Workshop on Group Theory: Classification of Reductive Algebraic Groups Indian Statistical Institute, Bangalore Centre December 18, 2006 - January 5, 2007

Introduction to Lie Algebras

Amber Habib

Mathematical Sciences Foundation, Delhi

Lecture 5

Jordan Decomposition, Cartan's Criterion and the Killing Form

Jordan Decomposition

We keep in place the requirement that \mathbb{F} is algebraically closed, but allow arbitrary characteristic.

Diagonalizable linear maps over an algebraically closed field are also called *semisimple*.

We have the following standard result from linear algebra:

Theorem 1 (Jordan Decomposition) Let V be a finite dimensional vector space over an algebraically closed field \mathbb{F} . Then any $X \in L(V)$ has a unique decomposition X = S + N where S is semisimple, N is nilpotent and [S, N] = 0. Moreover,

- 1. There exist polynomials p, q without constant term such that p(X) = Sand q(X) = N.
- 2. For any eigenvalue λ of X, define its generalized eigenspace by

 $V_{\lambda} = \{ v \in V : (X - \lambda I)^k v = 0 \text{ for some } k \}.$

Then V is the direct sum of the V_{λ} 's and S acts on V_{λ} by λ .

S and N are called (respectively) the semisimple and nilpotent parts of $X.\blacksquare$

Exercise 2 Let X = S + N be the Jordan decomposition of $X \in L(V)$. Then

- 1. If $M \in L(V)$ commutes with X, it commutes with S and N.
- 2. If $A \subset B \subset V$ are subspaces such that $X(B) \subset A$, then $S(B), N(B) \subset A$.

Exercise 3 Let $X \in \mathfrak{g} = gl(V)$ have Jordan decomposition X = S + N. Then $ad(X) \in \mathfrak{gl}(\mathfrak{g})$ has Jordan decomposition

$$\operatorname{ad}(X) = \operatorname{ad}(S) + \operatorname{ad}(N).$$

Theorem 4 Let \mathfrak{g} be a Lie algebra. Then $Der(\mathfrak{g})$ contains the semisimple and nilpotent parts of all its elements.

Proof. Let $D \in \text{Der}(\mathfrak{g})$ with Jordan decomposition D = S + N. We have to show $S \in \text{Der}(\mathfrak{g})$. Consider the generalized eigenspaces of D:

$$\mathfrak{g}_{\lambda} = \{ X \in \mathfrak{g} : (D - \lambda I)^k X = 0 \text{ for some } k \}.$$

To see that S is a derivation, it is enough to apply it to brackets of the form [X, Y] where $X \in \mathfrak{g}_{\lambda}$ and $Y \in \mathfrak{g}_{\mu}$. We first show that $[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}] \subset \mathfrak{g}_{\lambda+\mu}$. Note that

$$(D - \lambda - \mu)[X, Y] = [DX, Y] + [Y, DX] - \lambda[X, Y] - \mu[X, Y] = [(D - \lambda)X, Y] + [X, (D - \mu)Y].$$

This is easily generalized by induction to

$$(D - \lambda - \mu)^{n}[X, Y] = \sum_{i=0}^{n} {}^{n}C_{i} \left[(D - \lambda)^{i}X, (D - \mu)^{n-i}Y \right].$$

Let $(D - \lambda I)^k X = (D - \mu I)^k Y = 0$. Then it follows that

$$(D - (\lambda + \mu)I)^{2k}[X, Y] = 0.$$

Therefore, for $X \in \mathfrak{g}_{\lambda}$ and $Y \in \mathfrak{g}_{\mu}$, we have

$$S[X,Y] = (\lambda + \mu)[X,Y] = [\lambda X,Y] + [X,\mu Y] = [SX,Y] + [X,SY].$$

The direct sum decomposition $\mathfrak{g} = \oplus \mathfrak{g}_{\lambda}$ now implies that $S \in \text{Der}(\mathfrak{g})$. \Box

Cartan's Criterion

We assume that \mathbb{F} is algebraically closed and that $char(\mathbb{F}) = 0$.

For a linear map $X \in L(V)$ the following criterion for solvability is quite easy to obtain: Let $A \subset B \subset V$ be subspaces, and define

$$M = \{T \in L(V) : T(B) \subset A\}.$$

Suppose $X \in M$ satisfies $\text{Tr}(XT) = 0 \ \forall T \in M$. Then X is nilpotent.

We have a version of this for the adjoint action.

Lemma 5 Let $A \subset B$ be subspaces of L(V). Define

$$M = \{ X \in \mathfrak{gl}(V) : [X, B] \subset A \}.$$

Suppose $X \in M$ satisfies Tr(XY) = 0 for all $Y \in M$. Then X is nilpotent.

Proof. Let X have Jordan decomposition S + N. Fix a basis of V in which S has a diagonal matrix:

$$[S] = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}.$$

Since $\operatorname{char}(\mathbb{F}) = 0$ we have the rationals $\mathbb{Q} \subset \mathbb{F}$. Treat \mathbb{F} as a vector space over \mathbb{Q} and let E be the span (over \mathbb{Q}) of a_1, \ldots, a_n . We have to show E = 0 (as that will give S = 0).

We will show $E^* = 0$. Let $f : E \to \mathbb{Q}$ be linear. Define $Y \in \mathfrak{gl}(V)$ by

$$[Y] = \left(\begin{array}{cc} f(a_1) & & \\ & \ddots & \\ & & f(a_n) \end{array}\right).$$

Then $\operatorname{ad}(S)$ has eigenvalues $a_i - a_j$ and $\operatorname{ad}(Y)$ has eigenvalues $f(a_i) - f(a_j)$, in both cases corresponding to the eigenvectors E_{ij} . By Lagrange interpolation there is a polynomial $r(t) \in \mathbb{F}[t]$ such that

$$r(a_i - a_j) = f(a_i) - f(a_j), \quad \forall i, j.$$

It follows that r(ad(S)) = ad(Y). Note that r has zero constant term.

We know ad(S) is a polynomial in ad(X) without constant term, hence ad(Y) is itself a polynomial in ad(X) without constant term.

Since $\operatorname{ad}(X)$ maps B into A, so does $\operatorname{ad}(Y)$. Hence $\operatorname{ad}(Y) \in M$. Therefore $\operatorname{Tr}(XY) = 0$, which gives $\sum_i a_i f(a_i) = 0$. Applying f, we get $\sum_i f(a_i)^2 = 0$, and hence $f(a_i) = 0 \quad \forall i$.

Exercise 6 If $X, Y, Z \in L(V)$ then $\operatorname{Tr}([X, Y]Z) = \operatorname{Tr}(X[Y, Z])$.

Recall the earlier exercise that \mathfrak{g} solvable implies $\operatorname{Tr}(\operatorname{ad}(X)\operatorname{ad}(Y)) = 0$ for every $X \in [\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$. We shall establish the converse.

Theorem 7 (Cartan's Criterion for Solvability) Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a Lie algebra such that $\operatorname{Tr}(XY) = 0$ for every $X \in [\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$. Then \mathfrak{g} is solvable.

Proof. Choose $A = [\mathfrak{g}, \mathfrak{g}], B = \mathfrak{g}$, and define

$$M = \{T \in \mathfrak{gl}(V) : [T, B] \subset A\}.$$

Clearly, $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g} \subset M$. Now let $X, Y \in \mathfrak{g}$ and $T \in M$. Then

$$\operatorname{Tr}\left([X,Y]T\right) = \operatorname{Tr}\left(X[Y,T]\right) = \operatorname{Tr}\left([Y,T]X\right).$$

By definition of M, $[T, Y] \in B$, hence by the hypothesis of the theorem Tr ([Y, T]X) = 0. So we have obtained that Tr ([X, Y]T) = 0 for every $T \in M$. It follows that Tr (ZT) = 0 for every $Z \in [\mathfrak{g}, \mathfrak{g}]$ and $T \in M$. The earlier Lemma therefore implies that Z is nilpotent for each $Z \in [\mathfrak{g}, \mathfrak{g}]$.

Therefore $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent and \mathfrak{g} is solvable.

Exercise 8 Let \mathfrak{g} be a Lie algebra such that $\operatorname{Tr}(\operatorname{ad}(X)\operatorname{ad}(Y)) = 0$ for every $X \in [\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$. Then \mathfrak{g} is solvable.

Killing Form

Definition 9 Let \mathfrak{g} be a Lie algebra. Its Killing form $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{F}$ is defined by $\kappa(X, Y) = \operatorname{Tr}(\operatorname{ad}(X)\operatorname{ad}(Y)$.

Exercise 10 The Killing form of \mathfrak{g} is bilinear, symmetric and associative: $\kappa([X,Y],Z) = \kappa(X,[Y,Z]).$

Definition 11 Given a bilinear symmetric form $\beta : V \times V \to \mathbb{F}$, its *radical* is defined to be

$$S = \{ x \in V : \beta(x, y) = 0 \ \forall y \in V \}.$$

If S = 0 we call the form non-degenerate.

Exercise 12 The radical of the Killing form of \mathfrak{g} is an ideal of \mathfrak{g} .

Exercise 13 Let \mathfrak{h} be an ideal of \mathfrak{g} . Let κ be the Killing form of \mathfrak{g} and κ_h the Killing form of \mathfrak{h} . Then $\kappa_h = \kappa|_{\mathfrak{h} \times \mathfrak{h}}$.

For the remaining results we again restrict to a field \mathbb{F} which is algebraically closed with $char(\mathbb{F}) = 0$.

First, note that the Cartan Criterion corollary and its converse can now be expressed as: \mathfrak{g} is solvable iff the radical of its Killing form contains $[\mathfrak{g}, \mathfrak{g}]$.

Exercise 14 The radical of the Killing form of \mathfrak{g} is solvable. (Hence the radical of the Killing Form is in $\operatorname{Rad}(\mathfrak{g})$.)

Theorem 15 (Criterion for Semisimplicity) A Lie algebra \mathfrak{g} is semisimple if and only if its Killing form κ is non-degenerate.

Proof. Let S be the radical of the Killing form κ of \mathfrak{g} .

If \mathfrak{g} is semisimple, $S \subset \operatorname{Rad}(\mathfrak{g}) = 0$.

Now, suppose $\operatorname{Rad}(\mathfrak{g}) \neq 0$. Then the last non-zero term \mathfrak{h} in its derived series is an abelian ideal of \mathfrak{g} . If $X \in \mathfrak{h}$ and $Y \in \mathfrak{g}$ then $\operatorname{ad}(X)\operatorname{ad}(Y)$ maps $\mathfrak{g} \to \mathfrak{h}$ and $(\operatorname{ad}(X)\operatorname{ad}(Y))^2$ maps $\mathfrak{g} \to [\mathfrak{h}, \mathfrak{h}] = 0$. Therefore $\operatorname{ad}(X)\operatorname{ad}(Y)$ is nilpotent and so $\kappa(X, Y) = 0$. This shows $\mathfrak{h} \subset S \neq 0$.

Remark The first half of the proof uses Cartan's Criterion and so needs \mathbb{F} algebraically closed and char(\mathbb{F}) = 0. The second half works for any \mathbb{F} and shows that for any \mathfrak{g} every abelian ideal is in S.

Exercise 16 Let $\mathfrak{g} = \mathbb{F}$. Give representations of \mathfrak{g} in which:

- 1. Every element of \mathfrak{g} acts semisimply.
- 2. Every element of \mathfrak{g} acts nilpotently.
- 3. No element of g acts semisimply or nilpotently. Nor are the semisimple or nilpotent parts of the images in the image of the representation.

Exercise 17 If \mathfrak{g} is nilpotent, its Killing form is identically 0.

Exercise 18 The radical of a Lie algebra need not equal the radical of its Killing form.

Exercise 19 Compute the Killing form of $\mathfrak{sl}(2,\mathbb{F})$.