Introduction to Lie Algebras

Amber Habib
Mathematical Sciences Foundation, Delhi

Lecture 1 - Basic Definitions and Examples

For our basic example we consider the vector space $L(V)$ of linear operators on a vector space V (over a field \mathbb{F}). Besides the vector space operations of addition and scaling, this has another natural operation: composition of linear operators. This operation is not commutative: in general, $f \circ g \neq g \circ f$. We can try to capture the amount of non-commutativity by defining

$$
[f, g]=f \circ g-g \circ f
$$

Now we have a new operation, $[\cdot, \cdot]: L(V) \times L(V) \rightarrow L(V)$. First, we easily see it is bilinear:

$$
\left[\alpha f+\beta g, \alpha^{\prime} f^{\prime}+\beta^{\prime} g^{\prime}\right]=\alpha \alpha^{\prime}\left[f, f^{\prime}\right]+\alpha \beta^{\prime}\left[f, g^{\prime}\right]+\beta \alpha^{\prime}\left[g, f^{\prime}\right]+\beta \beta^{\prime}\left[g, g^{\prime}\right],
$$

where $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \mathbb{F}$. Next, it is not commutative. In fact, we have

$$
[f, g]=-[g, f] \quad \text { and } \quad[f, f]=0
$$

Finally, let us consider associativity:

$$
\begin{aligned}
{[f,[g, h]]-[[f, g], h] } & =f[g, h]-[g, h] f-[f, g] h+h[f, g] \\
& =f g h-f h g-g h f+h g f-f g h+g f h+h f g-h g f \\
& =g[f, h]-[f, h] g=[g,[f, h]] .
\end{aligned}
$$

So the bracket is not associative either. However, the last calculation can be rewritten in a form which is quite useful:

$$
[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0
$$

Note the cyclic pattern.
The properties listed above lead to the following abstract notion:

Definition 1 A Lie algebra \mathfrak{g} is a vector space (over a field \mathbb{F}) with a bilinear operation $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ called the bracket or commutator, and denoted $(X, Y) \mapsto$ $[X, Y]$, such that:

1. $[X, X]=0 \quad \forall X, Y \in \mathfrak{g}$.
2. $[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 \quad \forall X, Y, Z \in \mathfrak{g}$.

The first property of the bracket is called anti-commutativity while the second is the Jacobi identity.

Exercise 2 Show that in a Lie algebra, $[X, Y]=-[Y, X]$.
Lie algebras can be studied for their own sake, but our interest in them arises out of their applications to the study of certain groups. Roughly, to each such group we will assign a Lie algebra which will contain local information about this group. Its job will be to convert problems about group structure to problems in linear algebra.

Exercise 3 Let A be an associative algebra over \mathbb{F}. Define $[a, b]=a b-b a$ for $a, b \in A$. Show that this bracket makes A a Lie algebra.

Example 4 Consider $L(V)$ with the bracket $[f, g]=f \circ g-g \circ f$. We have seen that it becomes a Lie algebra, and we shall call this Lie algebra the general Lie algebra and denote it by $\mathfrak{g l}(V)$.

Definition 5 Let \mathfrak{g} be a Lie algebra. We have the following definitions.

1. The Lie algebra \mathfrak{g} is abelian if the bracket is trivial: $[X, Y] \equiv 0$.
2. A subset $\mathfrak{h} \subset \mathfrak{g}$ is a Lie subalgebra of \mathfrak{g} if it is a vector subspace and is closed under the bracket operation.
3. A subset $\mathfrak{h} \subset \mathfrak{g}$ is an ideal of \mathfrak{g} if it is a vector subspace and $H \in \mathfrak{h}, X \in \mathfrak{g}$ implies $[H, X] \in \mathfrak{h}$.
4. If \mathfrak{h} is another Lie algebra, then $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a Lie algebra homomorphism if it is linear and preserves the bracket:

$$
\varphi[X, Y]=[\varphi X, \varphi Y] \quad \forall X, Y \in \mathfrak{g} .
$$

5. A Lie algebra \mathfrak{h} is isomorphic to \mathfrak{g} if there is a bijective Lie algebra homomorphism $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$. Then φ is called an isomorphism. (Note that φ^{-1} is then an isomorphism from \mathfrak{h} to \mathfrak{g}.)
6. Let V be a vector space. A Lie algebra homomorphism $\mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is called a representation of \mathfrak{g} in V.

Exercise 6 Classify the one and two dimensional Lie algebras up to isomorphism.

Exercise 7 Let $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ be a Lie algebra homomorphism. Show that $\operatorname{im} \varphi$ is a Lie subalgebra of \mathfrak{h} and $\operatorname{ker} \varphi$ is an ideal in \mathfrak{g}.

Example 8 If the vector space V has a basis of size n, it becomes identified with \mathbb{F}^{n} and $L(V)$ with $M(n, \mathbb{F})$ - the $n \times n$ matrices with entries in \mathbb{F}. Under this identifcation, composition becomes matrix multiplication and so the bracket is now defined by

$$
[A, B]=A B-B A
$$

$M(n, \mathbb{F})$ with this bracket is denoted by $\mathfrak{g l}(n, \mathbb{F})$. Clearly $\mathfrak{g l}(V)$ and $\mathfrak{g l}(n, \mathbb{F})$ are isomorphic.

Example 9 With the Lie algebra $\mathfrak{g l}(n, \mathbb{F})$ in hand, we obtain others by considering various familiar subspaces:

1. $\mathfrak{s l}(n, \mathbb{F})=\{X \in \mathfrak{g l}(n, \mathbb{F}):$ Trace $(X)=0$.$\} . (Special Linear Algebra)$
2. $\operatorname{skew}(n, \mathbb{F})=\left\{X \in \mathfrak{g l}(n, \mathbb{F}): X+X^{t}=0.\right\}$.
3. $\mathfrak{t}(n, \mathbb{F})=\{X \in \mathfrak{g l}(n, \mathbb{F}): X$ is upper triangular $\}$.
4. $\mathfrak{n}(n, \mathbb{F})=\{X \in \mathfrak{g l}(n, \mathbb{F}): X$ is strictly upper triangular $\}$.
5. $\mathfrak{d}(n, \mathbb{F})=\{X \in \mathfrak{g l}(n, \mathbb{F}): X$ is diagonal $\}$.

Exercise 10 Which of the above Lie algebras depend on the choice of basis, and to what extent?

Since $\mathfrak{s l}(n, \mathbb{F})$ is independent of the choice of basis, we can denote it by $\mathfrak{s l}(V)$.

Definition 11 A Lie algebra is called linear if it is a Lie subalgebra of $\mathfrak{g l}(n, \mathbb{F})$.

Example 12 We shall describe a machine for generating many linear Lie algebras. Let $V=\mathbb{F}^{n}$ and $J \in M(n, \mathbb{F})$. Then define

$$
\mathfrak{g}_{J}:=\left\{X \in \mathfrak{g l}(n, \mathbb{F}): J X+X^{t} J=0\right\} .
$$

It is easily verified that \mathfrak{g}_{J} is a vector subspace and also closed under bracket, hence it is a Lie subalgebra of $\mathfrak{g l}(n, \mathbb{F})$. For example, $J=I$ gives $\mathfrak{g}_{I}=\mathfrak{o}(n, \mathbb{F})$.

Exercise 13 Show that if J and K are orthogonally similar, then \mathfrak{g}_{J} and \mathfrak{g}_{K} are isomorphic.

Example 14 Let us consider various choices of J. (Note: The explicit descriptions of the Lie algebras below involve the assumption that $\operatorname{char}(\mathbb{F}) \neq 2$.)

1. Let $n=2 p$ and consider

$$
J=\left(\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right),
$$

where I is the $p \times p$ identity matrix. Then

$$
\mathfrak{g}_{J}=\left\{\left(\begin{array}{rr}
X & Y \\
Z & -X^{t}
\end{array}\right): X, Y, Z \in M(p, \mathbb{F}), Y=Y^{t}, Z=Z^{t}\right\}
$$

is called the symplectic algebra and denoted by $\mathfrak{s p}(n, \mathbb{F})$.
2. Let $n=2 p$ and consider

$$
K=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

where I is the $p \times p$ identity matrix. Then

$$
\mathfrak{g}_{K}=\left\{\left(\begin{array}{cc}
X & Y \\
Z & -X^{t}
\end{array}\right): X, Y, Z \in M(p, \mathbb{F}), Y+Y^{t}=Z+Z^{t}=0\right\}
$$

is called the orthogonal algebra and denoted by $\mathfrak{o}(n, \mathbb{F})=\mathfrak{o}(2 p, \mathbb{F})$.
3. Let $n=2 p+1$ and consider

$$
L=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & I \\
0 & I & 0
\end{array}\right)
$$

where I is the $p \times p$ identity matrix. Then

$$
\mathfrak{g}_{L}=\left\{\left(\begin{array}{ccc}
0 & -b^{t} & -c^{t} \\
c & X & Y \\
b & Z & -X^{t}
\end{array}\right): \begin{array}{c}
b, c \in \mathbb{F}^{p}, X, Y, Z \in M(p, \mathbb{F}) \\
Y+Y^{t}=Z+Z^{t}=0
\end{array}\right\}
$$

is also called the orthogonal algebra and denoted $\mathfrak{o}(n, \mathbb{F})=\mathfrak{o}(2 p+1, \mathbb{F})$.

Exercise 15 Show that $\mathfrak{o}(n, \mathbb{F})$ is isomorphic to skew (n, \mathbb{F}), provided that \mathbb{F} is algebraically closed.

Exercise 16 Consider $\mathfrak{g}=\mathbb{R}^{3}$ with the vector cross-product

$$
[X, Y]:=X \times Y
$$

Verify \mathfrak{g} is a Lie algebra. Show it is isomorphic to $\mathfrak{o}(3, \mathbb{R})$.
Exercise 17 Let $E_{i j} \in M(n, \mathbb{F})$ be defined as having all entries equal 0, except that the (i, j) one equals 1. Show that

$$
\left[E_{i j}, E_{k l}\right]=\delta_{j k} E_{i l}-\delta_{l i} E_{k j} .
$$

Exercise 18 Show that $\operatorname{dim}(\mathfrak{s p}(n, \mathbb{F}))=\frac{1}{2} n(n+1), \operatorname{dim}(\mathfrak{o}(n, \mathbb{F}))=\frac{1}{2} n(n-1)$.
Exercise 19 Prove the isomorphisms $\mathfrak{s l}(2, \mathbb{F}) \cong \mathfrak{o}(3, \mathbb{F}) \cong \mathfrak{s p}(2, \mathbb{F})$, assuming $\operatorname{char}(\mathbb{F}) \neq 2$.

