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Hole polarons in pure BaTiO3 studied by computer modeling
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ABSTRACT: Self-trapped hole polarons in technologically important perovskite-

type ceramic of BaTiO3 have been modeling by means of the quantum-chemical method

modified for crystal calculations. The computations are carried out in the SCF manner

using the embedded molecular cluster model. The spatial configuration of a hole

polaron, displacements of defect-surrounding atoms, wave functions of the polaron

ground and excited states are obtained and analyzed. The probability of spontaneous

hole self-trapping is estimated in the perfect lattice of BaTiO3 crystal by calculating the

value of hole self-trapping energy as a difference of the atomic relaxation energy and the

hole localization energy. This value is found to be negative, -1.49 eV, which

demonstrates the preference of the self-trapped polaron state. The calculated polaron

absorption energy, 0.5 eV, is discussed in light of the available experimental data.
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1. Introduction

Perovskite-type ceramics are now the focus of extensive study due to their

important properties and wide range of applications. Because of its large electro-optic

coefficients and high photorefractive sensitivity [1], BaTiO3 is of special interest. This

material also exhibits ferroelectric and piezoelectric properties and therefore finds

increasing processibility as an active element in micro-electronic devices. Additionally,

BaTiO3 is a promising material for self-pumped phase conjugation or holographic

storage [2, 3] and cheap diode lasers [4].

Although the barium titanate has simple cubic (paraelectric phase) and tetragonal

(ferroelectric phase) structures, the literature mainly offers a variety of experimental

reports while there have been only few theoretical studies [5-8] of this important crystal.

That could be partially explained by difficulties in using computer modeling to

reproduce unusual behavior of this ceramic material.

One of the interesting features of the material is the non-linear photoconductivity

[9], and it is known that primarily this effect is due to the presence of holes. This is the

reason why absorption, light-induced absorption changes, photo and dark conductivities

and another light-induced charge-transfer processes have been of intense experimental

investigation [10-14]. In order to explain the effect of non-linear dependence of

photoconductivity on light intensity, different models have been proposed recently [15-

17]. They are based on the presence of shallow one-electron local energy levels within

the forbidden energy gap, which act as traps. The authors of these investigations do not

explain clearly the origin of these shallow levels, although it is supposed that they
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originate from the presence of trivalent impurities like Fe, Co, Rh, etc. As it follows

from our calculations some of these local energy levels might be attributed to the

presence of self-trapped holes, called here as hole polarons, which can be trapped at

regular O sites and can occur spontaneously in the BaTiO3 crystal under the radiation.

Despite that the polarons are significantly involved in all relevant light-induced charge-

transfer reactions in BaTiO3, to our knowledge no attempts had been done so far to

study the self-trapping possibilities of a hole in the pure barium titanate lattice. If this

self-trapping take place spontaneously then hole polarons could contribute significantly

to our understanding of non-linear photoconductivity phenomenon.

The question if carrier self-trapping can occur in a given perfect crystal is of the

fundamental nature. First predicted theoretically by Landau in 1933, the hole self-

trapping was confirmed experimentally in 1955 by Känzig [18]. He established that self-

trapped holes (STH) in pure alkali halides have the structure of  X2¯ (where X¯ denotes

a halogen ion) quasi-molecules and are oriented along the <110> axes in the face-

centered cubic crystals. In recognition of his discovery they are called VK centers. Since

then the hole polarons have been found in many ionic solids, including alkaline earth

fluorides and crystals with KMgF3 and PbFCl crystallographic structures, as well as

rare-gas crystals [19-23]. These point defects are also well established theoretically [24,

25]. However, the existence of STH in oxide crystals is a matter of long-time debate.

The problem is that they can not be monitored by the direct electron paramagnetic

resonance (EPR) technique due to the zero nuclear spin on regular O atoms. As far as

we know there is only one exception: EPR experiments have revealed STH in fused
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silica (SiO2) [26]. Additionally, there exist indirect experimental results, which support

the existence of stable STH in corundum (α-Al2O3) crystal [27].

The purpose of the present article is to answer the question if hole self-trapping

can occur in the pure BaTiO3 crystal and to discuss possible effects of STH upon the

crystal electronic and structural properties. The article is organized as follows. In the

second section, the computational method is outlined giving short description of the

semi-empirical parametrization scheme. The third and fourth sections deal with results

of STH presence in the crystal while the fifth section contains results of the STH excited

state and absorption energy calculations. Finally, our conclusions are given in the last

section.

2. Computational details and parametrization

An advanced version of the Intermediate Neglect of Differential Overlap (INDO)

method, modified for crystal calculations (CLUSTERD computer code [28]) was used

in our calculations. The method has been found to be very useful in the treatment of the

electronic and spatial structure of a number of perfect and defective crystals. It is based

on Molecular Orbital (MO) theory [29] and a specific parametrization scheme [30]. Two

different models are implemented into the code. The periodic Large Unit Cell (LUC)

model [31] calculates both the electronic band structure and the total energy of the

perfect crystal via MO as a linear combination of Atomic Orbitals (AO´s). The

Embedded Molecular Cluster (EMC) model [32] also is based on a strict treatment of

the total energy of the whole crystal, accounting for the perturbation (polarization) that
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the remaining crystal has on the EMC region, thus leading to the so-called quantum

cluster approach. This advantage of the EMC model is especially important in the case

of charged defect calculations as it was in the present work. Here we have utilized both

models. The LUC model was necessary to exploit in perfect crystal calculations and the

parametrization procedure. The EMC was used in the studies of hole polarons.

In general, the method reproduces very well spatial and electronic structure of

crystals under study. This has been proved for some 30 crystals, including oxide

crystals. The power of the method originates from the specific parametrization scheme,

which was developed in such a way that it takes into account very precisely crystalline

peculiarities.

A full account of the LUC framework is given in Refs. 28 and 31 while the

parametrization scheme is described in details in Ref. 30. Here we shall only note that

the parameter set contains the following five numerical parameters for each atomic

orbital: (i) the orbital exponent ζ which enters the radial part of the Slater-type AO; (ii)

the mth AO populations (0)A
mmP ; (iii) the mth AO electronegativity )(EA

neg m ; (iv) the

resonant integral parameter βAB; and finally, (v) the parameter αmB characterizing the

non-point nature of the atomic core B and additionally the diffuseness of the mth AO

belonging to the atom A. The numerical parameters approximate some one- and two-

center integrals [30] in the Hartree-Fock theory thus reducing remarkably the

computational time and making available the investigation of complex systems. This is

the reason why advanced semi-empirical codes are still important in the Computational

Physics and the existing ab initio techniques are still not so widely applied in the

modeling of defect properties in solids.
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We have used 8-times (2x2x2) extended LUC to parametrize the BaTiO3 crystal.

The reduced Brillouin zone (BZ) corresponding to the LUC is thus eight times smaller

than the BZ constructed from the primitive unit cell and each k-point in the reduced BZ

corresponds to a family of eight points of the full BZ. Therefore, the 8-times extended

LUC describes reliably the band structure of the perfect barium titanate, since it

simulates eight k-points in the full BZ. The INDO parameter sets for O and Ti atoms

were taken from Refs. 28 and 33, respectively. The parameter set for the Ba atom was

optimized by reproducing the following data: the main features of the barium titanate

crystal (width of the forbidden energy gap, widths of the upper and lower valence bands,

density of states (DOS) of the valence bands, cubic lattice constant of the crystal) and

the first two ionization potentials for the Ba atom.

We reproduced quite well the ionization potentials for the Ba atom (Table I) and

the main electronic and spatial properties of the BaTiO3 crystal (Table II and Figure 1).

The obtained lattice constant a = 4.01 Å matches exactly the corresponding

experimental value. The widths and compositions of the valence bands are in a good

agreement with the X-ray photoelectron spectra results [35]. As it follows from the

Figure 1b the lower valence band is composed mainly of O 2s states while the upper

valence band predominantly is O 2p in nature. A small admixture of the Ti 4s states was

found in the lower valence band and considerably higher degree of admixture of the Ti

3d states was present in the upper valence band as it is shown in the Figure 1c. In

addition, the subband of Ba 5p states was found to be located just below the upper

valence band. We considered essential to include the Ba 5p states as the basis AO´s

within the valence basis set since their overlap with AO´s of the other atoms is not
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negligible. We have to note that the obtained DOS and the composition of the valence

bands are in a good agreement with the experimental data and another computations

[35]. The only discrepancy between the INDO calculated electronic band structure

results and the experimental data was observed to be for the value of the forbidden

energy gap width. There are two reasons for this disagreement. First, the omission of

long-range correlation effects (only the short-range correlation corrections are accounted

through the use of semi-empirical parameters). Second, the fact that the Hartree-Fock

approximation involves the self-consistent determination of only the filled molecular

orbitals while the conduction band states are not self-consistent. Long-range correlation

between valence electrons is known to raise the upper valence band and to lower the

bottom of the conduction band leading to a reduction of the bandgap width for the oxide

crystals by approximately 2-4 eV [37, 38]. This estimated quantity is reasonably close to

our "error" of 2.44 eV. It has to be stressed once more that within the current method

one should keep the forbidden energy gap considerably larger than the known

experimental value in order to reproduce correctly the electronic band structure of the

system under study. Thereby optimized parameters are given in Tables III and IV. We

have to note that the utilized computer program has been proved to be very reliable in a

number of applications, including defect studies in such complex oxides as α-Al2O3 [37,

39, 40], TiO2 [41, 42] and WO3 [43]. It also has been used before very successfully to

study STH or hole polarons in a number of alkali halide crystals, MgO, α-Al2O3 and

TiO2.
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3. Estimation of a hole polaron self-trapping energy

A hole polaron is a charged intrinsic defect and its simulation by periodic

models is problematic without the inclusion of some compensating charge [44].

Therefore, we chose to use the EMC model [32] with the cluster consisting of 40 atoms.

The size of the [Ba8Ti8O24]0 cluster was considered to be sufficient because of a small

contribution of the covalent character on the chemical bonding in the BaTiO3, i.e., a

small effect of exchange interaction term which usually requires to use extended system

in order to study point defect properties. Also, by exploiting the 40-atom molecular

cluster we preserved the symmetry of the crystal, which was important to reproduce

reliably electronic band structure of the defective region and to calculate the absorption

energy of the hole polaron.

In order to estimate hole polaron self-trapping energy one has to return to the

idea of Gilbert [45]. He considered polaron self-trapping as a hypothetical two stage

procedure: (i) localization of a free hole in a local perfect crystal region, and (ii)

subsequent relaxation of the crystalline lattice with accompanying electronic density

redistribution in the defective region until the polaron state is formed. In the first stage,

the hole acquires a positive contribution to its energy due to the loss of the kinetic

energy in the local state. In the second stage, the hole acquires a negative energy due to

the crystal relaxation around the localized polaron. A competition between the positive

localization energy, Eloc, and the negative relaxation energy, Erel, is decisive to make a

final conclusion about the possibility of finding stable hole polarons in a given crystal. If

Eloc + Erel < 0, then the formation of stable hole polarons is energetically favorable in a
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given crystal. If Eloc + Erel > 0, the self-trapping does not occur. To be exact we have to

name two more contributions to the energy balance of the polaron. These are the loss in

the polarization energy associated with the mobile hole, 1
polE , which involves only

electronic polarization, i.e., displaced shells and secondly, the polarization energy, 2
polE ,

associated with the rest of the lattice outside the defective region. 2
polE  includes both

atomic and electronic polarization terms. It was estimated in a number of works [37, 46]

that 1
polE  and 2

polE  do not differ much in the absolute value but have the opposite signs,

so one can neglect these two terms in the first approximation.

When a hole was inserted into the molecular cluster, its spin density was found

to be localized mainly on one of the O atoms, i.e., the polaron has one-site spatial

configuration. For a one-site Wannier-type localized state of the hole one can use

Fowler estimate [47] as Eloc being equal to the half width of the upper valence band.

However, this approximation is valid only for very diffuse and smooth energy bands,

which is not our case because we have considerable admixture of Ti 3d states in the O

2p valence band. In other words, the "center of gravity" of the O 2p band is not located

at the exact middle of the band. Considering the Wannier representation of localized

states and Fourier transform of the valence band energies (see Ref. 46 for more details)

one can obtain the "center of gravity" of the corresponding occupied valence band in the

following manner:

∫= εεεε d)(N j
(W)  , (1)
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where )(N j ε  is the density of states (DOS) of the valence band j normalized to unity

and the integration is performed over the whole bandwidth. Using this approach we

obtained the value of 2.36 eV as a hole localization energy Eloc.

In order to estimate the relaxation energy term, Erel, we allowed to make

displacements to 18 atoms situated around the oxygen, which receives a hole. Erel was

calculated as a difference of total energies of the molecular cluster in the relaxed and

unrelaxed states, giving the value of 3.85 eV. Then using the simple equation:

∆EST = Eloc + Erel , (2)

we obtained -1.49 eV as a value of the hole self-trapping energy. Since ∆EST < 0, self-

trapping is favored with respect to a free delocalized hole in the valence band and we

predict the spontaneous occurrence of hole polarons in the perfect barium titanate cubic

lattice.

To check our results we have additionally estimated the value of Eloc using the

Kantorovich theory [46, 48], which introduces an intermediate state L on the hole self-

trapping path, considering this state L as the self-trapped hole in the unrelaxed crystal.

This idea gives one an opportunity to take into account both free and localized states of

the hole within the same perfect crystal computation [46]. The application of this

method gave us 2.64 eV for the Eloc and subsequently -1.21 eV as the value of ∆EST.

4. Lattice distortion due to the hole polaron

As it was mentioned above the hole finds itself localized on O(1) atom (see

Figure 2) where around 80% of the hole spin density is found while the remaining 20%
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are shared by the defect-surrounding Ti and O atoms. The O(1) atom is situated

practically in the middle of the molecular cluster, so any influence of the cluster border

effects on the outcome of computations is excluded. The automated geometry

optimization was carried out using the downhill simplex method in multidimentions

[49]. During the geometry optimization, the 18 defect-nearest atoms were allowed to

move from their regular lattice sites. As a result it was found that only seven atoms

change their positions by noticeable magnitude while the relaxation of the remaining

atoms can be neglected. As it follows from Table V and Figure 2, the O atoms of the

defective region move towards while positively charged Ba and Ti atoms move

outwards the O(1) atom. This is in an accordance with the expectations since the O(1)

atom has the positive effective charge with respect to the perfect crystalline lattice after

receiving the hole. Additionally, one can observe from the Figure 2b small rotation of

the polaron-surrounding O atoms by ≈ 1° with respect to the vertical z-axes, which

passes through the O(1) atom. The effect of atomic rotation in the region around the

point defect was observed also in another polaron studies [50]. In our mind it might be

attributed to the Jahn-Teller effect [51], which reduces the total energy of the system by

asymmetric atomic displacements. In general, these displacements depend on the point

group symmetry of the defect under study. Finally, we can note that the absolute

magnitudes of atomic movements are rather small which points out to the rigid lattice of

the BaTiO3 crystal and predominant ionic nature of the chemical bonding in the crystal

in agreement with the known experimental data. This might be also attributed to the

close packed cubic structure, where the atoms do not have a sufficient space to move.
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5. Calculation of the polaron absorption energy

The main contribution to the wave function φh of the ground state of the hole

polaron is due to the 2px AO of O(1) atom, which receives the hole as it is shown in the

Table VI. In order to obtain the excited state of the polaron, we acted in the following

way: an electron from one of the occupied states in the upper valence band, related to

the O(1) atom was taken and put into the unoccupied ground state of the hole polaron.

During this procedure we employed the density matrix of the polaron ground state as an

initial guess. Then according to the Frank-Condon principle the absorption energy was

obtained as a difference of total energies of [Ba8Ti8O24]+ cluster for the SCF ground and

excited states with a fixed atomic configuration (∆SCF method). We found that the hole

polaron wave function φh* in the excited state consists mainly of O 2pz AO strongly

overlapping with 2z
3d  and 4s AOs of two nearest Ti atoms, Ti(6) and Ti(7), (see Table

VI and Figure 2). The contribution of these titaniums into the φh* increases around 3.5

times compared to the ground-state wave function φh, which means that the wave

function in the excited state is considerably more delocalized as in the ground state.

The calculation of polaron absorption energy by ∆SCF method gave us the value

of 0.5 eV. This magnitude is very close to the experimentally observed value of 0.53 eV

found in the light-induced absorption spectra measurements [17] in the undoped BaTiO3

crystal. In our mind, this might be not pure coincidence but indirect prove of self-

trapped hole polaron existence in the barium titanate.
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6. Conclusions

We have presented a theoretical study of the STH polaron in pure BaTiO3

crystal. Using the INDO version of Hartree-Fock theory modified for crystal

calculations we attempted for the first time to investigate possibilities of a hole self-

trapping in this material. The outcome of our calculations indicates that there is a large

probability of finding stable hole polarons in the BaTiO3 crystal localized on a single O

atom. The estimation of the hole polaron self-trapping energy gave us the value of -1.49

eV.

In our mind, the presence of hole polarons localized on regular O atoms might

contribute significantly into our understanding of non-linear photoconductivity

phenomenon in the barium titanate. We do not oppose to the existence of impurity-

trapped hole polarons in this material considered so far in the scientific publications.

But, as it follows from our investigation, hole polarons trapped at regular oxygen sites

can occur spontaneously in this material since it is energetically favorable with respect

to the delocalized hole state. Thus this point defects can contribute into the non-linear

photoconductivity. In other words, not only trivalent impurities can act as polaron traps

but also regular oxygen atoms can do that. Our explanation of the fact that no

experimental reports have been made so far on the existing of hole polarons in the pure

BaTiO3 crystal is that the experimental confirmation by the direct EPR measurements is

complicated by the zero nuclear spin on regular O atoms. Finally, we would like to note

that the indirect prove of self-trapped hole polaron existence in the BaTiO3 crystal

follows from the light-induced absorption spectra measurements [17]. In these studies
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the observed polaron absorption energy in undoped BaTiO3 crystal was found to be

equal to 0.53 eV which is very close to our estimate of 0.5 eV.
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TABLE I. Calculated Ba ionization potentials (in eV) in comparison to the

experimental data [34].

INDO results Exp. data

1st IP 5.69 5.21

2nd IP 11.97 10.001

TABLE II. Basic properties of the BaTiO3 crystal obtained by the quantum-chemical

method in comparison to the available experimental results: ∆Eg, width of the forbidden

energy gap (in eV); Ev1, upper valence band width (in eV); Ev2, lower valence band

width (in eV); a, lattice constant (in Å); q(Ba), q(Ti) and q(O), charges on Ba, Ti and O

atoms, respectively, (in e).

Property INDO results Exp. data a

∆Eg 5.4 b 2.96

Ev1 5.7 4.8

Ev2 3.2 2.8

a 4.01 4.01
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q(Ba) 1.73

q(Ti) 2.65

q(O) -1.46

a The experimental values of ∆Eg, Ev1 and Ev2 are taken from Ref. 35; the experimental

value of lattice constant a is taken from Ref. 36.

b Calculated as a difference between the HOMO and LUMO, i.e., only short-range

correlation effects have been taken into account through the parametrization.
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TABLE III. Semi-empirical parameter sets used in the present work: ζ (au), Eneg

(eV), P0 (e) and β (eV).

Atom AO ζ Eneg P0 β

Ba 6s 1.65 11.34 0.2 -0.4

5p 2.8 30.6 2.0 -4.0

4s 1.4 1.4 0.65 -0.5

Ti 4p 1.1 -10.0 0.04 -0.5

3d 1.93 -2.9 0.62 -9.0

O 2s 2.27 4.5 1.974 -16.0

2p 1.86 -12.6 1.96 -16.0

TABLE IV. Semi-empirical two-center parameters αmB (au-1) optimized during the

calculations; mth AO belongs to the atom A, where A≠B.

A B

Ba Ti O

Ba 0.20 0.52 0.33

Ti 0.11 0.13 0.10

O 0.52 0.36 0.15
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TABLE V. Atomic coordinates, displacements, ∆r, (in Å) and rotational angles, α, (in

degrees) in the polaron-surrounding defective region obtained by the automated

geometry optimization. A "+" sign denotes displacements of the atoms towards the O(1)

while a "-" sign means displacements in the opposite direction. Note that the origin (0.0,

0.0, 0.0) is occupied by a Ba atom. The atomic numeration corresponds to the one in the

FIGURE 2.

Atom Coordinate Perfect

crystal

Defective

crystal

α ∆r

O(2) x 0.000 0.108 1.47 +0.132

y 2.005 2.053

z 2.005 2.061

O(3) x 4.010 3.997 0.52 +0.044

y 2.005 1.984

z 2.005 2.045

O(4) x 0.000 0.132 +0.160

y 2.005 2.025

z 6.015 5.922

O(5) x 2.005 2.041 1.09 +0.040

y 4.010 3.993

z 2.005 2.013

Ti(6) x 2.005 1.996 -0.124

y 2.005 1.988

z 2.005 1.880

Ti(7) x 2.005 2.000 -0.036

y 2.005 1.988

z 6.015 6.055

Ba(8) x 0.000 -0.016 -0.040

y 0.000 -0.025
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z 4.010 3.981
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TABLE VI. Wave functions expressed in the AO´s coefficients for the ground φh and

excited φh* states of the hole polaron.

Atom AO AO coefficients

O(1) 2px 0.81655

φh Ti(6) 4px 0.19603

Ti(7) 4px 0.22317

O(1) 2pz -0.66146

φh* Ti(6) 4s 0.24354

Ti(7) 2z
3d -0.32794

4s -0.40766
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FIGURE CAPTIONS

FIGURE 1. The DOS for the upper and lower valence bands of the BaTiO3 cubic

lattice obtained by the LUC computations: a) total DOS; b) DOS for the O 2s and 2p

states; c) DOS for the Ba 5p, 6s and Ti 3d, 4s and 4p states.

FIGURE 2. Atomic displacements in the [Ba8Ti8O24]+ cluster around the polaron: a)

the arrows show Ti atoms moving away from the polaron; b) rotation of the O atoms

situated in the defective region.
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