Introduction to Lie Algebras

Amber Habib
Mathematical Sciences Foundation, Delhi

Lecture 5

Jordan Decomposition, Cartan's Criterion and the Killing Form

Jordan Decomposition

We keep in place the requirement that \mathbb{F} is algebraically closed, but allow arbitrary characteristic.

Diagonalizable linear maps over an algebraically closed field are also called semisimple.

We have the following standard result from linear algebra:
Theorem 1 (Jordan Decomposition) Let V be a finite dimensional vector space over an algebraically closed field \mathbb{F}. Then any $X \in L(V)$ has a unique decomposition $X=S+N$ where S is semisimple, N is nilpotent and $[S, N]=0$. Moreover,

1. There exist polynomials p, q without constant term such that $p(X)=S$ and $q(X)=N$.
2. For any eigenvalue λ of X, define its generalized eigenspace by

$$
V_{\lambda}=\left\{v \in V:(X-\lambda I)^{k} v=0 \text { for some } k\right\} .
$$

Then V is the direct sum of the V_{λ} 's and S acts on V_{λ} by λ.
S and N are called (respectively) the semisimple and nilpotent parts of X.
Exercise 2 Let $X=S+N$ be the Jordan decomposition of $X \in L(V)$. Then

1. If $M \in L(V)$ commutes with X, it commutes with S and N.
2. If $A \subset B \subset V$ are subspaces such that $X(B) \subset A$, then $S(B), N(B) \subset$ A.

Exercise 3 Let $X \in \mathfrak{g}=g l(V)$ have Jordan decomposition $X=S+N$. Then $\operatorname{ad}(X) \in \mathfrak{g l}(\mathfrak{g})$ has Jordan decomposition

$$
\operatorname{ad}(X)=\operatorname{ad}(S)+\operatorname{ad}(N)
$$

Theorem 4 Let \mathfrak{g} be a Lie algebra. Then $\operatorname{Der}(\mathfrak{g})$ contains the semisimple and nilpotent parts of all its elements.

Proof. Let $D \in \operatorname{Der}(\mathfrak{g})$ with Jordan decomposition $D=S+N$. We have to show $S \in \operatorname{Der}(\mathfrak{g})$. Consider the generalized eigenspaces of D :

$$
\mathfrak{g}_{\lambda}=\left\{X \in \mathfrak{g}:(D-\lambda I)^{k} X=0 \text { for some } k\right\} .
$$

To see that S is a derivation, it is enough to apply it to brackets of the form $[X, Y]$ where $X \in \mathfrak{g}_{\lambda}$ and $Y \in \mathfrak{g}_{\mu}$. We first show that $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] \subset \mathfrak{g}_{\lambda+\mu}$. Note that

$$
\begin{aligned}
(D-\lambda-\mu)[X, Y] & =[D X, Y]+[Y, D X]-\lambda[X, Y]-\mu[X, Y] \\
& =[(D-\lambda) X, Y]+[X,(D-\mu) Y] .
\end{aligned}
$$

This is easily generalized by induction to

$$
(D-\lambda-\mu)^{n}[X, Y]=\sum_{i=0}^{n}{ }^{n} C_{i}\left[(D-\lambda)^{i} X,(D-\mu)^{n-i} Y\right]
$$

Let $(D-\lambda I)^{k} X=(D-\mu I)^{k} Y=0$. Then it follows that

$$
(D-(\lambda+\mu) I)^{2 k}[X, Y]=0 .
$$

Therefore, for $X \in \mathfrak{g}_{\lambda}$ and $Y \in \mathfrak{g}_{\mu}$, we have

$$
S[X, Y]=(\lambda+\mu)[X, Y]=[\lambda X, Y]+[X, \mu Y]=[S X, Y]+[X, S Y] .
$$

The direct sum decomposition $\mathfrak{g}=\oplus \mathfrak{g}_{\lambda}$ now implies that $S \in \operatorname{Der}(\mathfrak{g})$.

Cartan's Criterion

We assume that \mathbb{F} is algebraically closed and that $\operatorname{char}(\mathbb{F})=0$.
For a linear map $X \in L(V)$ the following criterion for solvability is quite easy to obtain: Let $A \subset B \subset V$ be subspaces, and define

$$
M=\{T \in L(V): T(B) \subset A\} .
$$

Suppose $X \in M$ satisfies $\operatorname{Tr}(X T)=0 \forall T \in M$. Then X is nilpotent.
We have a version of this for the adjoint action.
Lemma 5 Let $A \subset B$ be subspaces of $L(V)$. Define

$$
M=\{X \in \mathfrak{g l}(V):[X, B] \subset A\} .
$$

Suppose $X \in M$ satisfies $\operatorname{Tr}(X Y)=0$ for all $Y \in M$. Then X is nilpotent.
Proof. Let X have Jordan decomposition $S+N$. Fix a basis of V in which S has a diagonal matrix:

$$
[S]=\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right)
$$

Since $\operatorname{char}(\mathbb{F})=0$ we have the rationals $\mathbb{Q} \subset \mathbb{F}$. Treat \mathbb{F} as a vector space over \mathbb{Q} and let E be the span (over \mathbb{Q}) of a_{1}, \ldots, a_{n}. We have to show $E=0$ (as that will give $S=0$).

We will show $E^{*}=0$. Let $f: E \rightarrow \mathbb{Q}$ be linear. Define $Y \in \mathfrak{g l}(V)$ by

$$
[Y]=\left(\begin{array}{ccc}
f\left(a_{1}\right) & & \\
& \ddots & \\
& & f\left(a_{n}\right)
\end{array}\right)
$$

Then $\operatorname{ad}(S)$ has eigenvalues $a_{i}-a_{j}$ and $\operatorname{ad}(Y)$ has eigenvalues $f\left(a_{i}\right)-f\left(a_{j}\right)$, in both cases corresponding to the eigenvectors $E_{i j}$. By Lagrange interpolation there is a polynomial $r(t) \in \mathbb{F}[t]$ such that

$$
r\left(a_{i}-a_{j}\right)=f\left(a_{i}\right)-f\left(a_{j}\right), \quad \forall i, j .
$$

It follows that $r(\operatorname{ad}(S))=\operatorname{ad}(Y)$. Note that r has zero constant term.

We know $\operatorname{ad}(S)$ is a polynomial in $\operatorname{ad}(X)$ without constant term, hence ad (Y) is itself a polynomial in $\operatorname{ad}(X)$ without constant term.

Since $\operatorname{ad}(X)$ maps B into A, so does $\operatorname{ad}(Y)$. Hence $\operatorname{ad}(Y) \in M$. Therefore $\operatorname{Tr}(X Y)=0$, which gives $\sum_{i} a_{i} f\left(a_{i}\right)=0$. Applying f, we get $\sum_{i} f\left(a_{i}\right)^{2}=0$, and hence $f\left(a_{i}\right)=0 \forall i$.

Exercise 6 If $X, Y, Z \in L(V)$ then $\operatorname{Tr}([X, Y] Z)=\operatorname{Tr}(X[Y, Z])$.
Recall the earlier exercise that \mathfrak{g} solvable implies $\operatorname{Tr}(\operatorname{ad}(X) \operatorname{ad}(Y))=0$ for every $X \in[\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$. We shall establish the converse.

Theorem 7 (Cartan's Criterion for Solvability) Let $\mathfrak{g} \subset \mathfrak{g l}(V)$ be a Lie algebra such that $\operatorname{Tr}(X Y)=0$ for every $X \in[\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$. Then \mathfrak{g} is solvable.

Proof. Choose $A=[\mathfrak{g}, \mathfrak{g}], B=\mathfrak{g}$, and define

$$
M=\{T \in \mathfrak{g l l}(V):[T, B] \subset A\} .
$$

Clearly, $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g} \subset M$. Now let $X, Y \in \mathfrak{g}$ and $T \in M$. Then

$$
\operatorname{Tr}([X, Y] T)=\operatorname{Tr}(X[Y, T])=\operatorname{Tr}([Y, T] X)
$$

By definition of $M,[T, Y] \in B$, hence by the hypothesis of the theorem $\operatorname{Tr}([Y, T] X)=0$. So we have obtained that $\operatorname{Tr}([X, Y] T)=0$ for every $T \in M$. It follows that $\operatorname{Tr}(Z T)=0$ for every $Z \in[\mathfrak{g}, \mathfrak{g}]$ and $T \in M$. The earlier Lemma therefore implies that Z is nilpotent for each $Z \in[\mathfrak{g}, \mathfrak{g}]$.

Therefore $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent and \mathfrak{g} is solvable.
Exercise 8 Let \mathfrak{g} be a Lie algebra such that $\operatorname{Tr}(\operatorname{ad}(X) \operatorname{ad}(Y))=0$ for every $X \in[\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$. Then \mathfrak{g} is solvable.

Killing Form

Definition 9 Let \mathfrak{g} be a Lie algebra. Its Killing form $\kappa: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{F}$ is defined by $\kappa(X, Y)=\operatorname{Tr}(\operatorname{ad}(X) \operatorname{ad}(Y)$.

Exercise 10 The Killing form of \mathfrak{g} is bilinear, symmetric and associative: $\kappa([X, Y], Z)=\kappa(X,[Y, Z])$.

Definition 11 Given a bilinear symmetric form $\beta: V \times V \rightarrow \mathbb{F}$, its radical is defined to be

$$
S=\{x \in V: \beta(x, y)=0 \forall y \in V\} .
$$

If $S=0$ we call the form non-degenerate.
Exercise 12 The radical of the Killing form of \mathfrak{g} is an ideal of \mathfrak{g}.
Exercise 13 Let \mathfrak{h} be an ideal of \mathfrak{g}. Let κ be the Killing form of \mathfrak{g} and κ_{h} the Killing form of \mathfrak{h}. Then $\kappa_{h}=\left.\kappa\right|_{\mathfrak{h} \times \mathfrak{h}}$.

For the remaining results we again restrict to a field \mathbb{F} which is algebraically closed with $\operatorname{char}(\mathbb{F})=0$.

First, note that the Cartan Criterion corollary and its converse can now be expressed as: \mathfrak{g} is solvable iff the radical of its Killing form contains $[\mathfrak{g}, \mathfrak{g}]$.

Exercise 14 The radical of the Killing form of \mathfrak{g} is solvable. (Hence the radical of the Killing Form is in $\operatorname{Rad}(\mathfrak{g})$.)

Theorem 15 (Criterion for Semisimplicity) A Lie algebra \mathfrak{g} is semisimple if and only if its Killing form κ is non-degenerate.

Proof. Let S be the radical of the Killing form κ of \mathfrak{g}.
If \mathfrak{g} is semisimple, $S \subset \operatorname{Rad}(\mathfrak{g})=0$.
Now, suppose $\operatorname{Rad}(\mathfrak{g}) \neq 0$. Then the last non-zero term \mathfrak{h} in its derived series is an abelian ideal of \mathfrak{g}. If $X \in \mathfrak{h}$ and $Y \in \mathfrak{g}$ then $\operatorname{ad}(X) \operatorname{ad}(Y)$ maps $\mathfrak{g} \rightarrow \mathfrak{h}$ and $(\operatorname{ad}(X) \operatorname{ad}(Y))^{2}$ maps $\mathfrak{g} \rightarrow[\mathfrak{h}, \mathfrak{h}]=0$. Therefore $\operatorname{ad}(X) \operatorname{ad}(Y)$ is nilpotent and so $\kappa(X, Y)=0$. This shows $\mathfrak{h} \subset S \neq 0$.

Remark The first half of the proof uses Cartan's Criterion and so needs \mathbb{F} algebraically closed and $\operatorname{char}(\mathbb{F})=0$. The second half works for any \mathbb{F} and shows that for any \mathfrak{g} every abelian ideal is in S.

Exercise 16 Let $\mathfrak{g}=\mathbb{F}$. Give representations of \mathfrak{g} in which:

1. Every element of \mathfrak{g} acts semisimply.
2. Every element of \mathfrak{g} acts nilpotently.
3. No element of \mathfrak{g} acts semisimply or nilpotently. Nor are the semisimple or nilpotent parts of the images in the image of the representation.

Exercise 17 If \mathfrak{g} is nilpotent, its Killing form is identically 0.

Exercise 18 The radical of a Lie algebra need not equal the radical of its Killing form.

Exercise 19 Compute the Killing form of $\mathfrak{s l}(2, \mathbb{F})$.

