Workshop on Group Theory: Classification of Reductive Algebraic Groups Indian Statistical Institute, Bangalore Centre December 18, 2006 - January 5, 2007

Introduction to Lie Algebras

Amber Habib

Mathematical Sciences Foundation, Delhi

Lecture 1 - Basic Definitions and Examples

For our basic example we consider the vector space L(V) of linear operators on a vector space V (over a field \mathbb{F}). Besides the vector space operations of addition and scaling, this has another natural operation: composition of linear operators. This operation is not commutative: in general, $f \circ g \neq g \circ f$. We can try to capture the amount of non-commutativity by defining

$$[f,g] = f \circ g - g \circ f.$$

Now we have a new operation, $[\cdot, \cdot] : L(V) \times L(V) \to L(V)$. First, we easily see it is bilinear:

$$[\alpha f + \beta g, \alpha' f' + \beta' g'] = \alpha \alpha' [f, f'] + \alpha \beta' [f, g'] + \beta \alpha' [g, f'] + \beta \beta' [g, g'],$$

where $\alpha, \beta, \alpha', \beta' \in \mathbb{F}$. Next, it is not commutative. In fact, we have

$$[f,g] = -[g,f]$$
 and $[f,f] = 0.$

Finally, let us consider associativity:

$$\begin{split} [f,[g,h]]-[[f,g],h] &= f[g,h]-[g,h]f-[f,g]h+h[f,g] \\ &= fgh-fhg-ghf+hgf-fgh+gfh+hfg-hgf \\ &= g[f,h]-[f,h]g = [g,[f,h]]. \end{split}$$

So the bracket is not associative either. However, the last calculation can be rewritten in a form which is quite useful:

$$[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0.$$

Note the cyclic pattern.

The properties listed above lead to the following abstract notion:

Definition 1 A Lie algebra \mathfrak{g} is a vector space (over a field \mathbb{F}) with a bilinear operation $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ called the *bracket* or *commutator*, and denoted $(X, Y) \mapsto [X, Y]$, such that:

- 1. $[X, X] = 0 \qquad \forall X, Y \in \mathfrak{g}.$
- 2. [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0 $\forall X, Y, Z \in \mathfrak{g}$.

The first property of the bracket is called *anti-commutativity* while the second is the *Jacobi identity*.

Exercise 2 Show that in a Lie algebra, [X, Y] = -[Y, X].

Lie algebras can be studied for their own sake, but *our* interest in them arises out of their applications to the study of certain groups. Roughly, to each such group we will assign a Lie algebra which will contain local information about this group. Its job will be to convert problems about group structure to problems in linear algebra.

Exercise 3 Let A be an associative algebra over \mathbb{F} . Define [a, b] = ab - ba for $a, b \in A$. Show that this bracket makes A a Lie algebra.

Example 4 Consider L(V) with the bracket $[f,g] = f \circ g - g \circ f$. We have seen that it becomes a Lie algebra, and we shall call this Lie algebra the general Lie algebra and denote it by $\mathfrak{gl}(V)$.

Definition 5 Let \mathfrak{g} be a Lie algebra. We have the following definitions.

- 1. The Lie algebra \mathfrak{g} is *abelian* if the bracket is trivial: $[X, Y] \equiv 0$.
- 2. A subset $\mathfrak{h} \subset \mathfrak{g}$ is a *Lie subalgebra* of \mathfrak{g} if it is a vector subspace and is closed under the bracket operation.
- 3. A subset $\mathfrak{h} \subset \mathfrak{g}$ is an *ideal* of \mathfrak{g} if it is a vector subspace and $H \in \mathfrak{h}, X \in \mathfrak{g}$ implies $[H, X] \in \mathfrak{h}$.
- 4. If \mathfrak{h} is another Lie algebra, then $\varphi : \mathfrak{g} \to \mathfrak{h}$ is a *Lie algebra homomorphism* if it is linear and preserves the bracket:

$$\varphi[X,Y] = [\varphi X, \varphi Y] \quad \forall X, Y \in \mathfrak{g}.$$

- 5. A Lie algebra \mathfrak{h} is *isomorphic* to \mathfrak{g} if there is a bijective Lie algebra homomorphism $\varphi : \mathfrak{g} \to \mathfrak{h}$. Then φ is called an *isomorphism*. (Note that φ^{-1} is then an isomorphism from \mathfrak{h} to \mathfrak{g} .)
- 6. Let V be a vector space. A Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(V)$ is called a *representation* of \mathfrak{g} in V.

Exercise 6 Classify the one and two dimensional Lie algebras up to isomorphism.

Exercise 7 Let $\varphi : \mathfrak{g} \to \mathfrak{h}$ be a Lie algebra homomorphism. Show that $\operatorname{im} \varphi$ is a Lie subalgebra of \mathfrak{h} and ker φ is an ideal in \mathfrak{g} .

Example 8 If the vector space V has a basis of size n, it becomes identified with \mathbb{F}^n and L(V) with $M(n, \mathbb{F})$ - the $n \times n$ matrices with entries in \mathbb{F} . Under this identification, composition becomes matrix multiplication and so the bracket is now defined by

$$[A, B] = AB - BA.$$

 $M(n, \mathbb{F})$ with this bracket is denoted by $\mathfrak{gl}(n, \mathbb{F})$. Clearly $\mathfrak{gl}(V)$ and $\mathfrak{gl}(n, \mathbb{F})$ are isomorphic.

Example 9 With the Lie algebra $\mathfrak{gl}(n, \mathbb{F})$ in hand, we obtain others by considering various familiar subspaces:

- 1. $\mathfrak{sl}(n,\mathbb{F}) = \{X \in \mathfrak{gl}(n,\mathbb{F}) : \operatorname{Trace}(X) = 0.\}$. (Special Linear Algebra)
- 2. skew $(n, \mathbb{F}) = \{ X \in \mathfrak{gl}(n, \mathbb{F}) : X + X^t = 0. \}.$
- 3. $\mathfrak{t}(n, \mathbb{F}) = \{ X \in \mathfrak{gl}(n, \mathbb{F}) : X \text{ is upper triangular} \}.$
- 4. $\mathfrak{n}(n, \mathbb{F}) = \{ X \in \mathfrak{gl}(n, \mathbb{F}) : X \text{ is strictly upper triangular} \}.$
- 5. $\mathfrak{d}(n, \mathbb{F}) = \{ X \in \mathfrak{gl}(n, \mathbb{F}) : X \text{ is diagonal} \}.$

Exercise 10 Which of the above Lie algebras depend on the choice of basis, and to what extent?

Since $\mathfrak{sl}(n, \mathbb{F})$ is independent of the choice of basis, we can denote it by $\mathfrak{sl}(V)$.

Definition 11 A Lie algebra is called *linear* if it is a Lie subalgebra of $\mathfrak{gl}(n, \mathbb{F})$.

Example 12 We shall describe a machine for generating many linear Lie algebras. Let $V = \mathbb{F}^n$ and $J \in M(n, \mathbb{F})$. Then define

$$\mathfrak{g}_J := \{ X \in \mathfrak{gl}(n, \mathbb{F}) : JX + X^t J = 0 \}.$$

It is easily verified that \mathfrak{g}_J is a vector subspace and also closed under bracket, hence it is a Lie subalgebra of $\mathfrak{gl}(n, \mathbb{F})$. For example, J = I gives $\mathfrak{g}_I = \mathfrak{o}(n, \mathbb{F})$.

Exercise 13 Show that if J and K are orthogonally similar, then \mathfrak{g}_J and \mathfrak{g}_K are isomorphic.

Example 14 Let us consider various choices of J. (Note: The explicit descriptions of the Lie algebras below involve the assumption that $char(\mathbb{F}) \neq 2$.)

1. Let n = 2p and consider

$$J = \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array}\right),$$

where I is the $p \times p$ identity matrix. Then

$$\mathfrak{g}_J = \left\{ \left(\begin{array}{cc} X & Y \\ Z & -X^t \end{array} \right) : X, Y, Z \in M(p, \mathbb{F}), \ Y = Y^t, \ Z = Z^t \right\}$$

is called the symplectic algebra and denoted by $\mathfrak{sp}(n, \mathbb{F})$.

2. Let n = 2p and consider

$$K = \left(\begin{array}{cc} 0 & I \\ I & 0 \end{array}\right),$$

where I is the $p \times p$ identity matrix. Then

$$\mathfrak{g}_K = \left\{ \left(\begin{array}{cc} X & Y \\ Z & -X^t \end{array} \right) : X, Y, Z \in M(p, \mathbb{F}), \ Y + Y^t = Z + Z^t = 0 \right\}$$

is called the *orthogonal algebra* and denoted by $\mathfrak{o}(n, \mathbb{F}) = \mathfrak{o}(2p, \mathbb{F})$.

3. Let n = 2p + 1 and consider

$$L = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & I \\ 0 & I & 0 \end{array} \right),$$

where I is the $p \times p$ identity matrix. Then

$$\mathfrak{g}_L = \left\{ \begin{pmatrix} 0 & -b^t & -c^t \\ c & X & Y \\ b & Z & -X^t \end{pmatrix} : \begin{array}{c} b, c \in \mathbb{F}^p, \ X, Y, Z \in M(p, \mathbb{F}), \\ Y + Y^t = Z + Z^t = 0 \end{pmatrix} \right\}$$

is also called the *orthogonal algebra* and denoted $\mathfrak{o}(n, \mathbb{F}) = \mathfrak{o}(2p+1, \mathbb{F})$.

Exercise 15 Show that $\mathfrak{o}(n, \mathbb{F})$ is isomorphic to $skew(n, \mathbb{F})$, provided that \mathbb{F} is algebraically closed.

Exercise 16 Consider $\mathfrak{g} = \mathbb{R}^3$ with the vector cross-product

 $[X,Y] := X \times Y.$

Verify \mathfrak{g} *is a Lie algebra. Show it is isomorphic to* $\mathfrak{o}(3,\mathbb{R})$ *.*

Exercise 17 Let $E_{ij} \in M(n, \mathbb{F})$ be defined as having all entries equal 0, except that the (i, j) one equals 1. Show that

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{li} E_{kj}.$$

Exercise 18 Show that $\dim(\mathfrak{sp}(n,\mathbb{F})) = \frac{1}{2}n(n+1)$, $\dim(\mathfrak{o}(n,\mathbb{F})) = \frac{1}{2}n(n-1)$.

Exercise 19 Prove the isomorphisms $\mathfrak{sl}(2,\mathbb{F}) \cong \mathfrak{o}(3,\mathbb{F}) \cong \mathfrak{sp}(2,\mathbb{F})$, assuming $\operatorname{char}(\mathbb{F}) \neq 2$.