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Abstract
Offloading the Transport Control Protocol/Internet
Protocol (TCP/IP) is a task that relieves the kernel from
interrupting to process the IP Stack. This article discusses
the uses in which a TCP/IP firmware could increase
network performance and ease of programming. In
addition, this article proposes a parallel framework for a
TCP/IP offloading hardware implementation.

INTRODUCTION
TCP/IP is a protocol suite used worldwide. It is not
exclusively used for the Internet. There exist private nets
that also used TCP/IP as their protocol suite. TCP/IP has
been adopted as the basic pair of Internet protocols.
Many hardware implementations have been develop
based on the TCP/IP or related protocols pair. Special
routers handle UNIX operating system clones to handle
TCP/IP on them [10]. A change to the protocol standard
would cause a heavy impact in the Internet infrastructure.
That’s why IPv6 migration is slow [7] [5]. Actually, there
is no such need (until the date of this article) of change in
the American Continent. Since IPv6 was proposed as a
solution for many IPv4 milestones, the migration is not an
easy one. Isles of IPv6 are currently tunneling via IPv4.
However, changes in TCP/IP standard are not so
common. That’s why TCP/IP kernel processing load can
be extracted from any central processing unit. The IP
stack could be process inside a firmware using a common
BSD Socket Interface. The firmware could be integrated
inside an Intelligent Network Interface Card (INIC), a
PDA, cellular phone circuit, a gaming console, an Internet
router for home networks etc. Virtually in any place, we
want Internet access.

TCP/IP PROCESSING LOAD PROBLEMS
TCP/IP load processing faces problems in Multi-homed
hosts, low power limited resources devices and Gigabit
networks. This problems will be discuss in detail in the
following sections

Multi-homed hosts problems
A Multi-Homed Host is a node inside the Internet
infrastructure that is responsible for handling different

network related transactions (email service, file service,
routing, front-end etc.) and contains multiple data
communication media [3]. They depend on Internet
communication for their existence. High traffic networks
nodes with a single central processing unit interrupt the
processor each time a packet is received [3]. Datagram
handling is done in software. The processor is constantly
interrupted every time a datagram or a datagram fragment is
received. Upper layers, since layer 2, of the Internet Layer
model are manipulated by the central processing unit of these
multi-homed hosts. Usually these multi-homed hosts
contained multiple net devices for Internet communications.
This increase the number of interrupts generated. If TCP/IP
were handled by hardware, by offloading multi-homed hosts,
then applications in the top of the Internet Layer Model would
receive more processing time.

Low resources device
Devices class 1, 2, or 3 of the architecture discussed in [4] are
low resources devices. Based on this architecture, devices are
handheld/ wireless relying in a slow central processing unit.
Implementations in kernel software must include TCP/IP
protocol pair for Internet access. Cellular Phones and PDAs
with Internet access can include in its architecture a TCP/IP
processing firmware. If TCP/IP can be process in hardware,
then kernel programmers of such devices could rely on
cheaper processors. If the functionality of TCP/IP firmware is
increase to include protocols like Internet Message Control
Protocol (ICMP), Address Resolution Protocol (ARP), User
Datagram Protocol (UDP) and some kind of frame carrier
handling, then kernels will reduce substantially in size, leaving
the Internet firmware all of these tasks.

Home Networks
An Internet Gateway would need the Internet firmware to
access the Internet. As network appliances like [9] evolve
they will need access to the World Wide Web. Studies like [8]
proposed an end-to-end communication, using SIP. A TCP/IP
firmware with IPv6 support will accommodate the needs of an
Internet Gateway for home networks. Even more, the
firmware could support network appliances with Internet
Gateway included.

Gigabit networks communication problems
Gigabit Local Area Networks consume main processor cycles
by loading it with frame carriers [1]. Performance is wasted on
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packet handling. IP stacks are handle by software. By
offloading, the CPU load is reduced leaving more
processing time for the application and socket layers.
ISCSI devices would benefit of a TCP/IP firmware.
Remote backup systems could include a TCP/IP firmware
in its circuit board. This could minimize embedded kernel
size inside these devices.

Current Gigabit technology is faster than the central
processing units used on high-end transaction server
today. “A rough estimate of the CPU required to handle a
given Ethernet link speed is, for every one bit per second
of network data processed, one hertz of CPU processing is
required”[12]. Therefore, for a 10Gbps network device a
20GHZ CPU is needed (at full utilization) [12]. On
current technology, this problem leads to an increase in
interrupts generated by the net device.

If the interrupt amount sky rockets when the net device is
fast, then more processing time is required for every
payload received by the data link layer. In gigabit speed
networks, the solution has been increasing the payload
amount. Orthodox Ethernet (10/100Mbps) configurations
rely on a frame carrier of 1518 octets leaving 1500 bytes
maximum for it’s payload. The solution in such
experiments is to increase the payload size. High
bandwidth networks with high payload capacity would
receive fragmented datagrams wasting the Maximum
Transmission Size (MTU) if there exists a fragmentation
point between and end-to-end communication. As
examine in [3] fragmentation could occur anywhere in the
path from node A to node B. We know that
“Reassembling datagrams at the ultimate destination can
lead to inefficiency; even if some of the physical
networks encountered after the point of fragmentation
have large MTU capability, only small fragments traverse
them.” [2] This datagrams are handled by software, and
we are assuming that the final destination is single
processor. In a typical uniprocessor gateway, there is no
way to parallelize the computational overhead [6]. Also,
is datagrams are fragmented along the way, they could
incur in network congestion. As said in [3] there are two
main options for handling this situation: Routers between
A to B must have an equivalent frame carrier structure
that produce a 1 to 1 payload relationship, or de-
fragmentation offloading at receiving end. So increasing
the payload size will only generate more fragments from
any datagram transmitted.

TCP/IP HARDWARE
TCP/IP could be process in hardware to handle the
problems exposed. Part of the Parallel TCP/IP Offloading
Framework will be exposed as a design model for a
TCP/IP firmware. In [11] the framework is discussed in

detail. These implementation must be fast, modular, easy to
interface, addressed the issues presented, up to date and
scalable. The parallel implementation must maximize
parallelism.

Frame Carrier and Offloading
As said in [3] the frame carrier has to be offloaded to the
maximum for a good TCP/IP offloading implementation. A
proposed way to deal with these is to include the frame carrier
code inside the firmware. Today, the physical layer and part of
the data link use the net device hardware. Some data link
layer code (as the Linux Packet Filter layer) is needed by
upper layers of the Internet related protocols.

Parallelism inside and outside the TOE firmware
There are two approaches. Inside the firmware, parallel
processing can be achieved. Receiving and Sending modules
can work in parallel within the firmware (figure 1). By using
references to the payload received by the frame carrier,
parallel communication can be achieved via shared memory.
Besides, firmware modules can be combined together to work
in parallel. The first idea will be discuss in the next sections.
The last one is under research by the date this paper was
written. Within the firmware, parallelism can be achieved in
various modules. TCP and IP modules can work separately.
Moreover, the receiving and the sending tasks can work in
parallel within the modules of the Internet related protocols.

Layers and Memory Interaction
Modules will be connected to input and output buffers. Upper
and lower layers have access to these buffers. They place data
in this memory for the firmware modules to handle. Once the
data is available, modules begin to work on them. The input
and output buffers maintain the flux of full-duplex
communication through the entire framework. These shared
buffers are depicted in figure 2.

The frame carrier resides in the data link layer of the Internet
layer model. It is the modules responsibility to get rid of the

TCP
Sending

Tasks

TCP
Receiving

Tasks

TCP Module Memory

MemoryMemory

Figure 1. Parallelism within the TCP Module
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frame carrier’s header and copy its content to the input
buffer. Also, the frame carrier must encapsulate
datagrams residing in the output buffer for delivering data
to the Internet Gateway. When an IP datagram is ready
for delivery the frame carrier must transmit it.

Memory Management
There are two types of memory: local and shared
memory. Local memory resides on every module. These
local memories are the registers or cache memory residing
inside the modules. Shared memory can be contacted by
any module using pointers. Every module uses its local
memory for saving references and offsets. This memory
will store temporary values needed for the execution of
the module. In addition, the registers will store offsets for
values relative to the data referenced.

Each module will control indexes that reference the
datagram being handled. The index amount that a
specific module will control depends directly on the
module actions.

The best description for the shared memory area is RAM.
Everything resides here, e.g. space for shared variables,
indexes and buffers. In the framework constructed,
buffers are depicted separately from the memory area for
the sake of clarity. In a real implementation, they could
also be separated from RAM using some dedicated
memory area.

Figure 3 depicts an example of a memory area referenced
by indexes used in IPv4 and TCP receiving modules.
Pointers are pass within indexes control by the same
module. The input index and the output index have
limited control access for every module. This indexes
conforms the coordination within the modules. This
coordination will be discussed later.
Every time a datagram departs or arrives in the input
buffer, it must consult the Memory Manager Module.

This module will manage space in the input/output buffers
with an index called a Free Space Table. By consulting this
table, the memory manager module can allocate space for
incoming payloads. When a datagram depart one of the
buffers, a new value must be registered in the Free Space
Table. The table is used to manage free space inside the
buffers. Its structure contains: a reference to the input or
output buffer, a buffer identification, and the size of the
available memory area. The Discard Module and Memory
Releaser Module interacts directly with the Free Space Table.
That will be discussed later on.

Coordination
The parallel framework is designed to work following a state
machine cycle depicted in figure 4. Each process will be
blocked if there are no datagram references in its input index.
Following an insertion, the hardware starts processing the
datagram. The references within the input index could be
moved to another index control by the same module. After
processing, the resulting datagram reference is placed in the
output index. Another module uses this output index as its
input index. Indexes to the buffer areas depend directly on
each module. In the TCP receiving module, the input index is
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the IP ready index and that index is the output index from
the IP receive module. The output index for TCP will be
TCP ready. Then the application layer or another
protocol on top of TCP could use this index to reference
the already TCP/IP process datagram. Whenever a
module places a reference into its output index then it
goes back to state one. It will wait if there is no reference
in its input index.

TCP AND IP MODULES
TCP and IP will be handle in separate modules. Within
the modules, also, the receiving and sending tasks will be
handle separately in order to maximize parallelism.
These modules inside modules will be depicted as boxes
in the figures.

IPv4 modules
IPv4 receiving tasks will be divided in two stages. First
stage is composed of four modules than run in parallel
(see figure 5). These modules are: version verifier,
checksum handler, and fragmentation handler. All of
these modules run in parallel. If any of these modules
found an exemption then a message is send to a discard
module. The Discard Module, also called Memory
Releaser, will release the memory area where the
datagram resides. The second stage, will identify what
protocol type resides inside the datagram
Sending tasks in IPv4 are handle by three stages rather
than two (figure 6). During the first stage, a Pre-
Datagram Builder, and the Identifier and Fragmentation
Handler work. The Pre-Datagram Builder will handle the
following: version number, service type, source address,
and time to live (TTL) fields. These values tend to be
static values that do not change over orthodox conditions.
If fragmentation is inevitable, the Fragmentation Handler
identifies every datagram with a unique identifier and a
fragment offset number. It will handle the packet
received by the upper protocol (transport layer) and
fragment it for delivery over low MTU connections
(depending on MSS). As well, this module sets the flags
related to the fragments. IP options, if any, are handled
here.

TCP modules
TCP is more complex than IPv4. TCP is a full-duplex
connection oriented protocol. Inside the framework, the
coordination is done via shared memory. TCP receiving
modules are depicted in figure 7. When a datagram arrives, it
goes to a first stage composed of three modules: Checksum
Verifier, Code Bits Interpreter, and Window Space Verifier.
If any of these modules fail, then it will broadcast a message
through the discard bus. Any of the modules working should
check if they are handling the same datagram broadcasted over
the discard bus. If that is the case, these modules will reset
their execution with the next datagram in the buffer.
Consequently, this datagrams must be handled by their
respective sequence numbers. After the first stage, the full-
duplex communication is handled. If the current
communication is in full-duplex mode, then the
acknowledgement number is passed to the Sliding Window
Handler. Also, the sequence handler reports its octet offset
and passes the control to the Port Handler. If full duplex is not
the current communication the acknowledge numbers will be
notified by the sending tasks. This will be discussed in the
following paragraph. Finally, this passes its data to the upper
layer protocol.
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Figure 5. IPv4 receiving modules
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TCP sending tasks (figure 8) are quite different. During
the first stage, the Flow Control Handler received data
from the upper layer (application or other protocol) for
TCP encapsulation. Based on the sliding window
algorithm chosen, this module will handle flow control
and congestion control. The Port Handler is another
module that exists on the TCP Offloaded Framework first
stage. This handler is not the same as the one in the
receiving tasks. Its tasks are the assignment of the
destination and source port fields in the TCP packet. It
will plug the socket layer into the appropriate port
specified.

During the second stage, a Window Advertiser,
Acknowledge Number Generator, Code-Bits Handler and
TCP Options modules run in parallel. The Window
Advertiser module depends on the TCP receiving tasks.
The availability of the window depends on the amount of
space available assigned to the TCP module. The module,
advertises window size space available in the receiving
end of the full-duplex communication. The Acknowledge
Number Generator also depends on the TCP receiving
tasks. It seeks the last sequence number received in order
and generates the next number that it expects to receive.
Then this number is copied to the corresponding TCP
field. The TCP Options will be copied to the packet here
if any.

The third stage conforms a Pseudo Header Generator and
a Header Length counter. Once the first and second stages
have been completed, the Header Length module counts
the number of octets that form the TCP header. Then, it
copies its value to the TCP header length field. That’s all.
The Pseudo Header Generator module requires some IP
information. It is assumed that this information is already
in the shared memory area of the framework. Unlike the
other modules, this one is not attached directly to a field.
It uses the memory area instead. The pseudo header is
created and placed in the shared memory area. The next
stage will use it for checksum header calculation.

Finally, the datagram is ready for delivery. Before this, we
need to calculate its checksum with a Checksum Calculator
module. For the calculation of the TCP header, both the data
area and the TCP pseudo header are considered. Then the
packet has been process in the TCP sending module. This last
stage is strictly sequential. This cannot be done previously.
There exists a possibility of building a pre-datagram
checksum, but that is under research by the date of this paper.

The needs of a Socket Interface Layer
All UNIX clones have a common socket interface based all in
Berkeley Software Distribution (BSD). Also, Microsoft found
a similar approach. The socket interface is the same but the
source code of all the implementations is kernel dependant. A
TCP/IP implementation inside a firmware needs a similar
socket interface layer and must accommodate all the options
used by the standard BSD socket interface. By this way, any
program should run without heavy modifications.

VIOLATIONS TO THE LAYER MODEL
In a TCP/IP software implementation, the Internet layer model
must be followed. Module modifications and bug fixes in
software can be achieved if designer, kernel programmers,
hackers, or contributors follow a protocol layer design. Open
software is available from different flavors of UNIX/LINUX
distributions. Aberrations and violations of the Internet Layer
Model are possible if the implementation is done in hardware.
The reason for layer design is the ease of software
implementation, design and modification. The TCP/IP
framework does not violate the orthodox protocol design.
After all, these violations are not discarded during the research
project. We will not discard the possibility that for a
dedicated hardware, violating the layer approach could result
in performance increase. As said in [6], optimal performance
depends upon cooperation between layers. TCP could be
aware of fragmentation problems over the IP layer. All of this
will reside inside a device that could handle these decisions.
That is still in research today.

CHALLENGES
We have stated that a TCP/IP firmware must include a socket
interface layer. The challenge relies on how to interface the
layer coded in hardware with the operating system. A solution
can be achieved in open source operating systems. A special
kind of driver must be compiled within the kernel in order to
achieve maximum performance. The framework is based on
protocol handling. Security aspects of this framework are far
from the scope of this research project. The framework does
not address any security issues at all.

Implementing a TCP/IP protocol stack in hardware is not an
easy task. As said in [12] “Implementing TCP/IP completely
in hardware poses a significant technical challenge”. This
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challenge leads to another challenge. Does a TCP/IP
protocol stack implementation is feasible?

FUTURE WORK
A Simulation using two PCs with the same configuration
is conducted in order to measure: throughput, latency and
CPU utilization. No research has been conducted before
in TCP/IP offloading measuring these [12]. This test will
use specific re-compiled kernels with and without the IP
stack activated. In addition, a hardware candidate is
studied for a future research.
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