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In vitro dissolution has been recognized as an important element in drug development
to assure the quality of drug products. It determines the rate and extent of the drug
release and could be used as a surrogate for bioequivalence (BE) trials under certain
conditions. Although methods for assessing the similarity of dissolution profiles between
two drug products are available in the literature, most of them do not provide strong
statistical and/or scientific justifications. This paper examines the properties of some
commonly used methods and compares the results via a simulation study under the
situations where the dissolution profile can be approximated by a linear or quadratic
relationship over time. The similarity factor stated in the United States Food and Drug
Administration (FDA) guideline (1) and the time series approach proposed by Chow (2)
are also included. The results show that Chow’s method is very sensitive to the variation
in the amount dissolved. Both methods are more relaxed and have a lower probability
of declaring dissimilarity than the others.
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INTRODUCTION

IN VITRO DISSOLUTION HAS been recognized as an important element in drug
development. It can not only determine the rate and extent of the drug release, but also
assure that the drug product can meet the United States Pharmacopoeia and National
Formulary (USP/NF) standards for identity, strength, quality, and purity (3). In addition, it
can be used as a surrogate for assessment of bioequivalence under certain conditions.

For dissolution testing, as stated in the USP/NF, the rotating basket and paddle are two
of the most commonly adapted apparatus for the testing. In USP III, a three-stage sampling
plan is specified to determine whether the test results meet the acceptance criteria (4). In
the recent scale-up and postapproval changes (SUPAC) guideline issued by the FDA, the
dissolution testing is classified into cases A, B, and C (1). Case A is the dissolution of Q
= 85% in 15 minutes in 900 (mL) of 0.1 HCl, using a rotating basket at 100 rpm or a paddle
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at 50 rpm. Case B is the multipoint dissolution profiles in the application/compendia medium
at 15, 30, 45, 60, and 120 minutes or until an asymptote is reached for the proposed and
currently accepted formulation. Case C is the multipoint dissolution profiles performed in
water, 0.1 N HCl, and USP buffer media at pH = 4.5, 6.5, and 7.5 for five separate profiles
for the proposed and currently accepted formulations. Sampling time is specified as Case
B or until either 90% of the drug from the drug product is dissolved or an asymptote is
reached. The requirement for the dissolution testing for different level changes in components
and composition, site, batch size, and manufacturing (including equipment and process) is
summarized in Table 1.

To compare dissolution profiles between two drug products, several methods have been
proposed. These methods, by the nature of the procedures, could be classified as model
dependent (curve fitting) and model independent (statistical analysis). The commonly used
models in the curve fitting procedures include exponential (5), probit, Gompertz (6), logistic
(7), Weibull (8), and the three control factor models (9). For the curve fitting procedure, it
is assumed that the dissolution profiles can be expressed by the selected curve. The procedure
is first to fit the curve of the response of the experiment (eg, Time to d percentage dissolved
(T%d), percentage dissolved to time t (%Dt), and area under the curve (AUCdiss.), and the
relative efficiency) and compute the associated parameters of the model for both reference
and test, respectively. It is then followed by comparing the corresponding parameters from
the two curves. For the curve fitting procedure, how to select an appropriate curve is critical.
If the curve selected is inappropriate, it will be misleading to compare the dissolution profiles
by testing the parameters from the two models. In other words, the error of making an
incorrect conclusion could actually occur in two ways: selecting the wrong model or making
the wrong judgment when comparing the corresponding parameters. Therefore, the lack-of-
fit test is essential before comparing the associated parameters.

The most commonly used statistical methods include moment based comparison,
individual time point test, two-way ANOVA, ANCOVA (10), analysis of first difference
(11), repeated measurement split-plot (12), multivariate analysis (13), and so forth. These
methods do not require the preset curve of the profiles. Some analyses, however, have an
underlying assumption that requires the responses to be independent. This assumption could
not be applied to dissolution testing since the amount dissolved over time within the same
drug product is in fact correlated. Although the multivariate analysis takes into account the

TABLE 1
SUPAC-IR Dissolution Testing Requirements

Levels

Change 1 2 3

Components & Application/Compendial 1) High permeability, High Solubility : B
Composition Requirement A (fails → B or C)

2) Low permeability, High Solubility : B
3) High permeability, Low Solubility : C

Site Application/Compendial Application/Compendial Requirement B
Requirement

Batch size Application/Compendial B
Requirement

Manufacturing
—Equipment Application/Compendial C

Requirement
—Process Application/Compendial B B

Requirement
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correlation problem, the procedure is fairly complicated. Moreover, if the time point selected
is large (eg, larger than 3), it is difficult to interpret the results. In the SUPAC guideline
(1), FDA indicates that dissolution profiles could be compared based on a similarity factor.
Although this method is easy to apply, it lacks scientific justification. Recently, Chow (2)
used the concept of bioequivalence and developed a procedure by utilizing a time series
approach (14). This method takes into account the correlation structure of the amount
dissolved over time and evaluates the equivalence in the dissolution profiles.

The objective of this paper is to evaluate the properties and investigate the implications of
the most commonly used methods (eg, ANCOVA, two-way ANOVA, split-plot) in comparing
dissolution profiles although the former two methods should not be used in theory. The
performance of these methods is compared with the similarity factor of FDA and Chow’s
methods via a simulation study under the assumption that the dissolution profile can be
approximated by a linear or quadratic relationship over time. In the next section, methods
of similarity factor, split-plot, and Chow will be briefly outlined, followed by the simulation
results. A summary and discussion is presented in the last section.

METHODS

The Similarity Factor of FDA

In the FDA guideline, dissolution profiles may be compared by using the similarity factor
f2 as follows (1):

f2 = 50 log10 5100F 1 + 1
t ∑

t

j=1

(Rj − Tj)
2G−0.56 (1)

where Rj and Tj represent the average percent dissolved at time j for reference and test,
respectively, and t is the number of time points tested. It can be seen that f2 is in fact between
the interval of (−∞, 100). If the average dissolution amount between R and T is identical
at each time point (ie, Σ t

j=1 (Rj − Tj)
2 = 0), then f2 = 100. FDA defines that when f2 is between

50 (where Σ t
j=1 (Rj − Tj)

2 = 99) and 100, then similarity of the dissolution profiles between
two drug products could be claimed.

The Spilt-Plot Approach of Gill

Dissolution profiles could also be compared by using Gill’s split-plot trend analysis. The
analysis starts with the model (12):

Yijk = µ + τi + Nk(i) + Tj + (τT)ij + εijk i = 1,2; j = 1,2, . . . , t;

k = 1,2, . . . , n (2)

where Yijk is the amount dissolved in the kth location (basket) of treatment i(i = 1 or 2) at
time j, µ is the overall mean, τi is the ith treatment effect, Nk(i) is the kth location effect
nested in treatment i, assuming a normal distribution with mean 0 and variance σ2, Tj is the
jth time effect, (τT)ij is the interaction between treatment i and time j, and εijk is the random
error term, assuming a normal distribution with mean 0 and corr(εijk,εij1k) = ρ.

In equation (2), the interaction is first examined by the following hypotheses:

H0 : (τT )ij = 0, ∀i, j

vs. H1 : at least one (τT )ij ≠ 0. (3)
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If H0 is rejected, then the dissimilarity of dissolution profiles T and R is concluded. If H0

is not rejected, equation (2) is reduced to:

Yijk = µ + τi + Nk(i) + Tj + εijk i = 1,2; j = 1,2, . . . , t; (4)

k = 1,2, . . . , n.

Thus, the main effect can be evaluated by testing:

H0 : τ1 = τ2 = 0

vs. H1 : at least one τi ≠ 0. (5)

If H0 is rejected, then the dissimilarity of dissolution profiles T and R is concluded, otherwise,
similarity is achieved.

The above test procedures are also applied to ANCOVA and two-way ANOVA models.

The Time Series Approach of Chow

Chow uses the concept of bioequivalence to define the similarity limit for dissolution testing

as (δL,δU), where δL = Q − δ
Q + δ, δU = Q + δ

Q − δ, and Q is the amount of dissolved active ingredient

specified in the individual monograph in the USP/NF. Two drug products are claimed to
have similar dissolution profiles if the ratio of dissolution rates is within (δL,δU) with 95%
assurance. Chow utilizes the auto correlation (1) time series model to assess the similarity
as follows:

Rjk = γjk + φk(R(j−1)k − γ(j−1)k) + εjk j = 2, . . , t; k = 1,2, . . . , n (6)

where Rjk is the ratio of dissolution rate between test and reference at basket k and time j,
γjk is the true relative dissolution rate at basket k and time j, φk is the degree of correlation
between consecutive measurements, and εijk is the random error deviates, assuming a normal
distribution with mean 0 and variance σ2.

In practice, since γjk usually differs in time and location, it is assumed that γjk is a normally
distributed random variable with mean γ and variance τ2. The (1 − α) × 100% confidence
interval of γ, denoted by (L,U), can be computed as:

L = γ̂ − z(1 − α/2) S √ Var(γ̂) + τD
U = γ̂ + z(1−α/2) S √ Var(γ̂) + τD (7)

where

γ̂ = 1
nt ∑

n

k=1
∑

t

j=1

Rjk

τ̂2 = 1
nt − 1 ∑

n

k=1
∑

t

j=1

(Rjk − R)2 − 1
n(t − 1) ∑

n

k=1
∑

t

j=1

(Rjk − Rk)
2

z(1−α/2) is the (1 − α /2) 100% quantile of normal distribution

Var̂(γ̂) = 1
n2t ∑

n

k=1

ψ̂2
k S 1 + 2 ∑

t−1

p=1

t − p
t

φ̂ p
kD + τ̂2

nt
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and

ψ̂2
k = 1

t − 1 ∑
t

j=1

(Rjk − Rk)
2

φ̂k = Σ t−1
j (Rjk − Rk)(R(j+1)k − Rk)

Σ t
j=1 (Rjk − Rk)

2

Rk = 1
t ∑

t

j=1

Rjk.

If (L,U ) is within the interval of (δL,δU), then similarity between the test and reference
products is claimed.

The above procedure is used to determine global similarity. In the paper, Chow also
derives a formula to examine the local similarity at each time point (2).

An Example

To illustrate the above methods, consider the example given in Chow (2) which was taken
from Tsong and Hammerstrom (5).The test results are shown in Table 2.

It can be seen that for Chow’s method, similarity is claimed if Q ≤ 70%. Since f2 has the
value of 63.59 which is between 50 and 100, the data are also claimed to be similar. Split-
plot, ANCOVA, and two-way ANOVA, however, have significant interactions between
treatment and time, therefore, similarity cannot be determined by using these three methods.

A SIMULATION STUDY

To evaluate the performance of the methods, a simulation study was conducted. Although
most of the dissolution profiles are nonlinear, it could be approximated by the first and
second order polynomials via Taylor’s expansion, assuming that higher order terms are
negligible. Therefore, linear and quadratic models within a given range are considered to
evaluate the properties of these methods in the simulation study. In each of the two models,
data were generated 1,000 times and the probability of concluding dissimilarity of the
dissolution profiles was computed.

TABLE 2
Results from Various Methods Using Data from Tsong and Hammestrom (1992)

Methods

Two-Way ANOVA ANCOVA Split-Plot FDA Chow

p-value p-value p-value Similarity Time Series

no unequal equal no CI
interaction interaction slope slope interaction interaction

Trt Trt Trt

0.0001 0.0001 0.0001 63.59* (86.9,112.7)*
Q ≤ 70%

*Similarity between two drug profiles is claimed.
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Case 1: Linear

Consider the case where the dissolution profiles for reference and test products can be
described by the following linear models:

R = a1 + b1t + ε1 (8)

T = a2 + b2t + ε2 (9)

where ε1 and ε2 are normally distributed random variables with mean 0 and variance σ2.
Two sets of time points are considered, namely:

1. t = 0, 0.2, 0.4, 0.6, 0.7, 0.8 (hr), and
2. t = 0.1, 0.2, 0.4, 0.6, 0.7, 0.8 (hr).

a1 and b1 are selected to be 0 and 100, respectively, so that the reference will dissolve 75%
at 45 minutes. In this setting, how sensitive the probability is to the change of intercept,
slope, and the variation is investigated.

1. Variance (σ2) varied (1 ≤ σ ≤ 60, a1 = a2 = 0, b1 = b2 = 100)—Figure 1.a shows that unless
the variation is very large, the probability of declaring dissimilarity for the similarity

FIGURE 1a. The probability of concluding dissimilarity. a1 = σ2 = o, b1 = b2 = 100, 1 ≤ σ ≤
60, 0.1 ≤ r ≤ 0.8.
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factor is zero. The probability of Chow’s method is an increasing function of σ while it
is a constant (10%) for split-plot, ANCOVA, or two-way ANOVA regardless of the
variation changes. The later corresponds to the Type I error used in the simulation since
the dissimilarity could occur either when the interaction exists or when the treatment
effects differ (without an interaction model), each with a 5% significance level. The
probability of declaring dissimilarity between two drug products for these methods could
be observed as:

σ ≤ 3 FDA < Chow < others

3 < σ ≤ 15 FDA < others < Chow

15 < σ other < FDA < Chow.

Figure 1.b shows that when time 0 is included, Chow’s method will declare dissimilarity
for almost 100% regardless of the variation. This phenomenon is observed throughout
the simulations. It can be explained that Chow’s test statistic is, in fact, a ratio of two
random deviates. If the denominator is close to 0, then R is large. Therefore, the probability
of concluding dissimilarity is large,

2. Intercept (a2) varies (−10 ≤ a2 ≤ 10,b1 = b 2 = 100)—This occurs in the case where there
are differences between T and R in the initial dissolving (0.1 hour) but at the same rate
neither the Chow nor the FDA method are sensitive to the change while other methods
declare dissimilarity with 100% even when the change is only 2.5% apart (Figure 2). The
probability of concluding dissimilarity could be observed as:

FIGURE 1b. The probability of concluding dissimilarity. a1 = a2 = 0, b1 = b2 = 100, 1 ≤ σ ≤
60, 0 ≤ t, 0.8.
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FIGURE 2. The probability of concluding dissimilarity. a1 = 0, b1 = b2 = 100, σ = 1, 0.1 ≤
t ≤ 0.8.

FDA < Chow < others,

and
3. Slope(b2) varies (80 ≤ b2 ≤ 120,a1 = a2 = 0)—This is the same as the change in the inter-

cept. Split-plot, ANCOVA, and two-way ANOVA observe the change right away and the
probability jumps from about 10% (identical) to 100% even when the slope is only four
units apart which results in Q0.75(T ) = 72.5% (Figure 3). Both the Chow and FDA methods
are very insensitive to the change. For example, even when the test is 10% different from
the reference at time t = 0.75, both methods have zero probability to detect the dissimilarity,
especially Chow’s method. The probability is:

Chow < FDA < others.

Case 2. Quadratic Model

Consider the model

R = a1 + b11 t + b12 t 2 + ε1 (3.3)

T = a2 + b21 t + b22 t 2 + ε2 (3.4)

where ε1 and ε2 have the same assumption as equations (3.1) and (3.2). The time points
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FIGURE 3. The probability of concluding dissimilarity. a1 = a2 = 0, b1 = 100, σ = 1, 0.1 ≤
t ≤ 0.8.

selected are 0.10, 0.25, 0.50, 0.75, 1.00, and 2.00 (hour). Denote Qt (R) and Qt (T) to be
the percentage dissolved for reference and test at time t, respectively. Let b11 = 130 and b12

= −40 so that Q0.75 (R ) = 75% and Q2 (R) = 100%. Four criteria for simulating the profile of
the test are considered.

1. Q0.75 (T ) varies, Q2 (T) = Q2 (R ) = 100%—The range of b21 and b22 are selected so that
Q0.75 (T ) ranges from 50–100%. Figures 4.1 and 4.2 give an example of the dissolution
profiles. The simulation results are given in Tables 3.1 and 3.2. From Table 3.1, it can
be observed that FDA detects no difference when Q0.75 (T ) is within 10% of the reference.
The probability of dissimilarity jumps to 100 when the difference is 15%. The results of
Chow show the same pattern with a detectable difference of 20%. Unlike the linear model,
ANCOVA has zero probability when the difference is within 5%. This might be due to
the fact that the ANCOVA model used in the simulation is based on a linear relationship.
Therefore, the results show inconsistency. The sensitivity of these methods are:

Chow < FDA < ANCOVA < Split-Plot, Two-Way ANOVA.

When σ increases (Table 3.2), the change is similar to the linear model where Chow’s
method is sensible to the variance while the others are not. This pattern is observed
throughout the simulation study for the second order model,

2. Q2 (T ) varies, Q0.75 (T ) = Q0.75 (R ) = 75%—Examples of the dissolution profiles are shown
in Figures 5.1 and 5.2, where b21 and b22 are selected so that Q2 (T ) ranges from 80–105.
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FIGURE 4.1. The dissolution profile of R (Q0.75 (R) = 75%, Q2 (R) = 100%), and T(Q0.75 (T)
= 50%, Q2 (T) = 100%).

In the study range, FDA and Chow detect no difference (see Table 4.1). ANCOVA cannot
observe the difference when Q2 (T) between R and T is within 10%. Split-plot and two-
way ANOVA are consistent with the results of (1), except for a lower probability when
two profiles are close (within 1%). The relationship is:

FIGURE 4.2. The dissolution profile of R (Q0.75 (R) = 75%, Q2 (R) = 100%), and T(Q0.75 (T)
= 85%, Q2(T) = 100%).
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TABLE 3.1
Probability of Concluding Dissimilarity if Q0.75 (T) Varies,

Q0.75 (R) = 75%, Q2 (T) = Q2 (R) = 100%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 1

Test Time
Series Split- Two-

Number Q0.75 Q2 b21 b22 FDA Q = 75 Plot ANCOVA Way

1 50 100 76.7 −13.3 100 100 100 100 100
2 55 100 87.3 −18.7 100 100 100 100 100
3 60 100 98.0 −24.0 100 0 100 100 100
4 65 100 108.7 −29.3 0 0 100 100 100
5 70 100 119.3 −34.7 0 0 100 0 100
6 75 100 130.0 −40.0 0 0 10 0 10
7 80 100 140.7 −45.3 0 0 100 0 100
8 85 100 151.3 −50.7 0 0 100 97 100
9 90 100 162.0 −56.0 100 0 100 100 100

10 95 100 172.7 −61.3 100 0 100 100 100
11 100 100 183.3 −66.7 100 100 100 100 100

FDA

Chow < ANCOVA < Split-plot, Two-way ANOVA.

When σ increases, ANCOVA has a smaller probability than that of Chow as shown in
Table 4.2,

3. b22 varies, b21 = b11—Varying b22 results in changing both Q0.75 (T ) and Q2 (T). The results
are actually a combination of (1) and (2). Still, FDA and Chow’s methods are not as
sensitive as other methods (see Table 5.1).
When σ is small, the relationship is

FDA

Chow < ANCOVA < Split-plot, Two-way ANOVA.

When σ increase, then FDA < Chow as shown in Table 5.2,

TABLE 3.2
Probability of Concluding Dissimilarity if Q0.75 (T) Varies,

Q0.75 (R) = 75%, Q2 (T) = Q2 (R) = 100%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 6

Test Time
Series Split- Two-

Number Q0.75 Q2 b21 b22 FDA Q = 75 Plot ANCOVA Way

1 50 100 76.7 −13.3 100 100 100 100 100
2 55 100 87.3 −18.7 100 97 100 100 100
3 60 100 98.0 −24.0 85 72 100 100 100
4 65 100 108.7 −29.3 0 55 100 88 100
5 70 100 119.3 −34.7 0 47 89 3 91
6 75 100 130.0 −40.0 0 46 10 0 10
7 80 100 140.7 −45.3 0 54 87 1 88
8 85 100 151.3 −50.7 1 70 100 51 100
9 90 100 162.0 −56.0 82 84 100 99 100

10 95 100 172.7 −61.3 100 96 100 100 100
11 100 100 183.3 −66.7 100 100 100 100 100
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FIGURE 5.1. The dissolution profile of R (Q0.75 (R) = 75%, Q2 (R) = 100%), and T(Q0.75(T)
= 75%, Q2(T) = 80%).

4. b21 varies, b22 = b12—In this setting, the change of the profile is slower than (3). The results
are presented in Tables 6.1 and 6.2, which show a similar pattern to (3).

SUMMARY AND DISCUSSION

In cases where the dissolution profiles are linear or could be approximated linearly, if the
two profiles are in fact identical, FDA’s similarity factor is not as sensitive as Chow’s is for

FIGURE 5.2. The dissolution profile of R (Q0.75 (R) = 75%, Q2 (R) = 100%, and T(Q0.75(T) =
75%, Q2(T) = 105%).
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TABLE 4.1
Probability of Concluding Dissimilarity if Q2 (T) Varies,

Q2 (R) = 100%, Q0.75 (T) = Q0.75 (R) = 75%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 1

Test Time
Series Split- Two-

Number Q0.75 Q2 b21 b22 FDA Q = 75 Plot ANCOVA Way

1 75 80 136.0 −48.0 0 0 100 100 100
2 75 85 134.5 −46.0 0 0 100 48 100
3 75 90 133.0 −44.0 0 0 100 0 100
4 75 95 131.5 −42.0 0 0 100 0 100
5 75 97 130.9 −41.2 0 0 100 0 100
6 75 99 130.3 −40.4 0 0 45 0 44
7 75 100 130.0 −40.0 0 0 10 0 10
8 75 101 129.7 −39.6 0 0 44 0 46
9 75 103 129.1 −38.8 0 0 100 0 100

10 75 105 128.5 −38.0 0 0 100 0 100

TABLE 4.2
Probability of Concluding Dissimilarity if Q2 (T) Varies,

Q2 (R) = 100%, Q0.75 (T) = Q0.75 (R) = 75%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 6

Test Time
Series Split- Two-

Number Q0.75 Q2 b21 b22 FDA Q = 75 Plot ANCOVA Way

1 75 80 136.0 −48.0 8 46 100 89 100
2 75 85 134.5 −46.0 0 46 100 35 100
3 75 90 133.0 −44.0 0 45 89 3 90
4 75 95 131.5 −42.0 0 43 35 0 36
5 75 97 130.9 −41.2 0 44 16 0 16
6 75 99 130.3 −40.4 0 46 11 0 12
7 75 100 130.0 −40.0 0 46 10 0 10
8 75 101 129.7 −39.6 0 46 11 0 10
9 75 103 129.1 −38.8 0 48 19 0 19

10 75 105 128.5 −38.0 0 46 36 0 36

TABLE 5.1
Probability of Concluding Dissimilarity if b22 Varies,

b21 = b11, Q0.75 (R) = 75%, Q2 (R) = 100%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 1

Test Time
Series Split- Two-

Number Q0.75 Q2 b22 FDA Q = 75 Plot ANCOVA Way

1 72 80 −45 0 0 100 100 100
2 73 84 −44 0 0 100 100 100
3 73 88 −43 0 0 100 0 100
4 74 92 −42 0 0 100 0 100
5 74 96 −41 0 0 100 0 100
6 75 100 −40 0 0 10 0 10
7 76 104 −39 0 0 100 0 100
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TABLE 5.2
Probability of Concluding Dissimilarity if b22 Varies,

b21 = b11, Q0.75 (R) = 75%, Q2 (R) = 100%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 6

Test Time
Series Split- Two-

Number Q0.75 Q2 b22 FDA Q = 75 Plot ANCOVA Way

1 72 80 −45 12 47 100 93 100
2 73 84 −44 1 44 100 57 100
3 73 88 −43 0 48 99 13 99
4 74 92 −42 0 48 74 1 74
5 74 96 −41 0 45 28 0 28
6 75 100 −40 0 46 10 0 10
7 76 104 −39 0 47 27 0 29

TABLE 6.1
Probability of Concluding Dissimilarity if b21 Varies,

b22 = b12, Q0.75 (R) = 75%, Q2 (R) = 100%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 1

Test Time
Series Split- Two-

Number Q0.75 Q2 b21 FDA Q = 75 Plot ANCOVA Way

1 71 90 125 0 0 100 0 100
2 72 92 126 0 0 100 0 100
3 73 94 127 0 0 100 0 100
4 74 96 128 0 0 100 0 100
5 74 98 129 0 0 100 0 100
6 75 100 130 0 0 10 0 10
7 76 102 131 0 0 100 0 100
8 77 104 132 0 0 100 0 100
9 77 106 133 0 0 100 0 100

TABLE 6.2
Probability of Concluding Dissimilarity if b21 Varies,

b22 = b12, Q0.75 (R) = 75%, Q2 (R) = 100%, t = 0.1, 0.25, 0.5, 0.75, 1, 2, σ = 6

Test Time
Series Split- Two-

Number Q0.75 Q2 b21 FDA Q = 75 Plot ANCOVA Way

1 71 90 125 0 47 99 9 99
2 72 92 126 0 47 90 2 91
3 73 94 127 0 46 70 0 72
4 74 96 128 0 49 40 0 41
5 74 98 129 0 46 17 0 18
6 75 100 130 0 46 10 0 10
7 76 102 131 0 49 18 0 19
8 77 104 132 0 49 40 0 42
9 77 106 133 0 51 68 0 71
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variation changes in the amount of dissolution. Other methods have the probability to declare
dissimilarity of 10%. If two drugs are different in the initial amount of dissolution but the
same in the dissolution rate, then both FDA and Chow have a lower probability of detecting
the difference than other methods. In particular, FDA’s method cannot detect any difference
until the initial amount dissolved between two drug products is 20% apart. Other methods
are very sensitive to the differences. The probability is 100% in the simulation even for a
slight difference (eg, 2.5% difference), and the probability is a decreasing function of σ. If
two drug products have the same initial dissolution but differ in the dissolution rate, neither
the FDA nor the Chow method are as sensitive as others for small variation. In general,
FDA’s method has a smaller probability than Chow’s method regardless of the variation. If
the variance is large, then the probability of declaring a difference with Chow’s method is
even larger than other methods no matter what change exists in the initial amount or rate
of dissolution.

In cases where dissolution profiles are quadratic or can be approximated by a quadratic
model, if the amount dissolved is the same for two drug products at two boundaries but
different in the dissolving rate, neither the FDA method nor the Chow method are sensitive
to the differences and have zero probability of declaring a difference of less than 15% (FDA)
or 20% (Chow). When the variation is large, Chow has a large probability of declaring a
difference even when two profiles are identical (eg, probability = 50% for σ = 6) but FDA
stays the same. The other methods detect the difference right away (100% for even a slight
difference). If two profiles are the same before 45 minutes and both have Q0.75 = 75% but
differ afterwards, the same pattern as the earlier case is observed with FDA and Chow and
they are even less sensitive to the difference. If two profiles are different except for the
origin in the study range where the difference between R and T are within 5% at Q0.75 and
Q2, FDA and Chow both have zero probability of detecting the difference when the variation
is small. The same pattern is observed for Chow for its sensitivity to the variation (eg, 50%
for σ = 6 and 75% for σ = 8 even when two profiles are identical). For the second order
model, ANCOVA has a small probability of declaring the difference, which may due to its
linear relationship assumption. The sensitivity of split-plot and two-way ANOVA are
decreasing functions of variation.

In general, the FDA and Chow methods are more relaxed than the others. Although FDA’s
similarity factor is easy to manipulate and results do not change if the role of test and reference
interchange, it, however, lacks scientific justification and has the following disadvantages:

1. It is not based on an hypothesis testing procedure, therefore, there is no measurement of
the error (Type I or II errors) associated,

2. It is a function of the pair difference between two drug products. If the time points
selected for two drug products are different, the method could not be applied, and

3. The measurement is an average of differences observed. After the asymptote is achieved,
the differences could be fairly small. In the guideline, no time point selection is specified.
If the experimenters select a large number of time points after the asymptote is achieved,
then the average difference could be small. In consequence, f2 will tend to have a value
between 50 and 100 which results in similarity although two profiles could be very
different.

Chow’s method has an advantage in that it defines the equivalence limits for similarity
based on Q value specified in the USP/NF. It also takes into account that the dissolution
series observed are in fact dependent and the dependency is a decreasing function of time,
as opposed to Gill’s method where the relationship is assumed to be constant over time. It,
however, has the following disadvantages:
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1. If Q is not specified, the method is difficult to implement in practice,
2. The method is based on relative dissolution that requires the same number of time points

and the same number of locations (eg, baskets) for both drug products in the experiment.
If either one is different, the method could not be applied,

3. The response is based on the ratio of test over reference. If the role of two drug products
is interchanged in the computation, the resulting confidence interval will vary. In conse-
quence, it might lead to a different conclusion, and

4. It is very sensitive to the variation. If the variation is large, the probability of declaring
similarity is large even when the underlying distribution of two profiles is identical.

In this research, the authors also extend Chow’s method into the auto correlation (2)
model, which takes into account the correlation of more than one time point. The results
achieved are very similar to the auto correlation (1) model with a slightly wider confidence
interval. For example, the interval derived from the auto correlation (2) model for the data
in Tsong and Hammerstrom (5) is (86.71%, 112.89%) which is within two tenth points of
the auto correlation (1) model as shown in the “Methods” section.

For Gill’s method, the advantage is that it reflects the fact that correlation between the
amount dissolved for the same product exists. This assumption, however, seems oversimpli-
fied since it is assumed to be constant. In addition, due to the algorithm used for the
hypothesis testing, the Type I error is twice as high as it should be since dissimilarity could
be concluded in two cases, that is, if the treatment by time interaction exists or if the
difference between treatments is found in the reduced model. Moreover, using time as a
class variable in the analysis dramatically reduces the degree of freedom and this is also a
disadvantage of the method.

It has been observed that ANCOVA and two-way ANOVA are often used in comparing
dissolution profiles. ANCOVA especially is preferred by most of the practitioners since it
can estimate the dissolution rate of drug products other than testing the similarity of the
profiles. It should be noted that the method is not appropriate if the dissolution profiles are
not linear or if only a few time points are tested. Moreover, the correlation nature of the
dissolution series within the same product violates the underlying independent assumptions
required for applying either of the methods. The validity of the results is, therefore, questionable.

This paper investigates the sensibility of commonly used methods for analyzing and
evaluating the similarity of the dissolution profiles of two drug products. Note that a good
analysis actually results from a good design. A valid experimental design is indeed essential
in dissolution testing. Before the experiment is conducted, one should carefully plan the
experiment such as the suitability of the apparatus (eg, rotating basket for capsules, paddle
for tablets), the choice of media, response measured, location of dissolution basket (2 × (3,3)
or (6, 0) (0, 6) for (R, T), and so forth. To date, several issues exist in the design of dissolution
testing that need further investigation. These issues include the selection of the number of
time points, sampling time, number of replicates, the choice of media, and so forth. Moreover,
how to scientifically assess the in vivo and in vitro correlation (15,16) remains to be solved.
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