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Lecture 1 - Basic Definitions and Examples

For our basic example we consider the vector space L(V ) of linear operators
on a vector space V (over a field F). Besides the vector space operations
of addition and scaling, this has another natural operation: composition of
linear operators. This operation is not commutative: in general, f ◦g 6= g◦f .
We can try to capture the amount of non-commutativity by defining

[f, g] = f ◦ g − g ◦ f.

Now we have a new operation, [· , ·] : L(V )× L(V ) → L(V ). First, we easily
see it is bilinear:

[αf + βg, α′f ′ + β′g′] = αα′[f, f ′] + αβ′[f, g′] + βα′[g, f ′] + ββ′[g, g′],

where α, β, α′, β′ ∈ F. Next, it is not commutative. In fact, we have

[f, g] = −[g, f ] and [f, f ] = 0.

Finally, let us consider associativity:

[f, [g, h]]− [[f, g], h] = f [g, h]− [g, h]f − [f, g]h + h[f, g]

= fgh− fhg − ghf + hgf − fgh + gfh + hfg − hgf

= g[f, h]− [f, h]g = [g, [f, h]].

So the bracket is not associative either. However, the last calculation can be
rewritten in a form which is quite useful:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0.

Note the cyclic pattern.

The properties listed above lead to the following abstract notion:
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Definition 1 A Lie algebra g is a vector space (over a field F) with a bilinear
operation g×g → g called the bracket or commutator, and denoted (X, Y ) 7→
[X, Y ], such that:

1. [X, X] = 0 ∀X,Y ∈ g.

2. [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 ∀X, Y, Z ∈ g.

The first property of the bracket is called anti-commutativity while the second
is the Jacobi identity .

Exercise 2 Show that in a Lie algebra, [X, Y ] = −[Y, X].

Lie algebras can be studied for their own sake, but our interest in them arises
out of their applications to the study of certain groups. Roughly, to each such
group we will assign a Lie algebra which will contain local information about
this group. Its job will be to convert problems about group structure to
problems in linear algebra.

Exercise 3 Let A be an associative algebra over F. Define [a, b] = ab − ba
for a, b ∈ A. Show that this bracket makes A a Lie algebra.

Example 4 Consider L(V ) with the bracket [f, g] = f ◦ g − g ◦ f . We have
seen that it becomes a Lie algebra, and we shall call this Lie algebra the
general Lie algebra and denote it by gl(V ). �

Definition 5 Let g be a Lie algebra. We have the following definitions.

1. The Lie algebra g is abelian if the bracket is trivial: [X,Y ] ≡ 0.

2. A subset h ⊂ g is a Lie subalgebra of g if it is a vector subspace and is
closed under the bracket operation.

3. A subset h ⊂ g is an ideal of g if it is a vector subspace and H ∈ h, X ∈ g

implies [H, X] ∈ h.

4. If h is another Lie algebra, then ϕ : g → h is a Lie algebra homomor-
phism if it is linear and preserves the bracket:

ϕ[X, Y ] = [ϕX, ϕY ] ∀X,Y ∈ g.
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5. A Lie algebra h is isomorphic to g if there is a bijective Lie algebra
homomorphism ϕ : g → h. Then ϕ is called an isomorphism. (Note
that ϕ−1 is then an isomorphism from h to g.)

6. Let V be a vector space. A Lie algebra homomorphism g → gl(V ) is
called a representation of g in V .

Exercise 6 Classify the one and two dimensional Lie algebras up to isomor-
phism.

Exercise 7 Let ϕ : g → h be a Lie algebra homomorphism. Show that im ϕ
is a Lie subalgebra of h and ker ϕ is an ideal in g.

Example 8 If the vector space V has a basis of size n, it becomes identified
with Fn and L(V ) with M(n, F) - the n × n matrices with entries in F.
Under this identifcation, composition becomes matrix multiplication and so
the bracket is now defined by

[A, B] = AB −BA.

M(n, F) with this bracket is denoted by gl(n, F). Clearly gl(V ) and gl(n, F)
are isomorphic. �

Example 9 With the Lie algebra gl(n, F) in hand, we obtain others by con-
sidering various familiar subspaces:

1. sl(n, F) = {X ∈ gl(n, F) : Trace(X) = 0.}. (Special Linear Algebra)

2. skew(n, F) = {X ∈ gl(n, F) : X + X t = 0.}.

3. t(n, F) = {X ∈ gl(n, F) : X is upper triangular}.

4. n(n, F) = {X ∈ gl(n, F) : X is strictly upper triangular}.

5. d(n, F) = {X ∈ gl(n, F) : X is diagonal}.

�

Exercise 10 Which of the above Lie algebras depend on the choice of basis,
and to what extent?

Since sl(n, F) is independent of the choice of basis, we can denote it by sl(V ).
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Definition 11 A Lie algebra is called linear if it is a Lie subalgebra of
gl(n, F).

Example 12 We shall describe a machine for generating many linear Lie
algebras. Let V = Fn and J ∈ M(n, F). Then define

gJ := {X ∈ gl(n, F) : JX + X tJ = 0}.

It is easily verified that gJ is a vector subspace and also closed under bracket,
hence it is a Lie subalgebra of gl(n, F). For example, J = I gives gI = o(n, F).

�

Exercise 13 Show that if J and K are orthogonally similar, then gJ and
gK are isomorphic.

Example 14 Let us consider various choices of J . (Note: The explicit de-
scriptions of the Lie algebras below involve the assumption that char(F) 6= 2.)

1. Let n = 2p and consider

J =

(
0 I

−I 0

)
,

where I is the p× p identity matrix. Then

gJ =

{(
X Y
Z −X t

)
: X, Y, Z ∈ M(p, F), Y = Y t, Z = Zt

}
is called the symplectic algebra and denoted by sp(n, F).

2. Let n = 2p and consider

K =

(
0 I
I 0

)
,

where I is the p× p identity matrix. Then

gK =

{(
X Y
Z −X t

)
: X, Y, Z ∈ M(p, F), Y + Y t = Z + Zt = 0

}
is called the orthogonal algebra and denoted by o(n, F) = o(2p, F).
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3. Let n = 2p + 1 and consider

L =

 1 0 0
0 0 I
0 I 0

 ,

where I is the p× p identity matrix. Then

gL =


 0 −bt −ct

c X Y
b Z −X t

 :
b, c ∈ Fp, X, Y, Z ∈ M(p, F),

Y + Y t = Z + Zt = 0


is also called the orthogonal algebra and denoted o(n, F) = o(2p+1, F).

�

Exercise 15 Show that o(n, F) is isomorphic to skew(n, F), provided that F
is algebraically closed.

Exercise 16 Consider g = R3 with the vector cross-product

[X, Y ] := X × Y.

Verify g is a Lie algebra. Show it is isomorphic to o(3, R).

Exercise 17 Let Eij ∈ M(n, F) be defined as having all entries equal 0,
except that the (i, j) one equals 1. Show that

[Eij, Ekl] = δjkEil − δliEkj.

Exercise 18 Show that dim(sp(n, F)) = 1
2
n(n+1), dim(o(n, F)) = 1

2
n(n−1).

Exercise 19 Prove the isomorphisms sl(2, F) ∼= o(3, F) ∼= sp(2, F), assum-
ing char(F) 6= 2.


