Main: The Wave equation

Exercises

1.
Consider the wave equation problem

\begin{displaymath}
{\partial^2 \phi\over \partial t^2} = {\hbox{\boldmath $\De...
... $x$}},0) =
H(1-\left\vert{\hbox{\boldmath $x$}}\right\vert),
\end{displaymath}

where $H(\cdot)$ is the unit Heaviside function. Use the transformation $\psi({\hbox{\boldmath$x$}},t)=H(t)\phi({\hbox{\boldmath$x$}},t)$ to convert the problem into the form

\begin{displaymath}
{{\partial^2 \psi}\over{\partial {t}^2}}-{\hbox{\boldmath $\Delta$}}\psi = f({\hbox{\boldmath $x$}},t).
\end{displaymath}

Use the three dimensional Green's function to find the solution of this problem in integral form and hence show

\begin{displaymath}
\phi({\hbox{\boldmath $0$}},t) = tH(1-t), \quad t>0.
\end{displaymath}

[Note: the delta function in the Green's function for the three-spatial dimensional wave equation is a ONE dimensional Green's function, NOT a vector Green's function. You will have to use spherical polar co-ordinates to get the correct answer.]

2.
Find the solution of the following problem

\begin{displaymath}
{\partial^2 \phi\over \partial t^2} =
{\partial^2 \phi\ov...
...x),\quad
{\partial \phi\over \partial t}({x},0) =
2xe^{-x^2}
\end{displaymath}

for t>0. Show that this can be written as the sum of two waves, one moving to the left and one moving to the right, both at unit speed.

3.
By writing $\psi=H(t)\phi$, show that the solution of

\begin{displaymath}
{\partial^2 \phi\over \partial t^2} -
{\partial^2 \phi\over \partial x^2} = \delta(x)\sin(\omega
t),\quad t>0,
\end{displaymath}

with

\begin{displaymath}
\phi(x,0) = \cos(x),\quad
{\partial \phi\over \partial t}({x},0) =
0
\end{displaymath}

is

\begin{displaymath}
\phi(x,t) = \hbox{$1\over 2$}\left[
\cos(x+t)+\cos(x-t) + ...
...left(1-\cos(\omega (t-\left\vert x\right\vert))\right)\right].
\end{displaymath}


Main: The Wave equation

Hosted by www.Geocities.ws

1