Workshop on Group Theory: Classification of Reductive Algebraic Groups Indian Statistical Institute, Bangalore Centre December 18, 2006 - January 5, 2007

Introduction to Lie Algebras

Amber Habib

Mathematical Sciences Foundation, Delhi

Lecture 4: Theorems of Engel and Lie

Exercise 1 A Lie algebra \mathfrak{g} is solvable if and only if it has a sequence of Lie subalgebras

$$\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_k = 0,$$

such that each \mathfrak{g}_{i+1} is an ideal in \mathfrak{g}_i and $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is abelian.

Exercise 2 Let \mathfrak{h} be an ideal of \mathfrak{g} . Then \mathfrak{g} is solvable if and only if \mathfrak{h} and $\mathfrak{g}/\mathfrak{h}$ are solvable.

Exercise 3 If $\mathfrak{h}_1, \mathfrak{h}_2$ are solvable ideals of \mathfrak{g} , so is $\mathfrak{h}_1 + \mathfrak{h}_2$.

These results don't hold for nilpotent Lie algebras:

Example 4 Let \mathfrak{g} be the non-abelian two dimensional Lie algebra. It has a basis $\{X, Y\}$ such that [X, Y] = X. Now, let $\mathfrak{h} = \mathbb{F}X$ and $\mathfrak{j} = \mathbb{F}Y$. Then \mathfrak{h} is an ideal and $\mathfrak{h}, \mathfrak{g}/\mathfrak{h}$ are nilpotent because they are one dimensional. However \mathfrak{g} is not nilpotent: $\mathfrak{g}^i = \mathbb{F}X \ \forall i > 0$.

Similarly, \mathfrak{h} and \mathfrak{j} are nilpotent but $\mathfrak{g} = \mathfrak{h} + \mathfrak{j}$ is not.

However, there is the following result.

Exercise 5 If $\mathfrak{g}/Z(\mathfrak{g})$ is nilpotent, so is \mathfrak{g} . (Hint: $(\mathfrak{g}/Z(\mathfrak{g}))^i = \mathfrak{g}^i/Z(\mathfrak{g})$.)

Exercise 6 A Lie algebra \mathfrak{g} is solvable or nilpotent iff $\operatorname{ad}(\mathfrak{g})$ is so.

Exercise 7 Every Lie algebra \mathfrak{g} has a unique maximal solvable ideal.

Definition 8 The unique maximal solvable ideal of the Lie algebra \mathfrak{g} is called its *radical* and is denoted $\operatorname{Rad}(\mathfrak{g})$.

Definition 9 If $\operatorname{Rad}(\mathfrak{g}) = 0$, \mathfrak{g} is called *semisimple*.

A semisimple Lie algebra must have zero center, hence its adjoint representation is injective.

Simple Lie algebras are semisimple. So is the 0 algebra.

Exercise 10 For any Lie algebra \mathfrak{g} , $\mathfrak{g}/\operatorname{Rad}(\mathfrak{g})$ is semisimple.

Let us turn to nilpotent Lie algebras. The condition $\mathfrak{g}^n = 0$ means that for any $X_1, \ldots, X_{n+1} \in \mathfrak{g}$ we have

 $[X_1, [X_2, \dots, [X_n, X_{n+1}] \dots]] = 0$, or $\operatorname{ad}(X_1)\operatorname{ad}(X_2) \cdots \operatorname{ad}(X_n) = 0$

In particular: $\operatorname{ad}(X)^n = 0 \ \forall X \in \mathfrak{g}.$

Definition 11 If ad(X) is nilpotent, we say X is *ad-nilpotent*.

We have just observed that if \mathfrak{g} is nilpotent, then each element of \mathfrak{g} is adnilpotent. Amazingly, the converse is also true.

Theorem 12 Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a linear Lie algebra, $V \neq 0$. If each $X \in \mathfrak{g}$ is nilpotent, then $\exists v \in V$ such that $v \neq 0$ and $Xv = 0 \ \forall X \in \mathfrak{g}$.

Proof. We proceed by induction on $\dim(\mathfrak{g})$. When $\dim(\mathfrak{g}) = 0$, the result is easy. Now consider an arbitrary \mathfrak{g} satisfying the hypotheses of the theorem.

We first show \mathfrak{g} has an ideal \mathfrak{h} of codimension one. Choose \mathfrak{h} to be any maximal proper subalgebra of \mathfrak{g} . For any $H \in \mathfrak{h}$, $\mathrm{ad}(H)$ preserves \mathfrak{h} , hence we can define

 $\overline{\mathrm{ad}}:\mathfrak{h}\to\mathfrak{gl}(\mathfrak{g}/\mathfrak{h}),\qquad\overline{\mathrm{ad}}(H)(X+\mathfrak{h})=\mathrm{ad}(H)X+\mathfrak{h}.$

Since each $\operatorname{ad}(H)$ is nilpotent, so is each $\operatorname{\overline{ad}}(H)$. Applying the induction hypothesis to $\operatorname{\overline{ad}}(\mathfrak{h})$, we find a non-zero $Y + \mathfrak{h}$ such that $\operatorname{\overline{ad}}(H)(Y + \mathfrak{h}) = \mathfrak{h}$ for every $H \in \mathfrak{h}$. Then $Y \notin \mathfrak{h}$ and $\operatorname{ad}(H)Y \in \mathfrak{h}$ for each $H \in \mathfrak{h}$.

This shows $\mathfrak{h} + \mathbb{F}Y$ is a subalgebra, properly containing \mathfrak{h} . Hence we must have $\mathfrak{g} = \mathfrak{h} + \mathbb{F}Y$. So \mathfrak{h} has codimension one, and is also an ideal.

Now apply the induction hypothesis to \mathfrak{h} : $\exists v \in V, v \neq 0$, such that Hv = 0 for every $H \in \mathfrak{h}$. Let

$$W = \{ v \in V : Hv = 0 \ \forall H \in \mathfrak{h} \}.$$

Also, fix $Y \notin \mathfrak{h}$: then $\mathfrak{g} = \mathfrak{h} + \mathbb{F}Y$. We have to find a non-zero $v \in W$ such that Yv = 0. For any $w \in W$ and $H \in \mathfrak{h}$,

$$HYw = [H, Y]w + YHw = 0,$$

and so $Yw \in W$. Therefore Y acts on W. Since the action must be nilpotent, there is a non-zero $v \in W$ such that Yv = 0.

Corollary 13 Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a linear Lie algebra. If each $X \in \mathfrak{g}$ is nilpotent, then there is a basis of V such that each member of \mathfrak{g} is represented by a strictly upper triangular matrix.

Corollary 14 (Engel's Theorem) Let \mathfrak{g} be a Lie algebra such that each element is ad-nilpotent. Then \mathfrak{g} is nilpotent.

In fact, the entire family of results 12-14 is generally grouped under the name of Engel's Theorem.

Exercise 15 Let \mathfrak{g} be a nilpotent Lie algebra and \mathfrak{h} a non-zero ideal in \mathfrak{g} . Then $\mathfrak{h} \cap Z(\mathfrak{g}) \neq 0$.

Now we shall start exploring the structure of Lie algebras via eigenvectors and eigenvalues, hence:

We assume that the underlying field \mathbb{F} is algebraically closed.

We have seen that prime characteristic creates various exceptions to general patterns, and so we also assume that $char(\mathbb{F}) = 0$.

Example 16 Let \mathfrak{g} be the non-abelian two dimensional Lie algebra, with basis $\{X, Y\}$ such that [X, Y] = X. Then it is solvable: $\mathfrak{g}^{(1)} = [\mathfrak{g}, \mathfrak{g}] = \mathbb{F}X$, $\mathfrak{g}^{(2)} = [\mathfrak{g}^{(1)}, \mathfrak{g}^{(1)}] = 0$. Consider its adjoint representation:

$$ad(X) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$ad(Y) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$

Hence for a general element $T = aX + bY \in \mathfrak{g}$,

$$\operatorname{ad}(aX+bY) = \left(\begin{array}{cc} -b & a\\ 0 & 0 \end{array}\right).$$

Clearly, there is no non-zero vector Z such that $\operatorname{ad}(T)Z = 0$ for every $T \in \mathfrak{g}$. However X is at least a common eigenvector for each $\operatorname{ad}(T)$:

$$\operatorname{ad}(aX+bY)X = -bX.$$

Theorem 17 Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a solvable Lie algebra. If $V \neq 0$ then it contains a common eigenvector for all the elements of \mathfrak{g} .

Proof. We proceed by induction on dim(\mathfrak{g}), broadly following the scheme used for Engel's Theorem. If dim(\mathfrak{g}) = 0, the claim is trivial.

For a general \mathfrak{g} we first locate an ideal of codimension one. Since \mathfrak{g} is solvable, $[\mathfrak{g},\mathfrak{g}] \neq \mathfrak{g}$. Hence we can choose some vector subspace $\mathfrak{k} \subset \mathfrak{g}$ such that it has codimension one and contains $[\mathfrak{g},\mathfrak{g}]$. But then,

$$[\mathfrak{k},\mathfrak{g}]\subset [\mathfrak{g},\mathfrak{g}]\subset \mathfrak{k},$$

hence \mathfrak{k} is an ideal.

By the induction hypothesis, there is a common eigenvector $v \in V$ for each element of \mathfrak{k} :

$$Kv = \lambda(K)v, \quad \forall K \in \mathfrak{k}.$$

It is easy to see that $\lambda : \mathfrak{k} \to \mathbb{F}$ is linear. Now define:

$$W = \{ w \in V : Kw = \lambda(K)w, \quad \forall K \in \mathfrak{k} \}.$$

Since $v \in W$, W is a non-zero subspace of V. We shall show \mathfrak{g} preserves W. Let $X \in \mathfrak{g}$ and $w \in W$. Then for any $K \in \mathfrak{k}$,

$$KXw = [K, X]w + XKw = \lambda([K, X])w + \lambda(K)Xw.$$

To show $Xw \in W$ we have to prove that $\lambda([K, X]) = 0$. Let $w \in W$ be non-zero and consider the sequence $\{w, Xw, X^2w \dots\}$. Let n be largest such that

$$W_n = \{w, Xw, \dots, X^nw\}$$

is linearly independent. We have:

$$KX^{i}w = KXX^{i-1}w$$

= $[K, X]X^{i-1}w + XKX^{i-1}w$
= $\lambda([K, X])X^{i-1}w + \lambda(K)X^{i}w$.

Hence the action of K on W_n is given by an upper triangular matrix whose diagonal entries are all $\lambda(K)$. Applying this to the action of [K, X], we find that its trace is $\operatorname{Tr}[K, X]|_{W_n} = (n+1)\lambda([K, X])$. By our choice of n, we also have $XW_n \subset W_n$, and so $[K, X]|_{W_n} = [K|_{W_n}, X|_{W_n}]$. But then $\operatorname{Tr}[K, X]|_{W_n} = 0$, and so $\lambda([K, X]) = 0$ (Since char(\mathbb{F}) = 0).

So we have shown that \mathfrak{g} preserves W. Let $\mathfrak{g} = \mathfrak{k} + \mathbb{F}Z$. Since \mathbb{F} is algebraically closed, Z has an eigenvector $v \in W$. Then v is clearly a common eigenvector for \mathfrak{g} .

Corollary 18 (Lie's Theorem) Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a solvable Lie algebra. Then V has a basis such that the matrix of each $X \in \mathfrak{g}$ is upper triangular.

Proof. Proceed by induction on $n = \dim(V)$. The n = 0 case is trivial. Assume n > 0. We have a common eigenvector v for the \mathfrak{g} action on V. Let $V_1 = V/\mathbb{F}v$. Define $\pi : \mathfrak{g} \to \mathfrak{gl}(V_1)$ by

$$\pi(X)(w + \mathbb{F}v) = Xw + \mathbb{F}v.$$

Since $\pi(\mathfrak{g})$ is solvable, by the induction hypothesis, there is a basis $\{v_1 + \mathbb{F}v, \ldots, v_n + \mathbb{F}v\}$ of V_1 such that each $\pi(\mathfrak{g})$ is upper triangular. Then

$$\{v, v_1, \ldots, v_n\}$$

is a basis of V which makes \mathfrak{g} upper triangular.

Exercise 19 Let \mathfrak{g} be solvable and $\pi : \mathfrak{g} \to \mathfrak{gl}(V)$ a representation of \mathfrak{g} . Then V has a basis in which each $\pi(X)$ is upper triangular.

Exercise 20 Let \mathfrak{g} be solvable. Then there are ideals \mathfrak{h}_i of \mathfrak{g} such that

 $0 = \mathfrak{h}_0 \subset \mathfrak{h}_1 \subset \mathfrak{h}_2 \subset \cdots \subset \mathfrak{h}_n = \mathfrak{g}, \quad and \quad \dim(\mathfrak{h}_i) = i.$

Exercise 21 Let \mathfrak{g} be solvable. Then $\operatorname{ad}(X)$ is nilpotent for each $X \in [\mathfrak{g}, \mathfrak{g}]$.

Exercise 22 A Lie algebra \mathfrak{g} is solvable if and only if $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent.

Exercise 23 The sum of two nilpotent ideals is nilpotent. Hence each \mathfrak{g} has a maximal nilpotent ideal.

Exercise 24 Let $X, Y \in L(V)$ commute. Let their Jordan decompositions be $X_s + X_n$ and $Y_s + Y_n$ respectively. Then the Jordan decomposition of X + Y is $(X_s + Y_s) + (X_n + Y_n)$.

Exercise 25 Show the previous result can fail if X, Y do not commute.

Exercise 26 Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be solvable. Show that $\operatorname{Tr}(XY) = 0$ for all $X \in [\mathfrak{g}, \mathfrak{g}]$ and $Y \in \mathfrak{g}$.

Exercise 27 Let $char(\mathbb{F}) = 2$ and let $\mathfrak{g} \subset \mathfrak{gl}(2,\mathbb{F})$ be the span of

$$X = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right), \quad Y = \left(\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right)$$

Show \mathfrak{g} is a solvable Lie algebra but its elements have no common eigenvector in \mathbb{F}^2 .

Exercise 28 Let \mathfrak{g} be as in the previous exercise. Consider the vector space direct sum $\mathfrak{h} = \mathfrak{g} \oplus \mathbb{F}^2$ and define a bracket on it by

$$[X \oplus x, Y \oplus y] = [X, Y] \oplus (Xy - Yx).$$

Show that \mathfrak{h} is a solvable Lie algebra but $[\mathfrak{h}, \mathfrak{h}]$ is not nilpotent.

Exercise 29 If \mathfrak{g} is a real Lie algebra, its complexification is the complex vector space $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$, with bracket defined by $[X \otimes w, Y \otimes z] = [X, Y] \otimes wz$. Verify $\mathfrak{g}_{\mathbb{C}}$ is a Lie algebra over \mathbb{C} .

Exercise 30 Let \mathfrak{g} be a real Lie algebra. Show it is solvable if and only if $\mathfrak{g}_{\mathbb{C}}$ is.

Exercise 31 If \mathfrak{g} is a solvable real Lie algebra, then $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent.