

						Gouraud Shading

	Before I explain about gouraud shading let me tell you that I wish I had something like this when I started 3D programming. I will try to explain the actual math for this, but this document asumes that you could rotate a point in 3D space using matrices. Also that you know the basic vector operations. As I will say again I will try to explain everything.

Here is the refrence in case you don't know some of the words I use:

	

	matrix - a 4 x 4 matrix used for rotation

	vector - a ray pointint somewhere in space

	plane - a flat surface defined by at least three points

	normal - a vector perpendicular to a plane(90 degrees)

	psuedonormal - a normal vector of a point

	interpolation - linearly estimating values

The first thing about 3D math is vectors. A vector is a line pointing in one direction.

				| .o(3, 4, 2)

	 			| ./

				| ./

		 |---------------

			 /

 /

 /

vector o starts from the origin and points to (3, 4, 2) that means (if you have a little imagination)that it is pointing upward. Vectors are used extensively in 3D graphics. One of the uses is that you can find the angle between them;

Let's say you have two vectors v1(x1, y1, z1) v2(x2, y2, z2) and you are trying to find the angle between them. You can easily acheive that by doing a dot product

	

		cos(alpha) = x1 * x2 + y1 * y2 + z1 * z2

				 	||v1|| * ||v2||

		||v|| = length of that vector

		||v|| = sqrt(vx * vx + vy * vy + vz * vz)

Now that you know that, we have to cover the cross product of vectors. The cross product of vectors is used to get a vector perpendicular to those two.

	so v1 X v2 is equal to a new vector

		N((v1y * v2z) - (v1z * v2y),

		 (v1z * v2x) - (v1x * v2z),

 (v1x * v2y) - (v1y * v2x))

	So to get a normal vector from a face just get any two vectors of that face and do their cross product.

	Now that you have all the vector math you need let's go on to matrices. The matrix we will use for rotation, scaling, and translation is a 4 X 4 matrix

An identity matrix is a matrix that can be multiplied by any matrix and you get the same matrix like A * I = A. Matrices are not communitive. That means that A * B != B * A. Matrix multiplication is very simple let's take a

2 X 2 matrix for an example

		A = 	| a , b |		B = | e , f |

			| c , d |		 | g , h |

		so the new matrix C = A * B

	

		C = | ae + bg , af + bh |

		 | ce + dg , cf + dh |

		How you multiply is you get the first row of matrix A and multiply it by the first column of B. So A(a, b) and B(e, g) you take the first elements and multiply them and then add the second elements which you multiplied. So the first element of C is equal to the first elements multiplied plus the second elements multiplied. ae + bg. For the second element in the first row of C, get the first row of A and multiply it by the second column of B. I'll tell you how this is usefull later on the document. I'm sorry but this document doesn't cover matrices that well because matrices are a big subject to cover. Here 's the rotation matrices. These are clockwise rotations.

		Rotation About X: | 1 0 0 0 |

					 | 0 cos(ang) sin(ang) 0 |

					 | 0 -sin(ang) cos(ang) 0 |

					 | 0 0 0 1 |

		

		Rotation About Y: | cos(ang) 0 -sin(ang) 1 |

 				 | 0 1 0 0 |

					 | sin(ang) 0 cos(ang) 0 |

					 | 0 0 0 1 |

		Rotation About Z:	 | cos(ang) -sin(ang) 0 0 |

					 | sin(ang) cos(ang) 0 0 |

					 | 0 0 1 0 |

					 | 0 0 0 1 |

 		

		To rotate a point you just multiply the point by the rotation 		matrices

		

		Let's say that P (the 3D point) is at (3, 2, 3)

							| 1 0 0 0 |

							| 0 1 0 0 |

							| 0 0 1 0 |

							| 3 2 3 1 |

		P' = P * X * Y * Z

Now that you know the basics let's get to real gouraud shading. I'll try to explain very simply. You get a normal vector of a point. How to do that is simple just get all the faces's normals that point touches and add them together then normalize. What I mean is let's say that a point touches 3 faces: face1, face2, face3. Now we add the normals of those faces. If you are unsure of how to get a normal vector from a face refer to the beginning section of my document. so just add all the x values from the normals and put them into the next normal and so on to all the axes. Then divide the elements of that normal by the length of it. So

		

		length = sqrt(nx*nx + ny*ny + nz*nz);

		new normal is N = (x/length, y/length, z/length)

Now that you have the normal vector of that point get the intensity of that point by doing to the dot product of the normal and the light source. This will turn out to be less then 1 and greater than -1. -1 < value < 1. If the anser is > 0 then multiply that number by the amount of colors you have in your color shading palette. I recommend about 90 entries. You could put more entries though. Now you will get a value from 1 to 90. Now the hard part begins. First you have to get a good polygon function. Now you get an edge of the polygon(two points make an edge). You get the intensities of those two points and you interpolate them all across the edge so you have good blending colors. The functions are:

	for y:

		a = a1 + (y - y1) * (a2 - a1) / (y2 - y1)

	for x:

		a = a1 + (x - x1) * (a2 - a1) / (x2 - x1)

 An example: 2 points p1(x1, y1) p2(x2, y2). You get all the points that make that line. You start at the lowers y and work down to the greatest. Then you get the coresponding x value of that y. Now that you have a point on the line p(x, y) you use the y interpolation formula. So the intensity of that point is = p1.intensity + (y - y1) * (p2.intensity - p1.intensity) / (y2 - y1). Now you get all the intensities of the endges then interpolate them across their scanlines. An example:

		

		/\

	 / \

	_a1 /____a2___

 / \

 / \

Now that you have the intensities for the scanline, interpolate throughout the scanline along the x axis. That will give you more numbers. Those numbers are the lookup numbers on your array of shading colors you made earlier.

Happy Gouraud Shading.

