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Abstract

These notes are a quick introduction to basic point-set topology. They
are based on a three week course I conducted at MTTS 2003. Please
send comments/corrections to a habib@yahoo.com.
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1 Metric Spaces

We assume you have already encountered metric spaces, and the basic no-
tions regarding them. At the very least, you would be aware that the Eu-
clidean space Rn is equipped with a notion of distance (or metric) between
its points. The presence of this metric allows us to set up ideas of limit and
continuity and to develop calculus. It is a remarkable fact that much of what
is done with a metric can also be done in its absence, provided we adopt
a certain viewpoint as to the meaning of “nearness” and related concepts.
The task of this booklet is to give a quick introduction to this more general
approach, which is called Topology.

We start with a quick revision of the basic facts about metric spaces. The
chief motivating example is Rn with the Euclidean distance

d2(x, y) =

(

n
∑

i=1

(xi − yi)
2

)1/2

where x = (xi) and y = (yi).

We extract the most commonly used properties of the Euclidean distance
formula to formulate the abstract definition of a metric space:

Definition 1.1 A metric space (X, d) is a set X together with a function
d : X ×X → R with the following properties:

1. (Positivity) d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y.

2. (Symmetry) d(x, y) = d(y, x) ∀x, y ∈ X.

3. (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X.

The function d is called a metric on X.

Since the definition of metric spaces is based on properties of Euclidean
space, we can use our spatial intuition when working with them. Questions
involving limits can now be posed and answered for such spaces.

Example 1.2 Any set X with the discrete metric

d(x, y) =

{

0 x = y
1 x 6= y

is called a discrete metric space. 2
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Example 1.3 X = Rn with

d1(x, y) =

n
∑

i=1

|xi − yi|

is a metric space. 2

Example 1.4 X = Rn with

d∞(x, y) = max
i

|xi − yi|

is a metric space. 2

Example 1.5 Let X = C[0, 1], the real-valued continuous functions from
[0, 1]. It can be given the uniform metric,

d(f, g) = sup
x∈[0,1]

|f(x) − g(x)|.

2

Example 1.6 Let X = {(ai) : ai ∈ N}, the set of sequences of natural
numbers. The following is a metric on X:

d(x, y) =

{

0 x = y
1

r
xi = yi ∀i < r and xr 6= yr

2

Example 1.7 If (X, d) is a metric space, so are (X,min(1, d)) and (X,
d

1 + d
).

2

Exercise 1.8 Verify that all the functions defined in the above examples
are actually metrics.

Definition 1.9 An open ball with centre x and radius r in a metric space
is a set of the type

B(x, r) = {y ∈ X : d(x, y) < r}

A subset of X is called open if it is a union of open balls.

Exercise 1.10 Consider R2 with the metrics d2, d1 and d∞ defined earler.
Sketch, for each of these metrics, the open balls with center at origin and
radius R.
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Almost every important notion involving metric spaces can be expressed in
terms of open sets rather than through the metric itself. First, recall that
if (xn) is a sequence in a metric space (X, d) then we say it has a limit x
(lim xn = x) if for every ε > 0 there is N ∈ N such that n ≥ N implies
d(xn, x) < ε. This is equivalent to: For every open set U containing x, there
is N ∈ N such that n ≥ N implies xn ∈ U .

Similarly, we usually first define continuity of a function f : X → Y between
metric spaces by the requirement that lim xn = x implies lim f(xn) = f(x).
And then we find that this is equivalent to demanding that for every open
set U in Y , f−1(U) is open in X.

Exercise 1.11 Is the requirement that f : X → Y be continuous at the
point x ∈ X equivalent to demanding that for every open U containing
f(x), f−1(U) is open in X?

Also, many notions such as compactness and connectedness are defined di-
rectly in terms of open sets and not through the metric. Thus, open sets
come to the fore and the metric’s role is mostly relegated to providing the
open sets (via the open balls).

Example 1.12 Consider R2 with the metrics d1, d2, d∞. Observe that if
xn converges to x with respect to one of these metrics, it also converges to
x with respect to the other ones. Alternately, note that although the three
metrics have different open balls, they have the same open sets! Therefore
they create the same definitions of limit, continuity, etc., and are essentially
indistinguishable. 2

Exercise 1.13 Let (X, d) be any metric space. Define a new metric on X
by d′ = d/(1 + d). Show that d and d′ create the same open sets.

Definition 1.14 Let (X, d) be a metric space. The set T of open subsets
of X is called the topology of X.

The key properties of T are:

1. ∅,X ∈ T .

2. T is closed under arbitrary unions.

3. T is closed under finite intersections.

4. (Hausdorff Property) If x, y ∈ X are distinct, then ∃U, V ∈ T such
that x ∈ U , y ∈ V , and U ∩ V = ∅.
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Properties 3 and 4 need the triangle inequality – in proofs, they replace it.1

2 Topological Spaces

We have identified the key properties of open sets in metric spaces. Now we
abstract these properties into a definition.

Notation. The power set ℘(X) consists of all the subsets of X.

Definition 2.1 A topological space is a pair (X,T ) where X is a set and
T ⊂ ℘(X) such that

1. ∅,X ∈ T .

2. T is closed under arbitrary unions.

3. T is closed under finite intersections.

The set T is called the topology of X and its members are called open sets.

Note that we have not included the Hausdorff condition. When a topological
space satisfies this as well, we call it a Hausdorff space. A topology may arise
as the open sets of a metric space but it need not.

Example 2.2 X = {a, b} and T = {∅,X, {a}}. The Hausdorff property
fails to hold, and so T can’t arise from a metric. 2

Example 2.3 We list some simple examples of topological spaces. Start
with any set X. Define a topology on it in one of the following ways.

1. Tdis = ℘(X), the discrete topology.

2. Tind = {∅,X}, the indiscrete topology.

3. Tcof = {U : U c is finite or X}, the cofinite topology.

4. Tcoc = {U : U c is countable or X}, the cocountable topology. 2

Exercise 2.4 Verify that the collections given in the last example are ac-
tually topologies.

1Frechet defined metric spaces and focused on sequences. Hausdorff abstracted the
four properties above, and focused on open sets.
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These examples are useful for testing hypotheses because T is very explicitly
given. Usually, T will be too large or chaotic to be described in such a simple
manner.

Exercise 2.5 Consider a set X and choose two topologies for it from the
list in the Example 2.3. Under what conditions on X will they be the same?
(Answer this for each possible pair of topologies.)

Exercise 2.6 Which of the topologies in Example 2.3 are Hausdorff?

Exercise 2.7 Let A be an index set and {Tα : α ∈ A} a collection of
topologies on X. Show that ∩αTα is a topology on X. What about ∪αTα?

Definition 2.8 Let T1, T2 be two topologies on X. If T1 ⊂ T2 we say that
T2 is finer, or that T1 is coarser. If T1  T2, we use the terms strictly finer

or strictly coarser.2

Definition 2.9 Let S ⊂ ℘(X). Let TS be the coarsest topology on X which
contains S. Then we call TS the topology generated by S.

Exercise 2.10 Why does TS exist? Is it unique?

Exercise 2.11 Consider X = R.

1. Let S = {(a, b) : a < b}. Show TS is the same as the topology of the
metric d(x, y) = |x− y|. This is called the standard topology of R and
we will denote it by Td.

2. Let S′ = {(a, b) : a, b ∈ Q and a < b}, and S′′ = {(−∞, b) : b ∈
R}∪{(a,∞) : a ∈ R}. Compare TS′ and TS′′ with each other and with
Td.

Example 2.12 Let X = R and L = {[a, b) : a < b}. Then TL is called the
lower limit topology of R. Let us compare TL with the standard topology Td

and the discrete topology Tdis. It is easy to show that Td  TL ⊂ Tdis. To
find out whether TL = Tdis we must see whether or not the singletons are in
TL. For this we need information on how general members of TL look. We
give a general answer below. 2

Exercise 2.13 Let S ⊂ ℘(X). Then the topology generated by S is

TS =







⋃

α∈A

(
⋂

j∈Iα

Uα
j ) :

A is an arbitrary index set,
each Iα is a finite index set,
and each Uα

j ∈ S.







.

2Other terminology for this is weak for coarse and strong for fine.



2 TOPOLOGICAL SPACES 7

Exercise 2.14 Show that singletons are not open in the lower limit topol-
ogy on R. (Hence TL  Tdis)

Definition 2.15 Let (X,T ) be a topological space and S ⊂ ℘(X) such that
T = TS. Then we call S a subbasis (or subbase) of T . Members of S are
called subbasic sets.

For example, a subbase for Tcof is S = {X \ {a} : a ∈ X}.

Notice that many times we only needed to take arbitrary unions to reach TS

from S, skipping the finite intersections step. Analyzing when this happens,
we are led to the next definition.

Definition 2.16 S ⊂ ℘(X) is a basis (or base) if finite intersections of
members of S are also unions of elements of S. If S is a basis and T = TS,
we say S is a basis of T .

Now we do a small example to show that topologies are created for a purpose.

Definition 2.17 A sequence (xn) in a topological space X has limit x,
denoted by x = lim xn, if for every open set U containing x, ∃N ∈ N such
that xn ∈ U for every n > N .

Example 2.18 Consider N with the discrete topology. We often write
limxn = ∞ for a sequence (xn) in N, qualifying this as just “notation”
since N has no element called ∞. But by an appropriate choice of topology,
we can make this a regular equality. First, define

N∞ = N ∪ {∞}

Consider the basis

B = {{x} : x ∈ N} ∪ {{x, x + 1, . . . ,∞} : x ∈ N}

Consider N∞ with the topology generated by B. Now for a sequence (xn)
in N ⊂ N∞ the statement limxn = x has the standard meanings, both for
x ∈ N and for x = ∞. 2

We often have to deal with the open sets containing a certain fixed point.
If U is an open set containing x, we call U a neighbourhood of x.

Definition 2.19 Let (X,T ) be a topological space and x ∈ X. U ⊂ T is a
basis at x, if each U ∈ U is a neighbourhood of x and for every open set O
containing x there is a U ∈ U such that U ⊂ O.
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Exercise 2.20 Give bases at 0 ∈ R for the standard and lower limit topolo-
gies.

Notation From now on a topological space (X,T ) will be referred to by
just X.

3 Continuous Functions

Let X,Y be topological spaces.

Definition 3.1 A function f : X → Y is continuous at x ∈ X if for every
open V containing f(x), there is an open U containing x such that f(U) ⊂ V .
If f is continuous at every x ∈ X, we just say that f is continuous.

Exercise 3.2 f : X → Y is continuous if and only if f−1(V ) is open when-
ever V is an open subset of Y .

Exercise 3.3 Express “continuity at x” in terms of bases at x and f(x).

Notation The default topology for R is the standard topology. When we
wish to use the lower limit topology, we will indicate the space by RL.

Exercise 3.4 1. Are the identity maps R → RL and RL → R continu-
ous?

2. Consider f : R→ RL, f(x) = x2. At which points is it continuous?

3. Can you think of any non-constant continuous map f : R→ RL?

4. Consider the step function f : RL → RL defined by

f(x) =

{

0 x < 0
1 x ≥ 0

Is it continuous?

Exercise 3.5 Let f : N→ X. When can f extend to a continuous function
on N∞? What if X = N?

Definition 3.6 A function f : X → Y is called a homeomorphism if it is
a bijection and both f, f−1 are continuous. If such an f exists we say that
the spaces X and Y are homeomorphic, and we denote this by X ≃ Y .

Exercise 3.7 Each non-empty open interval (a, b) is homeomorphic to R.
What about intervals of other types, such as (a, b]?
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4 Closed Sets

Fix a topological space X.

Definition 4.1 We say x ∈ X is an accumulation point of a subset F ⊂ X
if every neighbourhood U of x contains a point y ∈ F such that y 6= x. The
set of accumulation points of F is called its derived set and is denoted F ′.
If F ′ ⊂ F we say that F is closed.

Theorem 4.2 F ⊂ X is closed if and only if F c is open in X. 2

Definition 4.3 The closure F̄ of a subset F ⊂ X is the smallest closed set
containing F .

Theorem 4.4 For any F ⊂ X, F̄ = F ∪ F ′. 2

Exercise 4.5 Consider the subset A = {(x, sin(1/x)) : x > 0} of R2. What
is Ā?

In a metric space, x ∈ F̄ if and only if there is a sequence (xn) in F such
that limxn = x. This is false for general topological spaces:

Exercise 4.6 Consider Rcoc, the real numbers with the cocountable topol-
ogy. Show that a sequence in Rcoc can converge only if it is eventually
constant. On the other hand, F = Qc satisfies F̄ = R.

A related observation is that sequences can no longer capture continuity. If
limxn = x implies lim f(xn) = f(x), we cannot conclude that f is continu-
ous:

Example 4.7 Consider the identity function f : Rcoc → R. 2

Exercise 4.8 f : X → Y is continuous if and only if f−1(F ) is closed
whenever F is closed.

Exercise 4.9 f : X → Y is continuous if and only if f(Ā) ⊂ f(A) for every
subset A of X.

A set is closed if its closure does not go beyond it. The other extreme is
when the closure fills up the whole space.

Definition 4.10 A ⊂ X is dense if Ā = X.

Exercise 4.11 A is dense in X if and only if A∩U 6= ∅ for each non-empty
open U ⊂ X.
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5 Subspace Topology

Let (X,T ) be a topological space and A ⊂ X. Is there a natural way to
make A into a topological space? One obvious desire is that the inclusion
map ı : A → X, ı(x) = x, be continuous. So we take the coarsest topology
on A such that ı is continuous:

Definition 5.1 The subspace topology on A is defined by

T |A = {O ∩A : O ∈ T }.

Members of T |A are said to be open in A. The subspace topology is also
called the relative or induced topology. Once A has been equipped with the
subspace topology it is called a subspace of X.

Exercise 5.2 Check that T |A is a topology on A, and that it is the coarsest
topology on A such that the inclusion map ı is continuous.

Exercise 5.3 Let A be a subspace of X. Show that F is closed in A if and
only if F = A ∩ C where C is closed in X.

Exercise 5.4 Let S ⊂ A ⊂ X. If S is open in A, must it be open in X? If
S is closed in A, will it be closed in X?

Exercise 5.5 Will any assumptions about A guarantee positive answers to
the questions in the previous exercise?

Exercise 5.6 Let X be a topological space and B a basis for its topology.
Produce a basis for the subspace topology of A ⊂ X.

Exercise 5.7 Let X be a topological space, A a subspace of X, and B a
basis at x ∈ X. If x ∈ A, produce a basis at x for the subspace topology of
A.

Exercise 5.8 Describe the subspace topology of the given subset of X:

1. X = R, A = Z

2. X = R, A = {1/n : n ∈ N} ∪ {0}

3. X = R2, A = {(x, y) : xy = 0}

4. X = R2
L, △ = {(x, x) : x ∈ R}

5. X = R2
L, △′ = {(x,−x) : x ∈ R}
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The space R2
L denotes the set R2 with the topology generated by the rect-

angles of the form [a, b) × [c, d).

Exercise 5.9 Let X ⊂ Y , with the subspace topology, and ı : X → Y be
the inclusion map. Then f : Z → X is continuous if and only if ı◦f : Z → Y
is continuous.

Y

XZ

ı

f

This is called the universal property of the subspace topology.

Example 5.10 The n-dimensional sphere is the following subset of Rn+1,
with the subspace topology:

Sn =

{

(xi)
n+1
i=1 :

∑

i

x2
i = 1

}

2

Example 5.11 Consider the matrix algebra M(n,R). This can be iden-
tified with Rn2

and is given a topology via this identification. Its various
special subsets, such as GL(n,R), SL(n,R), and O(n,R), then inherit sub-
space topologies. The same thing is done for M(n,C). 2

Exercise 5.12 1. GL(n,R) is open and dense in M(n,R).

2. SL(n,R), O(n) and SO(n) are closed in M(n,R).

3. SO(2) is homeomorphic to S1.

4. SU(2) is homeomorphic to S3.

6 Product Topology

Let X,Y be topological spaces. What is the natural requirement for a
topology on X × Y ?

Well, we have the projections πX : X × Y → X, (x, y) 7→ x, and πY :
X ×Y → Y , (x, y) 7→ y, and we would like them to be continuous. For that
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to happen, we need X × V and U × Y to be open in X × Y whenever U is
open in X and V is open in Y . And if this need is satisfied, then it follows
that U × V must be open in X × Y .

Note that the sets U × V , U and V are open, form a basis.

Definition 6.1 The product topology on X × Y is generated by the basis

{U × V : U is open in X and V is open in Y }.

The discussion before the definition shows that this is the coarsest topology
which makes πX and πY continuous.

Exercise 6.2 Is it true that every open set in X × Y is of the form U × V ,
where U and V are open?

Next we tackle arbitrary products of topological spaces. Let Xα be topo-
logical spaces, with α varying over an index set A. Let X =

∏

αXα be
their Cartesian product. If we copy the definition above, then we might
be tempted to use the topology generated by the sets of the form

∏

α Uα

where each Uα is open in Xα. This topology would make each projection
πα : X → Xα continuous, however it would not (in general) be the coars-
est topology with this property! That distinction belongs to the topology
adopted below:

Definition 6.3 The product topology on X =
∏

αXα is generated by the
basis

{

∏

α

Uα :
Each Uα is open in Xα,
Uα = Xα except for finitely many values of α

}

Exercise 6.4 Verify that the product topology as defined above is the
coarsest topology such that each πα is continuous.

The advantage of using the coarsest topology which makes the projections
continuous is that we then get the following universal property:

Exercise 6.5 Show that f : Z →
∏

Xα is continuous if and only if πα ◦ f
is continuous for each α.

Xα

∏

XαZ

πα

f
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Example 6.6 Here is a special case which shows one reason why the prod-
uct topology is important. The set of all functions f : X → Y is identified
with the product space

Y X =
∏

x∈X

Yx , Yx = Y ∀x

If we give Y X the product topology, then fn → f if and only if fn(x) →
f(x) for each x ∈ X. Thus we have obtained the topology of pointwise

convergence. (Note that only Y needs a topology here.) 2

Definition 6.7 A function f : X → Y is open it it takes open sets to open
sets. It is closed if it takes closed sets to closed sets.

Exercise 6.8 The projection map πY : X × Y → Y is open.

Exercise 6.9 The projection map R2 → R, (x, y) 7→ y, is not closed.

7 Countability Axioms

Consider the following metric space fact:

Let X be a metric space, x ∈ X and F ⊂ X. Then x ∈ F̄ if and only if
there is a sequence (xn) in F such that limxn = x.

Also:

Let f : X → Y be a function between two metric spaces. If limxn = x
implies lim f(xn) = f(x), then f is continuous.

Which property of metric spaces is essentially responsible for these facts?
By looking at their proofs we see it is because every point has a countable
sequence of open balls shrinking down to it. The countability allows the
construction of inductive proofs.

Definition 7.1 A topological space X is first countable (fc) if there is a
countable basis at each point of X.

Exercise 7.2 Prove the following:

1. Metric spaces are fc.

2. RL is fc.

3. Rcoc is not fc.
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Exercise 7.3 Let there be a countable basis at a point x ∈ X. Then there
is a countable basis {B1, B2, B3, . . . } at x such that B1 ⊃ B2 ⊃ B3 · · · .

Exercise 7.4 Let X be a fc space.

1. Let F ⊂ X. Then x ∈ F̄ if and only if there is a sequence (xn) in F
such that lim xn = x.

2. Let f : X → Y . Then f is continuous if and only if lim xn = x implies
lim f(xn) = f(x).

3. A ⊂ X is fc with the subspace topology.

4. If Y is also fc, so is X × Y . (What about an arbitrary product of fc
spaces?)

Definition 7.5 A topological space is second countable (sc) if it has a count-
able basis.

Exercise 7.6 A topology generated by countably many subsets is sc.

Exercise 7.7 Let X be a sc space.

1. X is fc.

2. A ⊂ X is sc with the subspace topology.

3. If Y is also sc, so is X × Y . (What about an arbitrary product of sc
spaces?)

Example 7.8 1. R is sc.

2. An uncountable discrete space is not sc. (So fc ; sc)

3. RL is not sc. (Hint: Consider the subset △′ of R2
L) 2

Exercise 7.9 If X is sc then every open cover of X has a countable sub-
cover: If B is a collection of open sets whose union equals X, then there is
a countable subcollection whose union is also X.

Exercise 7.10 If X is sc then every base for the topology of X has a count-
able subcollection which is also a base.

Suppose we want to establish some property for every point of a space. If
the space is countable, we can try to do this by induction. If not, we can
only use induction to reach a countable subset A. For other points, we can
try to establish the property by approximating them by points from A and
using the presence of the property at these points. Of course, this will only
have a chance of working if A is dense.
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Definition 7.11 X is separable if it has a countable dense subset.

Example 7.12 1. R is separable.

2. RL is separable.

3. Rcoc is not separable.

4. Every sc space is separable.

2

Exercise 7.13 A metric space is separable if and only if it is sc.

Exercise 7.14 The topology of RL cannot arise from a metric, even though
it is Hausdorff and fc. (Hint: Consider R2

L)

Let us consider the relations that exist between the two countability axioms
and separability. In metric spaces, the connection is strong, but in general
the only ones we have are that sc implies the other two.

Example 7.15 1. RL is separable and fc but not sc.

2. Rcof , the real numbers with cofinite topology, is separable but not fc.

3. Rdis, the real numbers with discrete topology, is fc but not separable.

8 Connectedness

Fix a topological spaceX. We want to capture the idea of two subsets having
a separation, a gap, between them. The Hausdorff property arises out of
such considerations – we call two points separated if we can find disjoint
neighbourhoods for them. We can generalize this and consider A,B ⊂ X to
be separated from each other if there are disjoint open sets U, V with A ⊂ U
and B ⊂ V . While this is a useful notion, for the moment we adopt a less
strict definition:

Definition 8.1 S ⊂ X is disconnected if it can be written as A∪B such that
A,B are non-empty and A ∩ B̄ = Ā ∩B = ∅. We call A,B a disconnection

of S.

Definition 8.2 A set is connected if it is not disconnected.

Exercise 8.3 Suppose S ⊂ X and U, V are disjoint open subsets of X such
that S ⊂ U ∪ V and S ∩ U , S ∩ V are non-empty. Show S is disconnected.
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Exercise 8.4 Suppose S ⊂ X is disconnected. Will there necessarily be
U, V as in the above exercise?

Exercise 8.5 X is connected if there is no non-empty, proper, subset which
is both open and closed.

Exercise 8.6 S ⊂ X is connected in the subspace topology if and only if
it is connected as a subset of X.

Exercise 8.7 X is connected if and only every continuous functon f : X →
{±1} is constant. ({±1} has the discrete topology)

This characterization is often the most convenient way of showing connect-
edness. We will emphasize it.

Exercise 8.8 1. R is connected. (Hint: Intermediate Value Theorem)

2. The connected subsets of R are the intervals.

3. GL(n,R) and O(n) are disconnected.

Exercise 8.9 1. If A is a connected subset of X and A ⊂ B ⊂ Ā, then
B is connected.

2. If A,B are connected subsets of X and A ∩ B 6= ∅ then A ∪ B is
connected.

3. Can we weaken the hypothesis of the previous exercise to: A,B are
connected and Ā ∩B 6= ∅?

4. If Aα are connected subsets of X and Aα ∩ Aβ 6= ∅ for all α, β then
∪αAα is connected.

5. f : X → Y is continuous and X is connected implies that f(X) is
connected.

Exercise 8.10 Let I be an interval in R and f : I → R. If f is continuous,
show that its graph is a connected subset of R2. Does the converse hold?

Is R2 connected? Geometric intuition should suggest that it is. It is also
easy to prove this by using the results of the last exercise. For instance,
R2 is the union of all the lines passing through origin. These lines are each
homeomorphic to R and hence connected. They are all mutually intersect-
ing, and so by part 4 of the above exercise, R2 is connected. A variation on
this is to consider the x-axis and all the lines perpendicular to it.

Exercise 8.11 If X,Y are connected, so is X × Y .
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By induction, we see all finite products of connected spaces are connected.

Exercise 8.12 Consider a product space X =
∏

αXα, where each Xα is
connected. Fix x = (xα) ∈ X.

1. Consider all sets of the form Uβ1,...,βn
=
∏

α Vα where

Vα =

{

Xβi
α = βi

{xα} else

Show each of these sets is connected.

2. A = ∪Uβ1,...,βn
is connected.

3. A is dense in X. Hence X is connected!

Since connectedness is preserved by continuous maps, it provides a useful
tool for checking if two given spaces can be homeomorphic.

Exercise 8.13 1. Each Sn, n ≥ 1, is connected.

2. S1 is not homeomorphic to R.

3. None of [0, 1], [0, 1) and (0, 1) are homeomorphic to each other.

4. R is not homeomorphic to Rn for any n > 1. (In fact, Rk can be
homeomorphic to Rl only if k = l. This result is a bit too deep to be
reached by our present tools.)

9 Compactness

To motivate the definitions of this section we start with two commonly
encountered situations.

• Let f : X → R be continuous and bounded. We want to know if it
achieves a maximum value. Let

M = sup
x∈X

f(x)

Then there is a sequence (xn) in X such that lim f(xn) = M . If this
has a convergent subsequence (xnk

), then x = limxnk
must satisfy

f(x) = M .
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• Let X be Hausdorff, A ⊂ X, and x /∈ A. We want to separate x from
A. For each a ∈ A, we can find open and disjoint Ua, Va such that
x ∈ Ua and a ∈ Va. Obvious candidates for separating sets are ∩Ua

and ∪Va, but the former need not be open. On the other hand, if we
can somehow find finitely many ai ∈ A such that A ⊂ ∪Vai

, then ∩Uai

and ∪Vai
will do the job.

These two situations lead to two definitions:

Definition 9.1 A ⊂ X is sequentially compact if every sequence in A has a
convergent subsequence.

Definition 9.2 A ⊂ X is compact if every open cover of A has a finite
subcover: If (Uα) are open and A ⊂ ∪Uα then ∃α1, . . . , αn such that A ⊂
∪n

i=1Uαi
.

At first sight, these notions may not appear to have much to do with each
other. But among the first results one learns in analysis are the Heine-
Borel Thorem (the interval [0, 1] is compact) and the Bolzano-Weierstrass
Theorem (the interval [0, 1] is sequentially compact). Both results, more-
over, have strikingly similar proofs, proceeding by an infinite sequence of
bisections of [0, 1]. This suggests a close relationship, and indeed we have:

Theorem 9.3 A metric space X is compact if and only if it is sequentially

compact.

However, this does not hold in general topological spaces.3 Assuming this
fact, which definition should we work with? Since sequences are not good at
capturing topological features, we may be biased in favour of compactness
over sequential compactness, and indeed this is the more fruitful approach.

Can we have any simple characterization of compact subsets? In Rn, a set
is compact if and only if it is closed and bounded. In a general metric
space, compact sets are closed and bounded, but are not characterized by
this property.

Example 9.4 If X has the discrete metric, then every subset is closed and
bounded but only finite subsets are compact. 2

Even this partial connection does not hold for general topological spaces.

Example 9.5 Consider Rcof . Then every subset is compact, but only finite
subsets are closed. 2

3We give examples for this at the end of this section.
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Things are not completely hopeless:

Exercise 9.6 If X is Hausdorff, then every compact subset of X is closed.

Exercise 9.7 If X is compact, then every closed subset of X is compact.

Exercise 9.8 Show that if A,B are compact subsets of a Hausdorff space
X, then A∩B is compact. Find a counterexample when X is not Hausdorff.

A result which is often used to check for compactness:

Exercise 9.9 X is compact if and only if every family {Fα} of closed subsets
of X having the finite intersection property satisfies ∩αFα 6= ∅.4

Exercise 9.10 If X is compact and f : X → Y is continuous, then f(X) is
compact.

Exercise 9.11 If X is compact and f : X → R is continuous, then f
achieves minimum and maximum values.

Exercise 9.12 Suppose X is compact, Y is Hausdorff, and f : X → Y is a
continuous bijection. Then f is a homeomorphism.

Exercise 9.13 (Tube Lemma) Let X be compact. Let U ⊂ X × Y con-
tain a slice X × {y0}. Then U contains a tube X × V , where V is a neigh-
bourhood of y0.

Exercise 9.14 Let X be compact. For every Y , the projection X×Y → Y ,
(x, y) 7→ y, is a closed map.

Exercise 9.15 Let X,Y be compact. Then the product space X × Y is
compact.

This has a generalization to arbitrary product spaces:

Theorem 9.16 (Tychonoff’s Theorem) 5 Let {Xα} be a collection of

compact spaces. Then the product space
∏

αXα is also compact.

Proof. This is the first proof in these notes which can truly be called non-
trivial. It combines the finite intersection property (or FIP) characterization
with Zorn’s Lemma. We begin with two preliminary lemmas, whose proofs
are left to the reader.

4A family of subsets of X is said to have the finite intersection property if the inter-
section of finitely many of them is always non-empty.

5Other common spellings of Tychonoff are Tychonov and Tikhonov.
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Lemma 9.17 Let X be any set and B ⊂ ℘(X) have FIP. Then there is a

maximal collection C ⊂ ℘(X) such that B ⊂ C and C has FIP.

Lemma 9.18 Let C ⊂ ℘(X) be a maximal collection having FIP. Then

1. C is closed under finite intersections.

2. Let A ⊂ X such that A ∩ C 6= ∅ for each C ∈ C. Then A ∈ C.

Now let X =
∏

Xα and let B ⊂ ℘(X) have FIP and consist of closed sets.
We have to show that ∩B∈BB 6= ∅. By the first lemma, there is a maximal
collection C ⊂ ℘(X) such that B ⊂ C and C has FIP.

Let Cα = {πα(C) : C ∈ C}. It is easily checked that Cα has FIP. Since it
consists of closed sets, and Xα is compact, it has non-empty intersection:

∃xα ∈ ∩
A∈Cα

A

Having chosen such an xα for each α, we let x = (xα) ∈ X. We will show
this x is common to all elements of B.

Fix C ∈ C. Choose y = (yα) ∈ C.

Let O be a subbasic neighbourhood of x, of the form O =
∏

Oα, where each
Oα is open in Xα, and there is an index value β such that Oα = Xα when
α 6= β.

Now xβ ∈ πβ(C) implies πβ(C) ∩Oβ 6= ∅. Let t ∈ πβ(C) ∩Oβ .

Define z = (zα) ∈ X by

zα =

{

yα α 6= β
t α = β

Then zα ∈ Oα for each α, hence z ∈ O. Similarly z ∈ C. ThereforeO∩C 6= ∅
for each C ∈ C. By the second lemma, O ∈ C. Since C is closed under finite
intersections, it also follows that every basic open neighbourhood of x is in
C. In turn this establishes that x ∈ C̄ for each C ∈ C. Since elements of B
are closed and are in C, we have x ∈ B for each B ∈ B. 2

Example 9.19 For any function f : [0, 1] → [0, 1], let S(f) = {t : f(t) 6= 0}.
Consider the space

X = {f : [0, 1] → [0, 1] : S(f) is countable}

with the topology of pointwise convergence (i.e. consider X as a subspace of
[0, 1][0,1] with the product topology). Let (fn) be a sequence in X. Then S =
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∪
n
S(fn) is countable. By diagonalization, we see that (fn) has a subsequence

which converges pointwise on S, and hence on all of [0, 1].

On the other hand, X is not compact. For each t ∈ [0, 1], define

At = {f ∈ X : f(t) = 1}

The sets At are closed and have the finite intersection property, but ∩tAt =
∅. 2

Example 9.20 Consider the space X = {0, 1}℘(N). As a product of com-
pact spaces, X is compact. Now consider the sequence (fn) in X defined
by

fn(A) = χA(n) =

{

1 n ∈ A
0 else

If a subsequence fα(n) converges, then for each A ⊂ N the fα(n)(A) are
eventually constant. Thus the α(n) are eventually all in A or all outside A.
Now choose

A = {α(2), α(4), α(6), . . . }

2

Compactness is useful in separating sets.

Exercise 9.21 Let X be a Hausdorff space, C a compact subset, and x ∈
X \C. Then there exist disjoint open sets U, V such that x ∈ U and C ⊂ V .

Exercise 9.22 Let X be a Hausdorff space, with disjoint compact subsets
C and D. Then there exist disjoint open sets U, V such that C ⊂ U and
D ⊂ V .

10 Locally Compact Spaces

Consider R. This space is not compact, but it can be seen as being made
of compact pieces, and this is very useful in its analysis. Of course, every
space is made of compact pieces (points!). What is crucial here is that the
pieces are large: they can contain open subsets.

Definition 10.1 Let x ∈ X. A compact neighbourhood of x is a compact
subset of X containing an open neighbourhood of x.

Definition 10.2 A space X is locally compact if every point has a compact
neighbourhood.
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Exercise 10.3 Which of the following spaces are locally compact: R, Rcof ,
Q?

One can visualize a locally compact space as made of a collection of expand-
ing compact sets, and so be led to a notion of “going to infinity”.

Let (X,T ) be a locally compact Hausdorff space. We define a new set

X∞ = X ∪ {∞}

and give it a topology T∞ as follows:

T∞ = T ∪ {Kc ∪ {∞} : K is a compact subset of X}

Exercise 10.4 Let X and X∞ be as above.

1. X∞ is compact and Hausdorff.

2. The inclusion map ı : X → X∞ is continuous and open.

Therefore X∞ is called the one-point compactification of X.

Exercise 10.5 If X is non-compact, it is dense in X∞. What happens
when X is compact?

Exercise 10.6 The one-point compactification is unique. Let Y be another
compact Hausdorff space containing X as a subspace, with Y \X a singleton.
Then there is a homeomorphism ϕ : X∞ → Y which restricts to the identity
map of X.

Example 10.7 We earlier introduced the space N∞ and we can now rec-
ognize it as the one-point compactification of N. 2

Exercise 10.8 The one-point compactification of R is S1. In general, Rn
∞

∼=
Sn.

Locally compact Hausdorff spaces also allow a simple description of shrinking
to a point.

Exercise 10.9 Let X be locally compact and Hausdorff. Let x ∈ X and V
be an open neighbourhood of x. Then there is an open neighbourhood U
of x such that Ū is compact and contained in V . (Hint: Use the one-point
compactification)

Exercise 10.10 Let X be locally compact and Hausdorff. It has a basis
whose elements have compact closures.
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We have a version of the Baire Category Theorem (which you may have
encountered in the context of complete metric spaces):

Theorem 10.11 (Baire Category Theorem) Let X be locally compact

Hausdorff, and (On) a sequence of dense open subsets of X. Then ∩nOn 6= ∅.

Proof. Pick x1 ∈ O1. There is an open neighbourhood U1 of x1 such that
Ū1 is compact and contained in O1. Since O2 is dense, we now pick an
x2 ∈ U1 ∩ O2, and obtain an open neighbourhood U2 of x2 such that Ū2

is compact and contained in U1 ∩ O2. Proceeding in this way, we obtain a
decreasing sequence Ūn of non-empty compact sets. So ∩nOn ⊇ ∩nŪn 6= ∅.

2

Exercise 10.12 Strengthen the conclusion of the last theorem to: ∩nOn is
dense in X.

Exercise 10.13 Let X be locally compact Hausdorff, and (Fn) a sequence
of closed subsets of X such that X = ∪nFn. Then at least one Fn has
non-empty interior.

11 Quotient Topology

A common construction in mathematics is to start with an equivalence rela-
tion ∼ on a set X, and then consider the quotient set X/∼ consisting of the
equivalence classes [x] of ∼. If X has a structure of a kind, we want to know
if the quotient set inherits, in a natural way, the same kind of structure.
Thus we are led to quotient groups, quotient rings, quotient vector spaces,
etc. Now we want to do the same thing in the context of topological spaces.

So suppose X is a topological space and ∼ an equivalence relation on it. We
have the projection map π : X → X/∼, x 7→ [x]. Naturally we want π to be
continuous.

Definition 11.1 The quotient topology on X/∼ is the finest topology which
makes π : X → X/∼ continuous. We call X/∼ a quotient space of X.

Exercise 11.2 V ⊂ X/∼ is open in the quotient topology if and only if
π−1(V ) is open in X.

The quotient topology is also characterized by a universal property:

Exercise 11.3 Suppose f : X → Z and f̃ : X/∼ → Z are functions such
that f ◦ π = f̃ . Then f is continuous if and only if f̃ is continuous.
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X

X/∼ Z

π f

f̃

Exercise 11.4 Consider a quotient space X/∼.

1. If X is compact, so is X/∼.

2. If X is connected, so is X/∼.

A typical way in which an equivalence relation arises is the following. Start
with a function f : X → Y where X,Y are sets. The equivalence relation
on X, induced by f , is defined by x ∼f x′ if f(x) = f(x′). The map f
now induces an injective map f̃ : X/∼f→ Y . If X and Y are topological
spaces, and f is continuous, then the universal property tells us that f̃ is
also continuous. If we are lucky, this f̃ may even give a homeomorphism
between X/∼f and f(X). This construction captures the natural topology
for a variety of spaces.

Exercise 11.5 Suppose X,Y are compact and Y is Hausdorff. Let f :
X → Y be a continuous surjective map. Then the quotient space X/∼f is
homeomorphic to Y .

Note that the key to the above is not really the compactness of X, but the
compactness of X/∼f .

Example 11.6 Consider the map exp : R → S1 ⊂ C defined by exp(x) =
eix. Let ∼ be the equivalence relation on R induced by the map exp. The
projection π : X → X/∼, restricted to [0, 2π], is continuous and surjective,
hence R/∼ is compact. Therefore R/∼ is homeomorphic to S1.

This example shows how to formalize the idea that a circle can be obtained
by winding R. A slight variation is to start with [0, 2π] – this corresponds
to obtaining a circle by sticking together the end points of an interval.

We can similarly obtain a cylinder S1 × R as a quotient of the plane R2 or
of a square I by winding one axis, or a torus S1 × S1 by winding both. We
represent this by pictures:

Cylinder Torus
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2

More interesting examples arise when our quotienting introduces twists. For
instance we have the spaces represented by the following pictures:

Mobius Strip Klein Bottle Projective Plane

Exercise 11.7 Find maps f : [0, 1]× [0, 1] → X which will induce quotient
structures corresponding to the pictures above.

12 Nets

We have noted in various places that outside the context of metric spaces,
sequences lose their special place. This is a pity because in that context
they do greatly aid in simplifying thought. Nets generalize sequences and
play the same role in a general topological space.

Definition 12.1 A directed set is a set I with a partial order ≤ such that
for every i, j ∈ I, there is a k ∈ I with i, j ≤ k.

Definition 12.2 A net in X is a function f : I → X where I is a directed
set. We also denote it as the tuple (xi)i∈I , or (xi)I , or (xi), where xi = f(i).

Example 12.3 Sequences are nets. 2

Example 12.4 Let X be a topological space and B a basis at x ∈ X. Then
containment makes B a directed set: For U, V ∈ B we say U ≤ V if U ⊃ V .
If we now pick one element xU from each U ∈ B, we have obtained a net. 2

Consider a net (xi)I in a topological space X. We say the net converges to
x, lim xi = x, if for every open neighbourhood U of x, there is i ∈ I such
that i ≤ j implies xj ∈ U .

Exercise 12.5 Consider the net of Example 12.4. Show that it converges
to x.
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Exercise 12.6 Let A ⊂ X. Then x ∈ Ā if and only if there is a net (xi)I
in A with limxi = x.

Exercise 12.7 A function f : X → Y is continuous if and only if for every
convergent net (xi)I in X, we have

lim f(xi) = f(limxi)

Definition 12.8 Let I be a directed set and f : I → X a net. Suppose J
is another directed set, with an order preserving map g : J → I, such that
g(J) is cofinal in I: For every i ∈ I there is a j ∈ J with i ≤ g(j). Then the
net f ◦ g is called a subnet of f .

Exercise 12.9 If a net in X converges to x, so does every subnet.

Definition 12.10 An element x is a cluster point of a net f : I → X if for
every open neighbourhood O of x and i ∈ I, ∃j ∈ I such that j ≥ i and
f(j) ∈ O.

Exercise 12.11 A net f : I → X has x as a cluster point if and only if it
has a subnet which converges to x.

(HINT: If x is a cluster point, consider M = {(i, O) : i ∈ I, O is an open
neighbourhood of x, i ∈ O}.)

Theorem 12.12 X is compact if and only if every net in X has a conver-

gent subnet.

Proof. We use the finite intersection property (FIP) characterization of com-
pactness. First, suppose every net has a convergent subnet. Let C be a
collection of closed subsets of X which has FIP. Order C by containment:
A < B if B ⊂ A. For each C ∈ C choose xC ∈ C. Then f : C → X,
f(C) = xC , is a net. It has a convergent subnet, i.e. ∃ directed set D and
an order preserving map g : D → C such that g(J) is cofinal, and the net
f ◦ g converges to x ∈ X. We leave it to you to check that x belongs to each
member of C.

Next, suppose X is compact and f : C → X is a net. For each C ∈ C we
define a subset of X:

FC = {f(D) : D ≥ C}

The collection {FC} has FIP. Hence the collection {F̄C} has FIP. So its
intersection ∩

C
F̄C has an element x.

The element x is easily seen to be a cluster point of f . Hence there is a
subnet converging to it. 2
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Exercise 12.13 Suppose X is compact. Then every net has a convergent
subnet. So every sequence has a convergent subsequence. So X is sequen-
tially compact. Evaluate this argument.

13 Topological Groups

Definition 13.1 A topological group is a group G with a topology such that
the group operations (multiplication and inverse)

m : G×G→ G, (x, y) 7→ xy

ı : G→ G, x 7→ x−1

are continuous.

This connection between algebra and topology is fruitful for the study of
both.

Example 13.2 Some topological groups (K = R or C):

1. (K,+) with the standard topology.

2. (K∗, ·) with the standard topology.

3. GL(n,K) with matrix multiplication and the subspace topology from
M(n,K) ∼= Kn2

. 2

From now on, we will just call our first two examples K and K∗.

Exercise 13.3 Are RL, Rcof and Rcoc topological groups when addition is
taken as the group operation?

Exercise 13.4 Consider a group G with a topology. Show it is a topological
group if and only if the map

G×G→ G, (x, y) 7→ xy−1

is continuous.

Every element a ∈ G leads to a left multiplication map la : G → G defined
by x 7→ ax. It also leads to a right multiplication map ra : G → G defined
by x 7→ xa.

Exercise 13.5 Each multiplication map (la or ra) is a homeomorphism.
Hence, so is conjugation: x 7→ axa−1.
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Definition 13.6 Let G be a topological group and H a subgroup. If we
equip H with the subspace topology from G, then H becomes a topological
group in its own right, and we call it a topological subgroup of G.

Example 13.7 SL(n,R), O(n) and SO(n) are topological subgroups of
the general linear group GL(n,R). GL(n,R), SL(n,C), U(n) and SU(n)
are topological subgroups of GL(n,C). 2

Exercise 13.8 Let G be a topological group and H a subgroup.

1. H̄ is a subgroup of G.

2. If H is a normal subgroup, so is H̄.

3. If H is open, it is also closed.

4. If H is closed and has finite index, then it is also open.

Exercise 13.9 What are the open subgroups of R? Of Q?

Since translations are homeomorphisms, they allow us to translate informa-
tion at one point to other points. In particular, we focus on what happens
around the identity element e. Let U be the set of all the neighbourhoods
of identity.

Exercise 13.10 The open sets of G are of the form xU , x ∈ G, U ∈ U . If
B is any base at e, then xB is a base at x.

Exercise 13.11 For every U ∈ U , there is a V ∈ U such that V V ⊂ U and
V = V −1. (Subsets satisfying A = A−1 are called symmetric)

Exercise 13.12 G is Hausdorff if and only if ∩U∈UU = {e}.

Exercise 13.13 Let G,H be topological groups and π : G → H a group
homomorphism. Then π is continuous if and only if it is continuous at e.

Definition 13.14 A map π : G → H between topological groups is a ho-
momorphism if it is continuous and a group homomorphism.

Let G be a topological group and H a topological subgroup. Let π : G →
G/H be the canonical projection, and equip the coset space G/H with the
quotient topology: V ⊂ G/H is open if and only if π−1(V ) is open.

Exercise 13.15 Let H be a topological subgroup of G.

1. The canonical projection π : G→ G/H is open.
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2. If H is a normal subgroup of G, then G/H with the quotient topology
is a topological group.

Exercise 13.16 We now look at how some topological properties behave on
passage to the coset space. We already know compactness and connectedness
are preserved.

1. Let H be a normal subgroup of G. Then G/H is Hausdorff if and only
if H is closed. (Note that it doesn’t matter whether G is Hausdorff!)

2. If H and G/H are connected, so is G.

3. If H and G/H are compact, what about G?

Exercise 13.17 Let G = SL(2,R), K = SO(2), A = {
(

t s
0 t−1

)

: t > 0}.
Show the multiplication map K × A → G is a homeomorphism, and hence
SL(2,R) is connected.6

Exercise 13.18 The group GL+(2,R) of matrices with positive determi-
nant, is connected. Hence GL(2,R) has two connected components.

Exercise 13.19 Similarly show SL(2,C) and GL(2,C) are connected.

From group theory, we know the importance of group actions. In fact groups
are important because they act on other objects, and by their action reveal
the structure of these objects.

Definition 13.20 Let G be a topological group and X a topological space.
A continuous action ofG onX is a continuous mapG×X → X, (g, x) 7→ g·x,
such that

1. g · (h · x) = (gh) · x, ∀g, h ∈ G, ∀x ∈ X.

2. e · x = x, ∀x ∈ X.

From now on we will take the continuity for granted, and just use the term
action. Also we will write gx for g · x.

For a while we forget about topologies and consider some pure algebra.

Definition 13.21 Let G act on X. Then

6This way of factoring the members of SL(2,R) is called the Iwasawa decomposition.
It generalizes to a much bigger class of groups, called reductive groups, which includes
GL(n,R) and every connected subgroup of GL(n,R) which is closed under transpose.
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1. The action is transitive if ∀x, y ∈ X there is a g ∈ G such that gx = y.

2. The orbit of x ∈ X is the set Ox = {gx : g ∈ G}.

3. The stabilizer or isotropy subgroup of x ∈ X is Gx = {g ∈ G : gx = x}.

Example 13.22 Let H be a subgroup of G. It acts on G by right multi-
plication: h · g = gh−1. The orbits are the right cosets of H. 2

Example 13.23 Let H be a subgroup of G. Then G acts on G/H by left
multiplication: g · (xH) = (gx)H. This action is transitive, and the isotropy
subgroup of eH is H. 2

Exercise 13.24 Let G act on X. Then

1. Define a relation on X by x ∼ y if there is a g ∈ G such that gx = y.
Show this is an equivalence relation and its equivalence classes are the
orbits Ox.

2. Suppose the action is transitive. Fix x ∈ X and let H be its isotropy
subgroup. Then there is a bijection ϕ : G/H → X given by gH 7→ gx.

Now bring back the topology: Let a topological group G act on a topological
space X. We can ask questions about the quotient topology of X/∼. Or,
when the action is transitive, a natural question is whether the bijection of
X with G/H is a homeomorphism.

Consider the bijection ϕ : G/H → X when the action is transitive and H is
an isotropy subgroup. We have a commuting diagram

G

G/H X

π ψ

ϕ

where ψ(g) = gx. Since the action is continuous, so is ψ, and hence also ϕ.
So for establishing homeomorphism one has to show that ϕ is open.

Exercise 13.25 Let a compact group G act transitively on a Hausdorff
space X. Let H be the isotropy group of x ∈ X. Then G/H is homeomor-
phic to X.

Example 13.26 Consider the orthogonal group SO(n), acting on Rn by
matrix multiplication (we view members of Rn as column vectors). This
restricts to a transitive action on the unit circle Sn−1. Now consider the
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“north pole” N = (0, . . . , 0, 1). Its isotropy subgroup H consists of matrices
of the form

(

A 0
0 1

)

, A ∈ SO(n− 1)

Thus, H ∼= SO(n− 1). So we have a homeomorphism

SO(n)/SO(n − 1) ∼= Sn−1

Since SO(1) is connected, we can show from this that each SO(n) is con-
nected! 2

Exercise 13.27 Show each unitary group U(n) is connected.

Theorem 13.28 Let G be a locally compact, Hausdorff and second count-

able topological group, acting transitively on a locally compact and Hausdorff

space X. Let H be the isotropy subgroup of a fixed x ∈ X. Then G/H and

X are homeomorphic.

Proof. Consider the commuting diagram

G

G/H X

π ψ

ϕ

π(g) = gH

ψ(g) = g · x

ϕ(gH) = g · x

We have to show that the map ϕ is open (we already know it is a continuous
bijection). It suffices to show ψ is open. Let g be a member of an open set
U ⊂ G. We have to show ψ(g) is in the interior of ψ(U). Since the action
by g−1 is a homeomorphism, this is equivalent to showing that x is in the
interior of g−1U · x, and g−1U is an open neighbourhood of e.

So we have to show that if V is an open neighbourhood of e, then x is in
the interior of V · x.

Since G is locally compact and Hausdorff, there is an open neighbourhood
O of e such that K = Ō is compact, K = K−1, and K2 ⊂ V . Since G is
sc, there exist countably many g1, g2, · · · ∈ G such that giO cover G. Hence
G = ∪igiK. It follows that

1. X =
⋃

i giK · x. (Transitivity of the action)

2. Each giK · x = ψ(lgi
(K)) is compact, hence closed. (X Hausdorff)

By the Baire Category Theorem, one of the giK · x has non-empty interior.
Let k ∈ K such that gik · x is in the interior of giK · x. But then x is in the
interior of k−1K · x ⊂ K2 · x ⊂ V · x. 2
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Notation

N Natural numbers
Z Integers
Q Rational numbers
R Real numbers
C Complex numbers
R+ Positive real numbers
K R or C
K∗ The number field K with zero removed
⊂ Contained in (allows equality)
 Strictly contained in (forces inequality)

℘(X) Power set of X
M(n,K) The n× n matrices, over K
GL(n,K) General linear group, the n× n invertible matrices over K
SL(n,K) Special linear group, the n× n matrices over K with

determinant one
O(n) Orthogonal group, the n× n real orthogonal matrices
SO(n) Special orthogonal group, the orthogonal matrices with

determinant one
U(n) Unitary group, the n× n complex unitary matrices
SU(n) Special unitary group, the unitary matrices with

determinant one

References

[1] G. Buskes and A. van Rooij. Topological Spaces – From Distance to

Neighborhood. Undergraduate Texts in Mathematics. Springer, 1997.

[2] S. W. Davis. Topology. Tata McGraw-Hill, 2005.

[3] I. M. James. Topologies and Uniformities. Undergraduate Mathematics
Series. Springer, 1999.

[4] K. Jänich. Topology. Undergraduate Texts in Mathematics. Springer,
1984.

[5] S. Kumaresan. Expository Articles. Lecture notes for MTTS.
http://mathstat.uohyd.ernet.in/∼mtts/.

[6] J. R. Munkres. Topology, second edition. Pearson Education, 2001.


