction of electromagnetic radar waves with sea surface
matter waves. Ocean or sea surfaces are characterized by two types of waves: capillary waves and gravity waves.
Capillary waves, also termed as ripples, are short wavelength waves which are formed due to the interaction of
water surface with the wind. These waves are sensitive to the surface tension of the fluid surface. Gravity waves are
longer in wavelength and are mostly influenced by the effects of fluid inertia and gravity. A slick cover causes
dampening of small capillary waves due a reduction in surface tension and decrease in wind friction. This causes a
suppression in wave growth and an increase in wave dissipation  (Minchew, Jones, & Holt, 2012). Therefore, oil
slicks mostly appear darker than the wind-roughened surrounding ocean in the acquired SAR imagery.

In spite of all the advantages which SAR remote sensing offers in detecting oil spills, there are various limitations
associated with this technique. These limitations include false target detections such as low wind areas, marine
biogenic slicks, rainfall footprints (Alpers, Zhang, Mouche, Zeng, & Wai, 2016), and ship wakes. Marine biogenic
slicks behave in a very similar way as mineral oil spills. They also cause dampening of capillary waves resulting in
reduction of radar backscatter. These natural slicks are mostly caused due to the presence of algae, biogenic oils,
glacial  flour,  and whale and fish sperm  (Gens, 2008).  Therefore,  detection of mineral  oil  spills  using radar  is
difficult in areas where the probability of occurrence of above mentioned false targets is high (Liu, Zhao, Li, He, &
Pichel, 2010). Polarimetric SAR (Pol-SAR) data has been reported to aid in accurate oil slick detection and in
distinguishing  between  biogenic  and  anthropogenic  mineral  oil  spills  (Gade,  Alpers,  Hühnerfuss,  Masuko,  &
Kobayashi, 1998).

An increase in the number of polarization channels of SAR datasets (e.g. from dual-pol to quad-pol) increases the
number  of  polarimetric  features  which  can  be  extracted  from the  datasets. Use  of  polarimetric  data  in  ocean
monitoring is based on Bragg Scattering Theory (Valenzuela, 1978). The backscatter response from the sea surface
waves  depends  upon the  local  incidence angle,  wavelength of  radar  waves,  wavelength  of  surface  waves,  the
dielectric  constant  of  the  surface  material  and  nature  of  polarization  of  incident  electromagnetic  radar  wave.
Polarimetric data is used to extract certain polarimetric features which are related to the factors in Bragg scattering
theory.  Some of  the  polarimetric  features  which  have been reported to  be useful  in  oil  spill  detection and in
capturing  the  factors  in  the  Bragg  Scattering  Theory  are  complex  co  &  cross-polarization  cross  product,
determinant of sample covariance matrix, entropy (H), anisotropy (A) and angle (α) between the eigenvectors of
coherency matrix. The real and imaginary parts of co-polarization cross product are able to capture large scale
roughness  of  the  sea  surface  (Espeseth  et  al.,  2017). Polarimetric  target  decompositions  such  as  H/A/α
decomposition make use of quad-pol data and are useful in detecting oil spills  (Skrunes, Brekke, Jones, & Holt,
2016).

There are many classification methods which can be used to classify oil spills. They include maximum likelihood
classifier(MLC), support vector machine(SVM), and Markov Random Fields(MRF) (Lopez & Moctezuma, 2005;
Moctezuma,  Parmiggiani,  &  Lopez,  2014;  Morales,  Moctezuma,  &  Parmiggiani,  2008).  Moreover,  PolSAR
classification methods, such as Wishart classification have also been used in detecting oil spills (Kumar, Kattamuri,
& Agarwal, 2016). MRF based soft classification methods can also be used to classify oil-slicks. The probability of
true oil spill detection from SAR data is affected by multiple factors, such as wind speed range, presence of algae in
the region, proximity to shipping routes and oil rigs and shape of the slick. These effects are usually represented in a
set of different hard classified maps. As an alternative, the factors stated above can be captured by modeling of oil
spills as probability surfaces over the 2 dimensional sea surface.

This research aims to use contextual features and polarimetric features derived from quad-polarized Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data to detect and characterize oil spills. For this purpose, this
research uses classification methods such as MLC and MRF based classification and compare their performance of
the basis their accuracy in classifying oil spills.

STUDY AREA AND DATASET

For this research UAVSAR L-band quad-polarized image acquired over the region of North Sea, Norway on June
10th, 2015 was used. This image acquisition was part of a joint exercise called NORSE-2015, where four different
types of oil slicks were intentionally spilled into the sea and data was captured using multiple satellites and the



UAVSAR air-borne sensor (Table-2). These four oil slicks can be observed in Figure-1, and the characteristics of
the oil dispersed over the sea is mentioned in Table-1. A series of 22 datasets were collected by the airbourne sensor
which  spanned  over  a  time  period  of  approximately  8  hours.  One  of  them  is  the  UAVSAR  dataset  with
identification code ‘norway_00709_15092_000_150610_L090_CX_01’ which was used to carry out this study. A
small subset of the image was cropped using PolSARpro software such that the image focused on all the 4 oil spill
regions (Figure 1).   The cropped image had a  longitude and latitude pixel  spacing of  0.000111 and -.000055
decimal degrees respectively. The extent of the image was 1431 x 1178 pixels.

This dataset was chosen because of certain advantages associated with the data. This dataset is freely available
through NASA-JPL UAVSAR data portal  (NASA-JPL,  n.d.).  It  is  quad-polarized,  has  low system noise floor,
higher contrast and higher spatial resolution as compared to other data sources which collected images of the same
oil spill (Skrunes et al., 2016). Moreover, the SAR image contains four different types of oil spills which could be
used to develop a versatile oil spill detection model.

Table 1: Details of emulsions spilt in NORSE-2015 
exercise (Brekke et al., 2016)

Release Quantity 
(litres)

Specification

Emulsion 3 500 80% oil and 20% 
sea-water

Emulsion 2 500 60% oil and 40% 
sea-water

Emulsion 1 500 40% oil and 60% 
sea-water

Plant Oil 200 100% plant oil

Table 2: Details of UAVSAR sensor which acquired images of oil spills in NORSE-2015 exercise (Skrunes et al.,
2016).

Sensor UAVSAR

Frequency L band (1.2175 - 1.2975 GHz)

Type GRD

Polarization Quad-Pol

Incidence angle range 25 – 65 degrees

Longitudinal Spatial Resolution 11.111e-05 degrees

Latitudinal Spatial Resolution 5.556e-05 degrees

Date and Time acquisition 10-June-2015, 11:45:40 UTC

Radiometrically corrected? Yes

METHODOLOGY

Preprocessing
As a preprocessing step, speckle filtering was performed on the dataset using Lee sigma filter  (Espeseth et al.,
2017). The sigma value was chosen to be 0.9, target and filer window size were 3 and 9 respectively. Thereafter, the
covariance matrix elements were extracted using PolSARpro software. 

Figure 1: Pauli RGB image of subset of UAVSAR PolSAR 
image of NORSE-2015 oil spill. R→ C11, G→ C22, B→ C33

Emulsion 2

Emulsion 1

Plant Oil

Emulsion 3



Feature Extraction
The polarimetric features used for the classification were real and imaginary parts of co-polarization cross product,
co-polarization intensities (SVVSVV

* and SHHSHH
*), cross polarization intensity (SHVSHV

*), real and imaginary parts of
two co-cross polarization cross product (SHHSHV

*  and SHVSVV
*). Five classes were identified and used for further

analysis. These classes were Sea, Plant Oil, Emulsion-1, Emulsion-2 and Emulsion-3. The training and testing areas
for the classification were delineated using QGIS software. These training and testing areas can be observed in
Figure 2 and the number of pixels from image in respective areas can be noted from Table 3. 

MLC and MRF based classification
R  programming  language  was  use  to  read  the  features,  training  areas,  and  testing  areas.  Furthermore,  the
classifications were also performed in R. The data in the features did not exactly follow Gaussian distribution but
was assumed to be distributed normally. This can be observed in in Figure 3 which depicts the data distribution of
co-polarization (VV) intensity. Class separability measures were calculated using transformed divergence method.
Thereafter, MLC was performed on the dataset with the assumption that the conditional probability term in MLC
and maximum a-priori (MAP) solution followed normal distribution. 

Subsequently,  MLC based  MRF classification was  performed on the  set  of  features  described  in  the  previous
paragraph. The parameters of the MLC based MRF classifier were optimized on a small subset of the image. 

Post classification accuracy assessment was performed and hence, the performance of both MLC and MLC based
MRF classifier were compared using their corresponding confusion matrices.

Table 3: Number of pixels from image in training and testing areas 

Emulsion-1 Emulsion-2 Emulsion-3 Plant Oil Sea

Number of pixels in
training set

2707 3583 1574 902 40586

Number of pixels in
test set

1337 4307 1853 1167 35017

RESULTS AND DISCUSSION

Class separability measures which were calculated using transformed divergence method are reported in Table 4. It
can be observed from the measures that as the concentration of oil in the emulsions increase, the class separability
values between oil slicks also increase. This result correlates well with the information about the concentration of
different oil slicks. Less concentration of oil in the slicks results in an increase in its similarity with water. It is also
interesting  to  note  that  it  is  difficult  to  distinguish  emulsion  1  -  emulsion  2  and  emulsion  2  -  emulsion  3
combinations.

The classification result after performing MLC on the dataset is displayed in Figure 4. The overall accuracy and
kappa  values  came out  to  be  82.43% and 0.295 respectively.  The confusion  matrix  obtained  from maximum
likelihood  classification results and the test data are reported in Table 5. It can be observed from these results that
error of omission in classification are lower for classes Sea, Plant Oil and Emul-3 classes as compared to the other

Figure 2: Training and testing areas for the classifier Figure 3: Data distribution of VV intensity feature



classes.  The  class  Sea  is  most  efficiently  classified  by  this  classification  method.  The  high  number  of  mis-
classifications for classes Emul-1 and Emul-2 resulted in a low kappa value .

Table 4: Class Separability (Transformed Divergence)

Emul-1 Emul-2 Emul-3 Plant
Oil

Sea

Emul-1 0 0.59 1.35 1.86 2

Emul-2 0.59 0 1.09 1.94 2

Emul-3 1.35 1.09 0 1.96 2

Plant Oil 1.86 1.94 1.96 0 2

Sea 2 2 2 2 0

Table 5: Confusion Matrix (MLC)

Emul-1 Emul-2 Emul-3
Plant 
Oil

Sea

Emul-1 40 549 86 164 4

Emul-2 19 851 505 549 68

Emul-3 0 40 89 0 2

Plant Oil 0 6 0 84 0

Sea 1278 2861 1173 370 34943

Table 6: Confusion Matrix (MLC-MRF)

Emul-1 Emul-2 Emul-3
Plant 
Oil

Sea

Emul-1 39 538 80 226 14

Emul-2 23 752 435 541 58

Emul-3 0 2 59 0 0

Plant Oil 0 1 0 35 0

Sea 1275 3014 1279 365 34945

Correspondingly,  the  results  from  MLC based  MRF classification  are  reported  in  Figure  5.  After  tuning  the
parameters of the MRF classifier i.e. the values of lambda, initial temperature, and updating factor for reducing
temperature came out to be 0.9, 3.2 and 0.85 respectively. There were 73 iterations for the MRF classifier. The
trends for the temperature, kappa and energy can be observed in Figure 6. It is important to note that the value of
kappa attained a maximum value at around iteration number 40 and then decreased gradually until the last iteration.
After the full round of iterations, the value of kappa came out to be 0.266. The confusion matrix obtained after the
classification is reported in Table 6. The matrix does not deviate too much from the one obtained from MLC results
(Table 5). It also shows a reduced number of correctly classified pixels as compared to the MLC results.

On comparison of the results from MLC and MLC-MRF classification methods, we can state that MRF based
classification method does not provide any improvement in the classification results. This could be attributed to the
high incidence angle effect in the image which results in gradient of pixel values from high values on the right side
of the image to lower values on the left side of the image for the same sea class. 

Figure 4: Classification results from MLC

 Figure 5: Classification results from MRF 
classification



CONCLUSION

After assessment of the results from the two classifiers (Figure 4 and Figure 5) on this particular dataset (Figure 1),
it can be concluded that both MLC  and MLC-MRF classification methods are useful in separating oil spills from
water. However, they are limited in their ability to distinguish between the type of oil spills (Table 5 and Table 6). It
can also be concluded from Table 4 that SAR images are able to capture the dampening effect of oil on sea surface
waves. The increasing amount of oil in the oil-slicks cause more dampening and hence better separability from sea-
water.  The MRF classifier  did not provide a significant  improvement in the classification accuracy.  The same
method can give better classification results after including contextual features in the set of features provided to the
classifier and correcting the incidence angle effect. 
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