
Ž .Computer Networks 31 1999 861–870

Authenticating public terminals

N. Asokan 1, Herve Debar), Michael Steiner 2, Michael Waidner 3´
IBM Research DiÕision, Zurich Research Laboratory, Saumerstrasse 4, CH 8803 Ruschlikon, Switzerland¨ ¨

Abstract

Automatic teller machines, Internet kiosks etc. are examples of public untrusted terminals which are used to access
computer systems. One of the security concerns in such systems is the so called fake terminal attack: the attacker sets up a
fake terminal and fools unsuspecting users into revealing sensitive information, such as PINs or private e-mail, in their
attempt to use these terminals.

In this paper, we examine this problem in different scenarios and propose appropriate solutions. Our basic approach is to
find ways for a user to authenticate a public terminal before using it to process sensitive information. q 1999 Elsevier
Science B.V. All rights reserved.

Keywords: Authentication; Mobility; Fake terminal attack; Internet kiosks

1. Introduction

Consider withdrawing money from an automatic
Ž .teller machine ATM using a bank card. In all

existing systems, users have to enter a personal
Ž .identification number PIN or pass-phrase in order

to reliably authenticate themselves to the bank. How-
ever, this authentication is one-way only; there is no
way for the user to authenticate the bank. There have
been incidents where thieves set up fake ATMs and
successfully stole PINs and magnetic stripe informa-

w xtion from unsuspecting users 3 .

) Corresponding author. E-mail: deb@zurich.ibm.com.
1 With Nokia Research Center, Helsinki from January 1999.

Email: asokan@acm.org.
2 E-mail: sti@zurich.ibm.com.
3 E-mail: wmi@zurich.ibm.com.

The same fake terminal problem occurs in many
other settings. We consider the following examples.
Ø ATMs and point-of-sale terminals: In both sce-

narios, every user is registered with a specific
Ž .server e.g., a credit-card issuer . All transactions

of the user are eventually authorized by the server.
Servers can typically identify and authenticate
legal terminals. A typical attack scenario is when
the attacker would set up an illegal terminal
which waits for the user to type in the PIN code,
read any necessary information from the card, and
then refuse service, for example by displaying a
‘‘terminal out of order’’ message. Unsuspecting
users will simply move on to a different terminal.
The attacker can later use the stolen information
at a legal terminal.

Ø Public Internet kiosks: Short-term access to the
Internet from public terminals is an increasingly
common feature in malls, airports, the so-called

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S1389-1286 98 00020-6

()N. Asokan et al.rComputer Networks 31 1999 861–870862

‘‘Internet cafes,’’ and other public places. There
is little risk for users who merely want to ‘‘surf’’
the web from these terminals. But people can, and
do, perform more sensitive transactions such as
accessing their personal or business computer sys-
tems, making payments, etc., from public Internet
kiosks. This scenario differs from the previous
ones in some respects:
Ø the user may access several servers from the

same terminal, and
Ø the types of private information which needs

to be protected may not be fixed, or even
known a priori.
A similar scenario arises in the case of Õirtual
mall kiosks. Virtual mall kiosks allow prospec-
tive customers to browse through and purchase
the wares advertised by shop-keepers in the
virtual mall. Functionally, this scenario is sim-
ilar to public Internet kiosks.

In specific settings, such as ATMs that use bio-
metrics instead of password to authenticate, the fake
terminal problem can be avoided. However, the gen-
eral problem remains. A solution to this general
problem must take into account different scenarios
where the resources available to a user may be
different: a user may have a trusted personal device
with its own display or may have only a standard
smartcard with no display attached or, in the simplest
and most common case, may not have any personal
trusted device at all. In this paper, we describe
methods to solve this problem for each of these
scenarios. Our solutions are achieved by combining
known techniques in novel ways.

The paper is organized as follows. In Section 2,
we describe our model and state our goals. In Sec-
tion 3 we describe our techniques in detail. In Sec-
tion 4 we survey previous work on related issues.

Finally, in Section 5, we conclude with a summary
and directions for future work.

2. Model

We target the following general model. Users
access server systems from public untrusted termi-
nals. Users have accounts on a central server system
which they trust to correctly authenticate public ter-
minals. These terminals are tamper-resistant but an
attacker can easily replace a legal terminal with a
fake terminal or install a new fake terminal in a
plausible location. The central system knows about
legal terminals and can authenticate them. Informa-
tion necessary for users to authenticate the central

Žserver and, where necessary, information needed for
.the central server to authenticate users has already

been set up during user registration or other initiali-
Ž .sation steps e.g., agreeing on a shared key . Once an

entity authenticates another, a confidential, authenti-
cated channel is established as a result. In other
words, an attacker cannot hijack a channel resulting
from the authentication procedure. We use the sym-
bols U, T, and S to identify a user, a terminal and a
central server respectively. When the user has a
trusted personal device, it is denoted by D. The
notation is illustrated in Fig. 1.

The authentication steps mentioned above are im-
plemented using authentication protocols. There are
various well-known authentication protocols for per-
forming both one-way and two-way authentication

Ž . w xsuch as Secure Sockets Layer SSL 7 , Kryp-
w x w xtoKnight 5 , and Kerberos 10 . The solutions we

propose below assume the use of a suitable authenti-
cation protocol.

The central server may be replicated thereby
avoiding it from becoming a bottleneck. All copies

Fig. 1. Model.

()N. Asokan et al.rComputer Networks 31 1999 861–870 863

of the central server need to be aware of the up-to-
date set of legal terminals and the information neces-
sary to authenticate them. There may also be seÕeral
central servers, each responsible for a separate do-
main. In this case, we assume the existence of the
infrastructure necessary for central servers to authen-

Ž .ticate each other e.g., a public-key infrastructure . In
either case, the number of terminals is likely to be
several orders of magnitude higher than the number
of servers.

3. Terminal authentication protocols

3.1. Case 1: Personal deÕice with built-in output
capability

First we consider the scenario where a user has a
full-fledged trusted personal device with its own
output channel, such as a display screen. The termi-
nal cannot access the device output channel. Conse-
quently, the user can be sure that any information is
communicated to him via this channel does in fact
originate from his trusted personal device. In other
words, there is a trusted path from the trusted
personal device to the user. When a user U walks up
to an untrusted terminal, he attaches his device D to

Žthe terminal T by some means e.g., infrared link,
.physical connection and the following message flows

take place.
1. U ™ D: U requests D to authenticate the termi-

Žnal it is attached to e.g., by clicking on a button
.on D’s display .

2. D ™ T: D requests T to authenticate itself to S.
3. T ™ S: T runs a one-way authentication proto-

col to S. If this succeeds, S knows that it has an
authenticated channel S–T to T.

4. S ™ D: S runs a one-way authentication proto-
col to D via S–T. If this succeeds, D knows that
it has an authenticated channel S–D to S, which
is tunneled through S–T.

5. S ™ D: S sends a message to the effect ‘‘T is
authentic’’ via S–D. In addition, S sends addi-

Žtional information such as a session key, or
.one-time certificates that can be used by D and T

to construct a secure channel D–T between them-
selves.

6. D ™ U: D displays a message to the effect ‘‘T is
authentic according to S’’ to U.
As mentioned before there are various well-known

authentication protocols that may be used for the
Žone-way authentication flows above as well as in

.the scenarios below . In step 3, T could run a
two-way authentication protocol. This would foil an
attacker masquerading as S. In scenarios where U
has to authenticate to S, it can be done in a separate
phase following the above exchange or step 4 can be
a mutual authentication exchange. In this case, D
may need to ask U to provide authentication infor-

Ž .mation e.g., a pass phrase or PIN in step 4. Notice
also that so far U is not identified to T or S. This
helps to keep the itinerary of U confidential from T.

This is essentially an application of the usual
w xthree-party authentication protocols 5,10,15 . Abadi

et al. describe an authentication and delegation pro-
w xtocol using ‘‘ultimate smartcards’’ 2 . This protocol

is similar to the one outlined above.
Notice that at the end of the protocol, D has

succeeded in authenticating T. But U has no guaran-
tee that the terminal in front of him is the same

Žterminal that has been authenticated by D for exam-
ple, an attacker may have placed a fake terminal

.which is connected to a legal terminal elsewhere .
There are various ways of supplementing our proto-
col to thwart this fake-terminal-in-the-middle attack.

Ž .Abadi et al. mention that the device D gives
‘‘enough information’’ to the user to check whether
the keyboard and display in front of him actually
belongs to the terminal that was authenticated. We
outline two concrete techniques to do this.

First, at the end of the above protocol, D could
generate some random bits, communicate them to T
via D–T, and then both D and T could display the
random bits to the user on their respective displays.
The attacker cannot figure out the random bits from
D–T because it is a confidential channel. However
he might be able to read it off T’s display and
present it on the display of his fake terminal.

An alternative approach is for the user to verify
that T is physically close to D. If the user or his

Ždevice is capable of verifying his location e.g., if D
is equipped with a Global Positioning System re-

.ceiver , then S can indicate T’s location in the
message in Step 5. Brands and Chaum described

w xdistance-bounding protocols 4 which can be used

()N. Asokan et al.rComputer Networks 31 1999 861–870864

by a verifier to place an upper bound on its distance
from a prover. D and T can employ such a protocol
as part of the above protocol.

3.2. Case 2: Personal smartcard without output ca-
pability

Now we consider the scenario where a user is
equipped with a device, such as a smartcard, which
has no output capability. We could try to use the
same solution for this scenario as well. However, the
problem arises in step 6: D does not have its own
display; consequently it does not have a trusted path
to U. There may be devices with other types of

Žtrusted paths e.g., mobile phones could use a speech
.synthesizer to communicate the message to U , in

which case the previous solution could still be used.
Standard smartcards, however, have no such output
mechanism. Hence we need to modify the technique.

Customizing security-critical windows is a well-
known security measure against Trojan horse attacks.

w xThere have been various proposals, see Refs. 1 and
w x18 . Some variants have also been implemented, for
example in the SEMPER Trusted INteractive Graph-

Ž .ical User INterface see url: www.semper.org , or
the hieroglyphs in the Lotus Notes login dialog-box.
While it is an effective countermeasure against sim-
ple-minded Trojan horses, it is ineffective in a sce-
nario where the Trojan horse has read and write
access to the display. As soon as a personalized
window is displayed to the user, the Trojan horse
program can read the personalization information,
construct a fake window with the same information
on top of the legitimate personalized window 4.

However, currently we are considering a limited
threat model where ‘‘legal’’ terminals are tamper-re-
sistant while ‘‘illegal’’ terminals will not be able to
authenticate themselves to the central server. We
combine the personalization idea with authentication
protocols to achieve an effective solution for this
threat model. In our protocol, the personalization
information is not revealed to the terminal before the
it has been authenticated by the central server. This

4 The Lotus Notes hieroglyphs cannot be spoofed this way
because the hieroglyphs depend on the password. But the security
of the scheme relies on the algorithm for mapping password
characters to hieroglyphs remaining secret.

way, we can protect even against sophisticated fake
terminal attackers as long as they are subject to the
constraints of our threat model. In our current work
Ž .see Section 5 we consider the stronger threat model
in which an attacker may subvert legal terminals by,
for example, installing Trojan horses.

Ž .We assume that the user has a trusted home base
Ž .such as a home PC where he can prepare his
smartcard before beginning his travel. For the prepa-
ration, the user selects an authentication Õector. An
authentication vector consists of one or more types
of authenticators. An authenticator of a particular
type is such that
Ø it can take one of several values,
Ø each different value can be perceived by an un-

aided human and distinguished from other values.
Examples of types of authenticators are:

ŽØ background colour of the order of 256 possible
.values ,

ŽØ foreground colour of the order of 256 possible
.values ,

ŽØ background pattern of the order of 16 different
.patterns ,

ŽØ sound sequence of the order of 256 different
.tunes .

Another example is to include text phrases that
can be easily recognized by the user. A variety of
means could be employed in order to show the

Žwords to the user: e.g., visual by printing them on a
. Ž .screen , aural by using a speech synthesizer or
Ž .tactile by ‘‘displaying’’ the words in braille . Words

and phrases constitute the most powerful type of
Ž .authenticators since a they can be drawn from a

Ž .relatively large space, and b they can be communi-
cated to the user in a variety of ways.

To prepare for his travel, the user picks one
combination: for example, a tuple of the form

phrasesabracadabra, bg-colorsblue,

fg-colorswhite, bg-patternsgrid,

tunesjingle-bells

on his trusted home base and stores it on the
smartcard. When the user walks up to an untrusted
terminal and inserts his smartcard into the reader, the
following message flows take place:
1. U ™ T: U requests T to authenticate itself to S

Že.g., by typing in the identifier of S and clicking
.on a button on T’s display .

()N. Asokan et al.rComputer Networks 31 1999 861–870 865

2. T ™ S: T runs a one-way authentication proto-
col to S. If this succeeds, S knows that it has an
authenticated channel S–T to T.

3. S ™ D: S runs a one-way authentication proto-
col to D via S–T. If this succeeds, D knows that
it has an authenticated channel S–D to S which is
tunneled through S–T.

4. S ™ D: S sends a message to the effect ‘‘T is
authentic’’ via S–D. In addition, S sends addi-

Žtional information such as a session key, or
.one-time certificates that can be used by D and T

to construct a secure channel D–T between them-
selves.

5. D ™ T: D reveals the pre-selected authentication
vector to T.

6. T ™ U: T shows the received authentication
Žvector to U e.g, by displaying the selected colours

and background pattern, and playing the selected
.tune .

In other words, D reveals the authenticator to T
only after S has certified that T is a legal terminal.
The probability of an illegal terminal correctly guess-

Žing the authenticator of a user is very small e.g., of
the order of one in 256=256=16=256 with the

.parameters suggested above . If a rogue terminal
incorrectly guesses the authenticators of several users
in close succession, it will likely be reported to the
authorities and thus detected as an illegal terminal.

Notice that so far U is not identified to T or S.
This helps to keep the itinerary of U confidential
from T. As before, a distance-bounding protocol can
be used to avoid the possibility of the fake-terminal-
in-the-middle attack.

3.2.1. Variations
The following variations are possible:

Ø Smartcards may not have sufficient memory to
store an authenticator in its entirety. However, if
the types of authenticators are pre-defined, the
smartcard needs to store only an index: the termi-
nal can use the index to look up the authenticator
in a table of all possible values for the different
components.

Ø Some smartcards may not be writable by the user.
In this case, the following modifications are made:
Ø In the preparation phase, the user selects the

authentication vector and communicates it to

the server via a confidential, authenticated
channel from his home base.

Ø In the protocol above, steps 5 and 6 are re-
placed as follows:
5-V D ™ S: D authenticates to S via S–D.
6-V S ™ T: If the authentication succeeds in

step 5, S sends the pre-selected authenti-
cation vector to T via S–T.

7-V T ™ U: T shows the received authenti-
cation vector to U.

Authentication is necessary in step 5 because S
must not reveal the authentication vector to an
attacker who is using a legal terminal but pre-
tends to be a user U.

Ø The same authentication vector could be used
several times. The user could also select a set of
authentication vectors during the preparation
phase. Another variation is where the user chal-
lenges T to show a different component of the
authentication vector each time. This will also
help foil an attacker who ‘‘peeps over the shoul-
der’’ of a legitimate user and learns his authenti-
cation vector.

Ø As before T could run a two-way authentication
Ž .protocol with S Step 2 . This would foil an

attacker masquerading as S.
There can be scenarios that are between Case 1

and Case 2. For example, there are hand held smart-
card readers with the single line display. This is not
as powerful as a device with a dedicated display
available at all times during the authentication proto-
col. However, it is still powerful enough to afford
the following simple solution. Just before starting a
session at a public terminal T, U inserts his smart-
card D into his personal reader. D chooses a random
string and displays it in the reader’s display. This
string will be used as the authentication vector in the
protocol described above for Case 2. The random
string is similar to the use of smart-card device

Ž .identification numbers DIN described by Pfitzmann
w xet al. 17 , except that the DIN is permanently associ-

ated with the device unlike the random string above
which is chosen afresh for each session.

3.3. Case 3: No personal deÕice

Smartcards and personal trusted devices may be-
come commonplace in the near future. But to date,
their use is relatively limited. Most users are armed

()N. Asokan et al.rComputer Networks 31 1999 861–870866

Žonly with simple pass-phrases e.g., in the case of
. ŽInternet access or memory cards e.g., in the case of

creditrdebit cards which have memory capacity in
the form of magnetic stripes or memory chips but do

.not have any processing capability of their own . In
this section, we investigate this scenario in which the
user has no personal computing device at all.

For this we adapt a solution for one way authenti-
w xcation called SrKey 8 . In the SrKey system, the

server issues a number of challengerresponse pairs
to the user during an initialisation stage. The user
prints out the list of these pairs. The responses are
essentially one-time passwords. In order to access
the system, the user identifies himself and the server
sends a challenge. The user then looks up the appro-
priate response from his printed list, sends it back to
the server, and strikes off that pair from his list. We
use an SrKey like system in both directions.

Before beginning his travel, S sends a number of
challengerresponse pairs to the user via a confiden-
tial, authenticated channel to his home base and the
user selects a different authentication vector for each
challenge and sends them back to S. The user also
prints out the entire list of - challenge,
response,authenticationÕector) triples.

When the user walks up to an untrusted terminal,
the following message flows take place:
1. U ™ T: U requests T to authenticate itself to S

Že.g., by typing in the identifiers of U and T, and
.clicking a button

2. T ™ S: T runs a one-way authentication proto-
col to S. If this succeeds, S knows that it has an
authenticated channel S–T to T.

3. S ™ T: S sends a challenge via S–T to T.
4. T ™ U: T displays the challenge to U.
5. U ™ T: U looks up the response corresponding

to the challenge on his printout and types it in,
provided it is not already struck off.

6. T ™ S: T sends the response via S–T to S.
7. S ™ T: If the response is valid, S looks up the

authentication vector corresponding to the chal-
lenge, and sends it via S–T to T.

8. T ™ U: T shows the received authentication
vector to U.
U can verify if this is indeed the authentication

vector corresponding to the challenge, according to
his printed sheet. If so, he can be confident that T is
a legal terminal. U then strikes off the entry corre-

sponding to the challenge from his printed list. If the
authentication fails, U as well as S should still cross
out the entry corresponding to that challenge and
never use it again. As before T could run a two-way

Ž .authentication protocol with S step 2 . This would
foil an attacker masquerading as S.

Since there is no user device, techniques de-
scribed earlier to avoid fake-terminal-in-the-middle
attacks are not applicable in this scenario. We do not
know of an effective way to reliably foil this attack
in this scenario. Distance-bounding protocols are not
suitable because any distance-bounding protocol must
be executed between the terminal and the human
user, which is impractical. The goal is to prevent the
attacker from capturing the output on the legal termi-
nal display and showing it on his fake terminal
display. He may do this by capturing the electro-
magnetic radiation from the legal terminal and dis-
play it on his fake terminal. ‘‘Soft Tempest’’ tech-

w xniques described by Kuhn and Anderson 9 may be
used to foil this attack. The attacker may also simply
place a video camera in front of the legal terminal
display. With standard cameras the user will notice
the unavoidable refresh rate mismatch in the form of
‘‘rolling lines.’’ But a more sophisticated attacker
operating with cameras of high refresh rate and high
resolution can smooth the effect through signal pro-
cessing. Further work is required to identify and
develop effective techniques.

3.3.1. Variations
The user may want to avoid carrying around a

printed list. It can also be a security weakness: if the
attacker manages to get hold of the printed list, he
can fool the user andror the central server. In this
case, he can make do with a single authentication
vector. Steps 3–6 above are dropped. In step 7, S
sends the authentication vector to T without any
further checks. Obviously this simplification is not
secure against targeted attacks where the attacker
obtains the authentication vectors of specific users
Ž .e.g., by interacting with a legal terminal , sets up a
fake terminal, and waits for these users to come in.

ŽBut it is useful against untargeted attacks i.e., set-
ting up a fake terminal without specific users in

.mind . If users change their authentication vectors
regularly, large scale targeted attacks are not feasi-
ble.

()N. Asokan et al.rComputer Networks 31 1999 861–870 867

Table 1
Notation summary

Notation Explanation

n Size of the entire authenticator space
m Number of transactions before a fake terminal is detected and removed
p Probability that the fake terminal cannot correctly guess the authentication factor of even a single transaction out of m

A second variation is, as in the previous scenario,
we can allow the user to challenge T to show a
different component of the authentication vector each
time: i.e, the user specifies the type of the authentica-
tion vector as the challenge since it may help the
user remember the challenges. For example, it is
easier for a user to remember a colour, a tune, and a
word rather than to remember three colours.

Note that a user need not necessarily remember
his entire authentication vector, but need only be
able to recognize incorrect authentication vectors.
One possibility to construct authentication vectors
with high entropy is to arrange them by themes. For
example, the user could issue a challenge on the
theme ‘‘car,’’ and ask for specific attributes of his
car. A car has several attributes which are easy to
recognize.

3.4. Analysis

Suppose an attacker installs a fake terminal which
is used for m transactions before it is detected and
removed. Let p be the probability that the terminal
was not able to correctly guess the authentication
vector in any of the m transactions. Let n be the

Žtotal size of the authenticator space the notation is
.summarized in Table 1 . If we assume that the

authentication vectors for the m transactions were
independent,

m1
ps 1yž /n

.
We can set p and m as system parameters and

ask how big n should be. If the expected rate of

Ž .Fig. 2. Relationship between entropy of authenticators and security Table 1 explains notation used .

()N. Asokan et al.rComputer Networks 31 1999 861–870868

usage of a typical terminal is known, m is a measure
of the length of time before a fake terminal is
detected and disabled. We can view p as the desired
security guarantee, presumably determined by the
risk we are willing to take. Fig. 2 shows the relation-
ship between these parameters for the range ps
0.99 . . . 0.999 and ms100 . . . 10000. For this range,

Žthe required entropy in n ranges from 13.3 bits for
. Žms100,0.99 to 23.25 bits for ms10000, ps

.0.999 . An entropy of 24 bits can be obtained by
using an authentication vector with three compo-
nents, each of which has 256 different possibilities.

Notice that this is a pessimistic analysis: we
assumed that users in none of the m transactions
bothered to inform the authorities about the fake
terminal even though they would have been able to
clearly detect the fact. 5

4. Related work

w xTechniques in visual cryptography 14,16 are
used to address the problem of a communication
between a human user and a trusted digital entity
Ž .such as a smartcard or a central server via an
untrusted terminal under the control of an attacker.
The techniques require the user to carry a secret key
shared between the user and the digital entity in the
form of a transparency. When the digital entity wants
to send a message to the user, it ‘‘encrypts’’ the
message using the shared key and gives the resulting
random-looking image to the terminal to display to
the user. The user can see the original message by
placing his transparency over the displayed image.
These techniques solve a more general problem than
ours: they allow the digital entity to send arbitrary
messages to the user, whereas we are interested in
sending only a single bit of information. The general-
ity comes at the cost of ease of use.

w x w xHaller et al. 8 and Matsumoto et al. 11,12 .
addressed the problem of authenticating human users

5 This is in contrast to today’s ATMs where the user cannot tell
the difference between a fake terminal and a legal terminal that is
out-of-order.

at untrusted terminals to a digital system. In this
paper, we considered the opposite problem.

Our solution in the first scenario is essentially an
application of well-known solutions for three-party

w xauthentication 5,10,15 . Authentication protocols for
w xmobile users 13 are another example of a three-party

w xauthentication protocols. In Ref. 2 Abadi et al.
considered the problem of delegating a user’s privi-
leges to a public terminal. They too described differ-
ent protocols for different scenarios, starting from a
user equipped with an ‘‘ultimate smart-card’’ that
has its own input and output devices. Their solution
for this case is similar to our solution for the first
scenario. However, in the remaining scenarios where
the user is equipped with a less capable device, their
approach differs from ours. In their solutions, the
user does not find out if a terminal is in fact a legal
terminal. Instead, the user relies on a remote server
to verify the terminal before approving the delega-
tion of rights. This approach is sufficient where the
issue is delegation of a set of pre-defined user rights
to a terminal: a remote server can verify the delega-
tion of these pre-defined rights. In contrast, our
protocols focus on allowing the user to learn whether
a terminal is a legal terminal. The server limits itself
to authenticating the terminal and communicating
the result to the user. It does not concern itself with
how the result is going to be used; the user himself
makes that decision. Consequently, we do not have
to pre-define the contexts where the protocols are
going to be employed in.

Customization of displayed security-critical data
is a well-known technique. In our solutions, we
combine customization with authentication to com-
municate to the human user whether a terminal is a

w xlegal terminal. Pfitzmann et al. 17 outline a similar
approach. In their scenario, the user has two devices:

Ž .a small security module similar to D in our case
which does not have its own display, but which the
user always carries with himself, and a larger, less

Ž .trusted, device similar to T in our case with its own
display. Before the first ever use of D, the user
personalizes D by assigning it a permanent device

Ž .identification number DIN . An attacker may suc-
ceed in replacing T with a fake one which can steal
the user’s PIN. To protect against this, the user
inserts D into T. T and D mutually authenticate each
other. If mutual authentication succeeds, D reveals

()N. Asokan et al.rComputer Networks 31 1999 861–870 869

the DIN to T which displays it to the user. The user
enters the PIN only if he sees the correct DIN
displayed to him.

Our solution can be viewed as a generalization of
this approach for the following reasons. First, the
authentication vector can be changed as often as the
user wants. Second, we allow many different types
of authenticators. A user’s authentication vector may
contain only a subset of these. A legal terminal could
substitute random choices for the other types of

Žauthenticators e.g., if a user’s authentication factor
does not include background color, a legal terminal

.can choose a random background colour . Also, as
mentioned previously, a user may challenge T to
show only a subset of the components of his authen-
tication vector. Each of these generalizations help
make our technique resistant against an attacker who
‘‘peeps over the shoulders’’ of users at legal termi-
nals. Third, we allow the possibility of a central
server being used to authenticate terminals. This is
useful in the case where a central authority can
remotely detect compromised legal terminals but
cannot physically prevent unsuspecting users from
continuing to use the terminal.

5. Conclusions

We addressed the problem of how mobile users
can authenticate public terminals before using them
for confidential transactions. We described different
solutions for different scenarios based on the level of
computational resources available to the user. We
assumed that legal terminals are tamper-resistant. A
useful extension is to address the case where an
attacker can succeed in subverting legal terminals. In

w xour current work 6 , we are developing intrusion
detection techniques that can be used with the tech-
niques described in this paper.

We mention various types of authenticators which
may be suitable for our purposes. It will be quite
useful to carry out experiments with real users to
identify which types are suitable, and how large a
space can they be drawn from.

Acknowledgements

We thank Mehdi Nassehi, Luke O’Connor, Harry
Rudin and Peter Klett for reading previous versions

of this paper and giving us valuable feedback. We
thank Luke for interesting discussions on related
topics.

References

w x1 N. Asokan et al., Deliverable D02: Preliminary report on
basic services, architecture and design, Technical Report,
SEMPER Consortium, 1996, SEMPER Project deliverable

Žsubmitted to the European Commission available from the
.authors ; see url: http:rrwww.semper.org for related infor-

mation.
w x2 M. Abadi, M. Burrows, C. Kaufman, B. Lampson, Authenti-

cation and delegation with smart-cards, Science of Computer
Ž . Ž .Programming 21 2 October 1993 91–113.

w x Ž .3 oss Anderson, Why cryptosystems fail, in: V. Ashby Ed. ,
1st ACM Conf. on Computer and Communications Security,
Fairfax, Virginia, November 1993, pp. 215–227.

w x4 S. Brands, D. Chaum, Distance-bounding protocols, in: I.B.
Ž .Damgard Ed. , Advances in Cryptology – EUROCRYPT’93,

Lecture Notes in Computer Science, vol.765, Springer, Berlin,
May 1993, pp. 344–359.

w x5 R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R.
Molva, M. Yung, Systematic design of a family of attack-re-
sistant authentication protocols, IEEE Journal on Selected

Ž . Ž .Areas in Communications 11 5 June 1993 679–693.
w x6 H. Debar, N. Asokan, M. Steiner, Remote code execution on

semi-trusted environment, 1998, in preparation.
w x7 A.O. Freier, P. Kariton, P.C. Kocher, The SSL Protocol:

Version 3.0, Technical Report, Internet Draft, 1996, Will be
eventually replaced by TLS.

w x8 N. Haller, The SrKey one-time password system, in: D.
Ž . Ž . Ž .Nesset General Chair , R. Shirey Program Chair Eds. ,

Symposium on Network and Distributed Systems Security,
San Diego, CA, February 1994, Internet Society.

w x9 M.G. Kuhn, R.J. Anderson, Soft tempest: hidden data trans-
mission using electromagnetic emanations, Workshop on In-
formation Hiding, Portland, OR, April 1998.

w x10 J.T. Kohl, B.C. Neuman, The Kerberos Network Authentica-
Ž .tion Service V5 , Internet Request for Comment RFC 1510,

1993.
w x11 T. Matsumoto, Human-computer cryptography: an attempt,

Ž .in: C. Neuman Ed. , 3rd ACM Conference on Computer and
Communications Security, New Delhi, India, March 1996,
pp. 68–75.

w x12 T. Matsumoto, H. Imai, Human identification through inse-
cure channel, in: Advances in Cryptology –
EUROCRYPT’91, Lecture Notes in Computer Science, vol.
547, Springer, Berlin, April 1991, pp. 409–421.

w x13 R. Molva, D. Samfat, G. Tsudik, Authentication of mobile
Ž . Ž .users, IEEE Network 8 2 MarchrApril 1994 26–35.

w x14 M. Naor, B. Pinkas, Visual authentication and identification,
Ž .in: B.S. Kaliski Jr. Ed. , Advances in Cryptology –

CRYPTO’97, Lecture Notes in Computer Science, vol. 1294,
Springer, Berlin, August 1997, pp. 323–336.

()N. Asokan et al.rComputer Networks 31 1999 861–870870

w x15 R.M. Needham, M.D. Schroeder, Using encryption for au-
thentication in large networks of computers, Communications

Ž . Ž .of the ACM 21 12 December 1978 993–999, also Xerox
Research Report, CSL-78-4, PARC.

w x16 M. Naor, A. Shamir, Visual cryptography, in: I.B. Damgard
Ž .Ed. , Advances in Cryptology – EUROCRYPT’94, Lecture
Notes in Computer Science, pages 1–12. Springer-Verlag,
Berlin Germany, 1994.

w x17 A. Pftizmann, B. Pfitzmann, M. Schunter, M. Waidner,
Trusting mobile user devices and security modules, IEEE

Ž . Ž .Computer 30 2 February 1997 61–68.
w x18 J.D. Tygar, A. Whitten. WWW electronic commerce and

Java Trojan horses, in: 2nd USENIX Workshop on Elec-
tronic Commerce, Oakland, CA, November 1996, pp. 243–
250.

N. Asokan is a senior R&D engineer
with the Nokia Research Center in
Helsinki, Finland. Prior to joining Nokia,
he was a research scientist at the IBM
Zurich Research Laboratory from 1995
to 1998 and a software systems special-
ist at the University of Waterloo from
1990 to 1995. His research interests in-
clude applied cryptography, security in
distributed systems, mobile computing,
and electronic commerce. Dr. Asokan
received his Ph.D. from the University

of Waterloo, and MS from Syracuse University, both in computer
science and his BTech in computer science and engineering from
the Indian Institute of Technology at Kharagpur. He is a member
of the ACM, IACR, and IEEE.

Michael Steiner is a research scientist
in the network security research group
at the IBM Zurich Research Laboratory,
where he works on security in network
management and electronic commerce.
His interests include secure and reliable
systems as well as cryptography. He
received a Diplom in computer science
from the Swiss Federal Institute of

Ž .Technology ETH . He is a member of
the ACM.

Herve Debar is a research scientist in´
the global security analysis laboratory at
the IBM Zurich Research Laboratory,
where he works on system and network

Žsecurity in particular intrusion detec-
.tion as well as system management. His

interests include secure systems and arti-
ficial intelligence. Dr. Debar holds a
Ph.D. from the University of Paris and
is a telecommunications engineer from
the Institut National des Telecommuni-´ ´

Ž .cations in Evry France .

Michael Waidner is the manager of the
network security research group at the
IBM Zurich Research Laboratory. His
research interests include cryptography,
security, and all aspects of dependability
in distributed systems. He has coau-
thored numerous publications in these
fields. Dr. Waidner received his diploma
and doctorate in computer science from
the University of Karlsruhe, Germany.
He is a member of the ACM, GU, IACR,
and SIAM.

