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Lecture 4: Theorems of Engel and Lie

Exercise 1 A Lie algebra g is solvable if and only if it has a sequence of Lie
subalgebras

g = g0 ⊃ g1 ⊃ · · · ⊃ gk = 0,

such that each gi+1 is an ideal in gi and gi/gi+1 is abelian.

Exercise 2 Let h be an ideal of g. Then g is solvable if and only if h and
g/h are solvable.

Exercise 3 If h1, h2 are solvable ideals of g, so is h1 + h2.

These results don’t hold for nilpotent Lie algebras:

Example 4 Let g be the non-abelian two dimensional Lie algebra. It has a
basis {X, Y } such that [X, Y ] = X. Now, let h = FX and j = FY . Then h is
an ideal and h, g/h are nilpotent because they are one dimensional. However
g is not nilpotent: gi = FX ∀i > 0.

Similarly, h and j are nilpotent but g = h + j is not. �

However, there is the following result.

Exercise 5 If g/Z(g) is nilpotent, so is g. (Hint: (g/Z(g))i = gi/Z(g).)

Exercise 6 A Lie algebra g is solvable or nilpotent iff ad(g) is so.

Exercise 7 Every Lie algebra g has a unique maximal solvable ideal.

Definition 8 The unique maximal solvable ideal of the Lie algebra g is called
its radical and is denoted Rad(g).
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Definition 9 If Rad(g) = 0, g is called semisimple.

A semisimple Lie algebra must have zero center, hence its adjoint represen-
tation is injective.

Simple Lie algebras are semisimple. So is the 0 algebra.

Exercise 10 For any Lie algebra g, g/Rad(g) is semisimple.

Let us turn to nilpotent Lie algebras. The condition gn = 0 means that for
any X1, . . . , Xn+1 ∈ g we have

[X1, [X2, . . . [Xn, Xn+1] . . . ]] = 0, or ad(X1)ad(X2) · · · ad(Xn) = 0

In particular: ad(X)n = 0 ∀X ∈ g.

Definition 11 If ad(X) is nilpotent, we say X is ad-nilpotent.

We have just observed that if g is nilpotent, then each element of g is ad-
nilpotent. Amazingly, the converse is also true.

Theorem 12 Let g ⊂ gl(V ) be a linear Lie algebra, V 6= 0. If each X ∈ g

is nilpotent, then ∃v ∈ V such that v 6= 0 and Xv = 0 ∀X ∈ g.

Proof. We proceed by induction on dim(g). When dim(g) = 0, the result is
easy. Now consider an arbitrary g satisfying the hypotheses of the theorem.

We first show g has an ideal h of codimension one. Choose h to be any
maximal proper subalgebra of g. For any H ∈ h, ad(H) preserves h, hence
we can define

ad : h → gl(g/h), ad(H)(X + h) = ad(H)X + h.

Since each ad(H) is nilpotent, so is each ad(H). Applying the induction
hypothesis to ad(h), we find a non-zero Y + h such that ad(H)(Y + h) = h

for every H ∈ h. Then Y /∈ h and ad(H)Y ∈ h for each H ∈ h.

This shows h + FY is a subalgebra, properly containing h. Hence we must
have g = h + FY . So h has codimension one, and is also an ideal.

Now apply the induction hypothesis to h: ∃v ∈ V , v 6= 0, such that Hv = 0
for every H ∈ h. Let

W = {v ∈ V : Hv = 0 ∀H ∈ h}.
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Also, fix Y /∈ h: then g = h + FY . We have to find a non-zero v ∈ W such
that Y v = 0. For any w ∈ W and H ∈ h,

HY w = [H, Y ]w + Y Hw = 0,

and so Y w ∈ W . Therefore Y acts on W . Since the action must be nilpotent,
there is a non-zero v ∈ W such that Y v = 0. �

Corollary 13 Let g ⊂ gl(V ) be a linear Lie algebra. If each X ∈ g is
nilpotent, then there is a basis of V such that each member of g is represented
by a strictly upper triangular matrix.

Corollary 14 (Engel’s Theorem) Let g be a Lie algebra such that each
element is ad-nilpotent. Then g is nilpotent.

In fact, the entire family of results 12-14 is generally grouped under the name
of Engel’s Theorem.

Exercise 15 Let g be a nilpotent Lie algebra and h a non-zero ideal in g.
Then h ∩ Z(g) 6= 0.

Now we shall start exploring the structure of Lie algebras via eigenvectors
and eigenvalues, hence:

We assume that the underlying field F is algebraically closed.

We have seen that prime characteristic creates various exceptions to general
patterns, and so we also assume that char(F) = 0.

Example 16 Let g be the non-abelian two dimensional Lie algebra, with
basis {X, Y } such that [X, Y ] = X. Then it is solvable: g(1) = [g, g] = FX,
g(2) = [g(1), g(1)] = 0. Consider its adjoint representation:

ad(X) =

(
0 1
0 0

)
ad(Y ) =

(
−1 0

0 0

)
Hence for a general element T = aX + bY ∈ g,

ad(aX + bY ) =

(
−b a

0 0

)
.
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Clearly, there is no non-zero vector Z such that ad(T )Z = 0 for every T ∈ g.
However X is atleast a common eigenvector for each ad(T ):

ad(aX + bY )X = −bX.

�

Theorem 17 Let g ⊂ gl(V ) be a solvable Lie algebra. If V 6= 0 then it
contains a common eigenvector for all the elements of g.

Proof. We proceed by induction on dim(g), broadly following the scheme used
for Engel’s Theorem. If dim(g) = 0, the claim is trivial.

For a general g we first locate an ideal of codimension one. Since g is solvable,
[g, g] 6= g. Hence we can choose some vector subspace k ⊂ g such that it has
codimension one and contains [g, g]. But then,

[k, g] ⊂ [g, g] ⊂ k,

hence k is an ideal.

By the induction hypothesis, there is a common eigenvector v ∈ V for each
element of k:

Kv = λ(K)v, ∀K ∈ k.

It is easy to see that λ : k → F is linear. Now define:

W = {w ∈ V : Kw = λ(K)w, ∀K ∈ k}.

Since v ∈ W , W is a non-zero subspace of V . We shall show g preserves W .
Let X ∈ g and w ∈ W . Then for any K ∈ k,

KXw = [K, X]w + XKw = λ([K,X])w + λ(K)Xw.

To show Xw ∈ W we have to prove that λ([K, X]) = 0. Let w ∈ W be
non-zero and consider the sequence {w,Xw,X2w . . . }. Let n be largest such
that

Wn = {w,Xw, . . . , Xnw}

is linearly independent. We have:

KX iw = KXX i−1w

= [K, X]X i−1w + XKX i−1w

= λ([K, X])X i−1w + λ(K)X iw.
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Hence the action of K on Wn is given by an upper triangular matrix whose
diagonal entries are all λ(K). Applying this to the action of [K, X], we
find that its trace is Tr [K, X]|Wn = (n + 1)λ([K, X]). By our choice of
n, we also have XWn ⊂ Wn, and so [K, X]|Wn = [K|Wn , X|Wn ]. But then
Tr [K,X]|Wn = 0, and so λ([K, X]) = 0 (Since char(F) = 0).

So we have shown that g preserves W . Let g = k+FZ. Since F is algebraically
closed, Z has an eigenvector v ∈ W . Then v is clearly a common eigenvector
for g. �

Corollary 18 (Lie’s Theorem) Let g ⊂ gl(V ) be a solvable Lie algebra.
Then V has a basis such that the matrix of each X ∈ g is upper triangular.

Proof. Proceed by induction on n = dim(V ). The n = 0 case is trivial.
Assume n > 0. We have a common eigenvector v for the g action on V . Let
V1 = V/Fv. Define π : g → gl(V1) by

π(X)(w + Fv) = Xw + Fv.

Since π(g) is solvable, by the induction hypothesis, there is a basis {v1 +
Fv, . . . , vn + Fv} of V1 such that each π(g) is upper triangular. Then

{v, v1, . . . , vn}

is a basis of V which makes g upper triangular. �

Exercise 19 Let g be solvable and π : g → gl(V ) a representation of g.
Then V has a basis in which each π(X) is upper triangular.

Exercise 20 Let g be solvable. Then there are ideals hi of g such that

0 = h0 ⊂ h1 ⊂ h2 ⊂ · · · ⊂ hn = g, and dim(hi) = i.

Exercise 21 Let g be solvable. Then ad(X) is nilpotent for each X ∈ [g, g].

Exercise 22 A Lie algebra g is solvable if and only if [g, g] is nilpotent.

Exercise 23 The sum of two nilpotent ideals is nilpotent. Hence each g has
a maximal nilpotent ideal.

Exercise 24 Let X,Y ∈ L(V ) commute. Let their Jordan decompositions
be Xs+Xn and Ys+Yn respectively. Then the Jordan decomposition of X+Y
is (Xs + Ys) + (Xn + Yn).
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Exercise 25 Show the previous result can fail if X, Y do not commute.

Exercise 26 Let g ⊂ gl(V ) be solvable. Show that Tr (XY ) = 0 for all
X ∈ [g, g] and Y ∈ g.

Exercise 27 Let char(F) = 2 and let g ⊂ gl(2, F) be the span of

X =

(
0 1
1 0

)
, Y =

(
0 0
0 1

)
.

Show g is a solvable Lie algebra but its elements have no common eigenvector
in F2.

Exercise 28 Let g be as in the previous exercise. Consider the vector space
direct sum h = g⊕ F2 and define a bracket on it by

[X ⊕ x, Y ⊕ y] = [X, Y ]⊕ (Xy − Y x).

Show that h is a solvable Lie algebra but [h, h] is not nilpotent.

Exercise 29 If g is a real Lie algebra, its complexification is the complex
vector space gC = g⊗RC, with bracket defined by [X⊗w, Y ⊗z] = [X, Y ]⊗wz.
Verify gC is a Lie algebra over C.

Exercise 30 Let g be a real Lie algebra. Show it is solvable if and only if
gC is.

Exercise 31 If g is a solvable real Lie algebra, then [g, g] is nilpotent.


