Starting Windows Programming

By: Alphantasm

Email: alphantasm@usa.net

Homepage: http://www2.hawaii.edu/~anip/

Date: February 1999

For: Abyssware

URL: http://www.geocities.com/TimesSquare/2795/

NOTE-> legal stuff mumbojumbo: The author of this article assumes no responsibility for any loss or damage due to this information or any related action.

I suggest using Wordpad to view this. The following is intended to help you get familiar with Windows programing and its interface. You must have a compiler that has the Win32 API (Microsoft Visual C++ and Boralnd compilers have it)I will not be able to go through everything but just enough to have a working program. For more detailed information, see the Win32 API reference. the Special thanks to Andre LaMothe for the great books he had written. Please do not email me for program bugs or how-to-do queries, I am no expert yet =).

** HUNGARIAN NOTATION ***

First thing to be familiar with is the Hungarian notation used in Windows. These are typing convension used by Microsoft to give descriptive names to variables by using prefixes. The following is a list of a few:

Prefix | Meaning

c char

by byte (unsigned char)

n short or int (number)

i int

b bool

w word (unsigned int)

l long

dw double word (unsigned long)

fn function

s string

sz, str string terminated by 0 byte

lp long pointer (32-bit)

h handle

msg message

A handle is like an ID number; it could be an integer or reference to other objects or something else; just dont be mixing it with other things.

Here are soem examples of the prefixes:

lpszName : a long pointer to a string terminated by NULL

lpwVar : a long pointer to a WORD

lpfnWndProc : a long pointer to a function

wParam : a word varialbe

lParam : a long variable

Notice that the prefixes are in lower case and the following name description start with upper case.

** SETUP **

Ok, I hope that was easy to swallow. To start to program, you must include the following in you source file:

---------->

#define WIN32_LEAN_AND_MEAN

#include <windows.h>

#include <windowsx.h>

<---------

The define initializes some options in the windows.h file; dont ask me what, dont know yet :(. The windows.h file has all the includes for the files needed to access the various API functions. The windowsx.h contains many useful macros, so put it there.

Remember that in DOS, you have the main(...) function as the entry point of you program. In windows, you use the WinMain(...) as the entry point. Here is the prototype:

---------->

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

			 LPSTR lpCmdLine, int nCmdShow)

<---------

If you use Visual or Borland, whenever you start a project, there should be a file with this function, maybe called "Project1.cpp" or something. The hInstance is like an ID to this program, some functions will require this variable. The hPrevInstance is a handle to the

preceding instance; you dont needed so dont worry, be happy :). The lpCmdLine is a string with the command line parameters. Unlike DOS, where each parameter is parsed, Windows will store the entire string in the variable, excluding the program name itself. The nCmdShow is

an integer flag that directs the way the window is initially shown. It will not be used for this tutorial so just put it aside. Oh yeah, the WINAPI thing is a flag that the compiler uses, just remember to put it there. The int is the return type.

** MESSAGES ***

Before continuing on, let's have a way to display a message in Windows so that later on, we can trace where the program is executing. Here is the prototype for a message box:

---------->

int MessageBox(HWND hWnd, LPCTSTR lpTextMessage,

	 LPCTSTR lpTitle, UINT uType)

<---------

Please, dont run away! take it a bit at a time. The hWnd is a handle to the parent window; it is NOT the same as hInstance. Let's say you got multiple windows running, then the message box needs to know where does this box belong to. For now, since there are no windows, just

set it to NULL. The lpTextMessage is the text that will be shown inside the message box. It can be anything (eg. "Curse this window!"). The lpTitle is the string that will be displayed on the title bar of the box (like in a web page). The uType is a flag that selects the type

of message box to display. Here is a working sample program:

---------->

#define WIN32_LEAN_AND_MEAN //Windows define to initialize 						 //options in windows.h

#include <windows.h> //File with all the includes for 						 //access to the API functions

#include <windowsx.h> //Win32 API macros

int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 //A simple, friendly message box.

 MessageBox(NULL, 			//Parent window

	 "Hi, I am Chucky, will you be my friend?", //Text in box

 "The Title", 		//String on title bar

 		 MB_OK);			//Type of message box

 return 0; //Exit

}

<----------

It can't get simpler than this, it should compile and work. The MB_OK is a flag that creates a message box with an "OK" button. Notice the type of prefix convention use in the flag: "MB" which stands for "MessageBox." Most, if not all, of the flags use this convention to tell you where to use it.

** WNDCLASS ***

Oh boy, this is getting quite long. Ok, that wasn't bad was it? Now lets create a window step by step.

There are three basic steps:

1) Create a data structure that has the properties of your window and points to an event handler

2) Register this structure

3) Create a window of this type and some more options

Here is the data structure that you use:

---------->

typedef struct _WNDCLASS

{

	UINT style;		 //Style flags

	WNDPROC lpfnWndProc;	//Pointer to the event handler function

	int cbClsExtra;		//Extra

	int cbWndExtra;		//Extra

	HANDLE hInstance;	 //Handle of instance

	HICON hIcon;		//Handle to Icon

	HCURSOR hCursor;	 //Handle to cursor

	HBRUSH hbrBackground;	//Handle to background brush

	LPCTSTR lpszMenuName;	//Menu name

	LPCTSTR lpszClassName;	//Name of class

}	WNDCLASS;

<----------

Dont be baffle by all the data types, just look at the variable names. Here are the descriptions

*--style :	

Flags that tell windows what kind of messages will be sent to the event handler. Messages are just id numbers, each type message has a unique one, so you can use a switch statemet to find which message windows has sent to the event handler. More on this later. For now, here are the flags that are to be used by "ORing" them together:

---------->

MyWnd.style = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW;

<----------

Note the prefix of the flags "CS" which stands for "Class".

*--lpfnWndProc :

This is a pointer to a function, the event handler. The event handler is the place where you handle all Windows messages like initializing, resizing, exiting, and so forth. Windows sends a message (a number) which tells you what kind of action is to be perform. More on this later. But for now, if you have an event handler named "WindowProc(...)," just set it like this:

---------->

MyWnd.lpfnWndProc = WindowProc;

<---------

*--cbClsExtra, cbWndExtra :

These are extra bytes, just set them to zero.

*--hinstance :

This holds the instance of this program. Use the hInstance variable from WinMain(..) to set it. Yes, the data type declarations of both look different but they will work.

*--hIcon, hCursor

The hIcon is a handle to the application icon (the picture of the program itself). The hCursor is the handle to the picture cursor of the mouse pointer. To load the defaults, use the following

function:

--------->

MyWnd.hIcon = LoadIcon(NULL, IDI_APPLICATION);	

MyWnd.hCursor = LoadCursor(NULL, IDC_ARROW);

<---------

Again, note the prefixes of the flags.

*--hbrBackground

This is the handle to a brush that will paint the windows background. You cant just throw a bucket, Windows is an artist and you need to tell it what to do to paint the window. To paint the background black, just do the following

--------->

MyWnd.hbrBackground = GetStockObject(BLACK_BRUSH);

<--------

*--lpszMenuName

This is the name of the menu that you want to assign to this window. A menu is created in a resource file but for now, we dont need any so set it to NULL.

*--lpszClassName

This is the class name that you will use to specify this type of window with this properties. Set it to any string you want.

Wrapping all up, here is a sample:

--------->

WNDCLASS MyWnd;	//Declaration

MyWnd.style = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW; //Flags

MyWnd.lpfnWndProc = WindowProc;	//Points to event handler

MyWnd.cbClsExtra = 0;		 	//Extra

MyWnd.cbWndExtra = 0;			//Extra

MyWnd.hInstance = hInstance;		//Passed by WinMain(...)

MyWnd.hIcon = LoadIcon(NULL, IDI_APPLICATION); //Handle to icon

MyWnd.hCursor = LoadCursor(NULL, IDC_ARROW); //Handle to cursor

MyWnd.hbrBackground = GetStockObject(BLACK_BRUSH);			//Handle to brush for background

MyWnd.lpszMenuName = NULL;							//Name of menu to be assigned

MyWnd.lpszClassName = "WinClass1";						//Class name of this type of window

VERY IMPORTANT: Every field must be filled, even if its zero or NULL, or else you wont be successful in the following procedure.

REGISTERING *

Oh man, that was long. Next thing to do is to register this type of window. Very simple :). You just pass the structure to the function and it will return an ATOM type data (it is just like a bool value). The return value will be either nonzero for succesfful or zero for unsuccessful. You might want to add an if statement and a message box to indicate whether it was successful.

---------->

if(!RegisterClass(&MyWnd))

{

	MessageBox(NULL, "Could not register class", "Warning", MB_OK);

	return 0;

}

<---------

** CREATING WINDOW **

Now that's quick. Remember it is very important that you fill all the fields of the structure, or else you wont be able to register it. next we create a window. Take a look at the prototype.

--------->

HWND CreateWindow(LPCTSTR lpClassName, 	//Class name of your window

	 LPCTSTR lpWindowName, //Window title

 DWORD dwStyle, //More window flags

			int x, int y, //The top left corner

			int nWidth, nHeight, //width and height of window

			HWND hWndParent, //Handle to parent

			HMENU hMenu, //Handle to menu

			HANDLE hInstance, //handle to program's again

			LPVOID lpParam); //pointer to startup data

			

<---------

Pretty nuts huh? Here are the descriptions:

*--lpClassName :

This is the same class name that you used for your WNDCLASS structure when you registered it.

*--lpWindowTitle :

The string that will appear on the title bar of your window (like in the MessageBox).

*--dwStyle :

Flags that let you control some properties of the window like either full screen, scroll bar, minimize and some more. Here are the ones you use for now, using the "ORing" procedure:

---------->

WS_OVERLAPPEDWINDOW | WS_VISIBLE

<---------

Again, note the prefix convention used.

*--x, y

These are the coordinates of the top left corner of the window.

*--nWidth, hHeight

These are the width and height of the window. It is NOT the resolution.

*--hWndParent

This is a handle to the parent window (eg. for situations when you have a window within a window). Just set it to NULL for now.

*--hMenu

This is a handle to a menu. This is just another way to assign the window a menu instead of setting it in the WNDCLASS structure. Just set it to NULL for now.

*--hInstance

Guess what this is? Yep, the same hInstance passed by WinMain(...). Use that.

*--lpParam

Extra for advanced stuff. Set it to NULL.

*--The return value of the functino is a handle to the created window. You should save it because some functions will need it.

Here is a sample, using the same error checking method:

---------->

HWND hWnd;		//Handle to window

if(!(hWnd = CreateWindow("WinClass1", //Class name

 "Win Title", //Windows title

				 WS_OVERLAPPEDWINDOW | WS_VISIBLE, //Flags

				 0, 0, //Top left corner

 320, 200, //Width and height of window

				 NULL, //Parent window

 NULL, //Menu name

				 hInstance, //Instance passed by WinMain

				 NULL))) //Extra field 	

{

	MessageBox(NULL, "Cant create window", "Warning", MB_OK);

	return 0;

<---------

Again, it is very importatin that all the fields in the WNDCLASS structure have been filled.

** MESSAGES ***

Ok, a couple of things left before displaying the window. As you know by now, Windows sends messages. Messages are held in a MSG structure. You dont really need to know what's inside the structure for now, just create an object of that type:

--------->

MSG msg;		//Message

<---------

Each message is placed in a queue, like a mail box. To check the messages that are there, use this function:

--------->

BOOL PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);

<---------

This function returns TRUE if there is a message, otherwise FALSE.

If there is a message, to check the type of message, access the "message" field of the MSG structure like this:

--------->

msg.message;

<---------

This is just an UINT id number. Before you can give a message to your event handler, you must first translate it and then dispatch it like this:

-------->

TranslateMessage(&msg);	//Translates any accelerator keys

DispatchMessage(&msg); //Sends it to the event handler

<--------

Therefore, for the main event loop, it could be like this:

-------->

MSG msg;

while(true)

{

 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) //Check for messages

	{

		if(msg.message == WM_QUIT)	break;	//Break the loop

		TranslateMessage(&msg);		//Translate accelerator keys

		DispatchMessage(&msg); //Send to event handler

	}

}

<-------

** EVENT HANDLER **

This is where you handle almost all window messages. Here is the prototype that your event handler should follow

--------->

LRESULT CALLBACK WindowProc(HWND hWnd, UNIT msg,

			 WPARAM wparam, LPARAM lparam)

<---------

*--hWnd

This is the handle of the window that sent the message.

*--msg

This is the message id number. More on this coming up.

*--wparam, lparam

These are variables that can contain various data. For example, when you click the mouse, it sends a message and these variables will have the coordinates of the cursor and other stuff.

*--The return value is a long variable to be return. Can be 0 for now. The CALLBACK is a modifier for Windows to use. Just put it.

The following are three message ids that will be used for now:

1) WM_CREATE

This is sent when windows is first created. You can do initializations over here.

2) WM_DESTROY

This is sent when a window is about to be destroyed. You can perform deallocations over here.

3) WM_PAINT

This is sent when a window needs repainting because of resizing, clipping, or anything else. When Windows sends this type of message, you must tell it that you have received it, whether you want to repaint or not. Otherwise, Windows will keep sending messages of this type. To tell windows that you have received it, you must "validate" the window client area (the area where everything is done). Here is the function to do it

--------->

BOOL ValidateRect(HWND hWnd, CONST RECT *lpRect);

<--------

*--hWnd

This is the handle to the window that was passed by the event handler

*--lpRect

This is the area that you want to validate. Set it to NULL so that the entire client area is validated.

Dont worry about the return value.

Any messages that you dont handle must be processed by the default event handler:

---------<

LRESULT CALLBACK DefWindowProc(HWND hWnd, UINT msg,

			 WPARAM wparam, LPARAM lparam)

<---------

Notice that it has the same parameters. Just passed in the same ones. Note, you must use this function in the event handler for all other messages unhandled.

Here is a smaple of the event handler:

-------->

LRESULT CALLBACK WindowProc(HWND hWnd, UINT msg,

	 WPARAM wparam, LPARAM lparam)

{

	switch(msg)		//Use switch to check for the type of message

	{

		case WM_CREATE:

			//Do any initialization

			return 0;

		case WM_PAINT:

			//Do any graphics needed and

			//make sure to validate

			//Validate the entire client area for now

			ValidateRect(hWnd, NULL);

			return 0;

		case WM_DESTROY:

			//Send a quit message to the queue

			PostQuitMessage(0);	

			return 0;

	}

	//Handle any other messages. Just pass in the same parameters

	return (DefWindowProc(hWnd, msg, wparam, lparam));

}

** SAMPLE PROGRAM ***

Ok, here is where we put all together. Make sure you understand it.

--------->

#define WIN32_LEAN_AND_MEAN //Windows define to initialize 						 //options in windows.h

#include <windows.h> //File with all the includes for 						 //access to the API functions

#include <windowsx.h> //Win32 API macros

//---

//Event Handler

LRESULT CALLBACK WindowProc(HWND hWnd, UINT msg,

	 WPARAM wparam, LPARAM lparam)

{

	switch(msg)		//Use switch to check for the type of message

	{

		case WM_CREATE:

			//Do any initialization

			return 0;

		case WM_PAINT:

			//Do any graphics needed and

			//make sure to validate

			//Validate the entire client area for now

			ValidateRect(hWnd, NULL);

			return 0;

		case WM_DESTROY:

			//Send a quit message to the queue

			PostQuitMessage(0);	

			return 0;

	}

	

	//Handle any other messages. Just pass in the same parameters

	return (DefWindowProc(hWnd, msg, wparam, lparam));

}

//---

//Program entry

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

	HWND hWnd;		//A handle to a window

	MSG msg;		//A message

	WNDCLASS MyWnd;	//Window class object

	//Make sure every field is defined

	MyWnd.style = CS_DBLCLKS|CS_OWNDC|CS_HREDRAW|CS_VREDRAW; //Flags

	MyWnd.lpfnWndProc = WindowProc;	//Points to event handler

	MyWnd.cbClsExtra = 0;	//Extra

	MyWnd.cbWndExtra = 0;	//Extra

	MyWnd.hInstance = hInstance;	//Passed by WinMain(...)

	MyWnd.hIcon = LoadIcon(NULL,IDI_APPLICATION);	//Handle to icon

	MyWnd.hCursor = LoadCursor(NULL,IDC_ARROW); //Handle to cursor

	MyWnd.hbrBackground = GetStockObject(BLACK_BRUSH);				//Handle to brush for background

	MyWnd.lpszMenuName = NULL;								//Name of menu to be assigned

	MyWnd.lpszClassName = "WinClass1";							//Class name of this type of window

	//Register the class

	if(!RegisterClass(&MyWnd))

	{

		MessageBox(NULL, "Could not register class", "Warning", 			 MB_OK);

		return 0;

	}

	//Create a window

	if(!(hWnd = CreateWindow("WinClass1", //Class name

 "Win Title", //Windows title

				 WS_OVERLAPPEDWINDOW | WS_VISIBLE, //Flags

				 0, 0, //Top left corner

 320, 200, //Width and height of window

				 NULL, //Parent window

 NULL, //Menu name

				 hInstance, //Instance passed by WinMain

				 NULL))) //Extra field 	

	{

		MessageBox(NULL, "Cant create window", "Warning", MB_OK);

		return 0;

	}

	//Main loop

	while(true)

	{

		//Check for messages

		if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

		{

			if(msg.message == WM_QUIT) break; //Breaks the loop

			TranslateMessage(&msg); //Translate accelerator keys

			DispatchMessage(&msg); //Send to event handler

		}

	}

 return msg.wParam; //Return to Windows like this

}

<---------

Well, that's it for now. I tested the source code and it works. It's 200am already and guess that I must be tired. I will try to put some more stuff on doing basic graphics with the Graphics Device Interface (GDI) later. Please refer in the WIN32 API for further information. Please let me know if this has helped you. I could make a few changes make it clearer.

Sayoonara,

Alphantasm

