
AbstractThis project tackles issues of scalability and reality transfer in evolution-ary robotics through the hard task of scoring goals in robot football.Evolutionary Robotics raison d'etre is to allow behavioural complexitybeyond that imposed by the limitations of design, and as such scalabilityof techniques to more complex tasks is a central issue. The use of visionaddresses sensory complexity and a novel technique of object level repres-entation, using virtual sensors to provide such a description of the world, isimplemented and seen to work. The use of task decomposition addresses taskcomplexity, allowing division of a complete task into simpler sub-behaviours,making a potentially intractable problem tractable to solution by the evol-utionary algorithm. Results show that designer misconceptions can reducethe e�cacy of the latter approach.Good controllers were consistently evolved in simulation using geneticprogramming of logic-level controllers, and for the most part successfullytransferred to reality. A controller that could score goals in a real-world en-vironment using visual location of ball and goal was evolved. The complexityof this task, within evolutionary robotics work, goes some way to validatingthe scalability of the approaches.
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Chapter 1
Introduction
There is a growing realisation within the �eld of intelligent robotics that be-havioural complexity is approaching a limit imposed by di�culty of design.Evolutionary robotics, the application of evolutionary algorithms to robotsynthesis, has emerged as an attempt to breach this impasse. Time con-straints typically require evolution in simulation. Such an approach intro-duces the problem of successfully transferring the evolved controller from thevirtual to the real world. Such reality transfer is a central issue in evolution-ary robotics, without attempts at which, work remains unvalidated.The aims of this project were to work at the current limit of behaviouralcomplexity in evolutionary robotics, developing techniques that would allowprogression beyond this. This was done through application to a complextask | robot football. Crossing the reality gap under pinned all aspects ofdesign, and a data-intensive look-up table approach was taken: response ofmodelled aspects in the real world was sampled and recalled in simulation torecreate a virtual reality.The work is characterised by its use of Genetic Programming, task de-composition, and object-level virtual sensor approach to vision. The commontheme of these techniques is their scalability in principle. Scalability is iden-ti�ed as a key issue in evolutionary robotics, being essential if it is to realise1



its potential as a means of extending the complexity of robot behaviour pastthe `design limit': At present the, still nascent, �eld is struggling to pro-gress from the domain of `toy problems'. The intended scalability of taskdecomposition and virtual sensors comes from the designer's insertion of do-main knowledge to guide evolution and prune the search space | they areengineering/evolutionary hybrid approaches.Genetic Programming and the style of controllers it encourages have beenlargely overlooked, and in some cases dismissed, by the evolutionary robot-ics community. Results here, and in [Lee et al. 97] show that logic levelcontrollers are highly tractable to Genetic Programming and merit furtherconsideration.Evolutionary algorithms are not all powerful1! Through task decom-position complex behaviours can be recursively broken into simpler sub-behaviours, reducing an intractable problem to many tractable, independ-ently evolvable ones. It is hoped that these can then be e�ectively recombinedto give the complete behaviour. Such success will depend upon the design ofthe decomposition and results presented show how bad design2 can imposeconstraints that hinder evolution and performance: A monolithic controlleris seen to perform better than a hierarchical one. In some cases decomposi-tion may be necessary and some guidelines about how to go about this arepresented based on lessons learnt.Tackling the problem of vision is also important if evolutionary robotics isto progress to real world problems. Vision introduces problems to simulation,and complexity in evolution. Both of these are circumvented by abstracting1EA generated solutions are often presented with no impression of the work involved ingetting the EA to solve the solution, perhaps portraying them as more automatic/powerfulthan they are. Throughout this thesis details of the steps involved in tuning the �tnessfunctions and EA parameters have been endeavoured to be documented to avoid thispotential illusion.2not intended as such 2



vision to the object level: `virtual sensors' are evolved to give such object-level descriptions using supervised learning on a training set of images. Thisis a novel approach, and is open to criticism, particularly that of revertingthe problem of vision to the domain of static observer and classical machinevison rather than exploiting the interactive nature of robot perception. In-deed it proved a struggle to get good sensors using this technique, but givensuch sensors this level of abstraction is attractive: Controller evolution usingvision was as tractable as for simple low bandwidth sensors, even with highlyunreliable virtual sensors. Simulation was simple and fast.The project is based on work by [Lee 97] with extensions of vision andcomplexity of task. Implementation of the above techniques, particularlythat of virtual sensors were time consuming and as such the work is largelya development of a technology. The techniques were applied to the taskof visually locating a ball and pushing it to a visual goal | inspired byrobot football. This is a hard task in the sense of other achievements inevolving robot controllers and is at the current state of the art in the �eld.A controller that could score goals in the real-world, starting facing up to90� from the goal, and dribbling the ball from the half way line, was evolved.The general success stands as an existence proof, showing these techniquesto work, and calls for further development and comparative work to assesstheir true worth. The complexity of the task goes some way to validating thescalability of the approaches and it is hoped that the principles of scalabilityupon which virtual sensors and task decomposition were based will allowapplication to more complex problems.1.1 Thesis StructureChapter 2 introduces the �eld of evolutionary robotics, introducing relevantconcepts and providing some context for the work presented.3



Chapter 3 introduces the controller architecture and genetic program-ming as the means of evolving such controllers.Chapter 4 introduces the robot used | a LAMI Khepera with K213vision turret, the environment | a at surface bordered by uniform wallswith a vertically striped goal, and the task | pushing a tennis ball to thegoal.Chapter 5 details the simulation of the Khepera and the environment.The approach of look-up tables is used to create a `virtual reality' of IR sensorresponse and Khepera movement. Problems with the intended methods ofvision modelling, leading to the idea of virtual sensors, are explained.Chapter 6 explains the method and principles behind the virtual sensortechnique, along with a conceptual argument for and against such an ap-proach.Chapter 7 chronicles the virtual sensor development and describes thecharacterisation of the evolved sensors for modelling in simulation.Chapter 8 describes the evolution of the controllers. The decompositionand �tness functions are described. Controller modules are evolved and thesubsequent reality transfer is presented. Some analysis of controllers at thebehavioural and logic level is made. An experiment on controller decompos-ition is included.Chapter 9 summarises the work and suggests future directions.
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Chapter 2
Evolutionary Robotics
Evolutionary robotics is the application of evolutionary algorithms tothe synthesis of robot controllers, and in some cases robot morphology[Hautop-Lund et al. 97]. It has emerged as a response to the growing real-isation that designing increasingly complex robots using the behaviour-basedparadigm, e.g. [Brooks 91a], is disproportionately di�cult and that \inter-esting robots may be too di�cult to design" [Harvey et al. 93]. It is hopedthat by using the semi-automatic approach of evolutionary algorithms roboticbehaviours can breach this impasse.2.1 A Di�cult Design ProblemA number of observations have been made about why behaviour-based robot-ics controllers are di�cult to design. Behaviour-based controllers are charac-terised by their behavioural, rather than functional, decomposition. In thearchetype architecture, Brooks's subsumption architecture, behaviour mod-ules are wired together in task producing layers linking perception and actionin a highly reactive manner [Brooks 85, Brooks 90]. More complex task func-tionality is added in the form of new sense!action layers that interact withexisting layers solely by means of suppression, inhibition, or message passing5



to modules therein. Brooks alludes to natural evolution as the inspiration forthis incrementalness [Brooks 90, Brooks 91b]. This is in contrast to the clas-sical treatment, prevalent until the late 80's, of sense, planning and actionas being largely independent of each other.A behaviour based controller is thus a highly distributed system withthe associated complex dynamics, and [Resnick 97] notes the problems de-signers can have with distributed systems in general. Whilst there havebeen many successes with simple, insect-like behaviours, there is a problemin design scalability because the complexity can scale with the interactionsbetween modules: exponential with respect to modules in the worst case.[Gomi & Gri�th 96] note that examples of early behaviour-based controllerswere no larger than several dozen competence modules; [I. Harvey 97] putthe �gure at 10 layers.Further problems arise from the robot being an embodied agent, havinginteractions with an external environment. The result of actions is oftenhard to foresee and uncertain. The sensors are only measuring devices, oftennoisy and non-linear, they do not give descriptions of the world in terms ofobjects [Brooks 92]. Good characterisation is needed if the designer is to seethe world from a robot-eye view and utilise this to give e�ective perceptualconstructs. Even with a good understanding of the response of a sensor it ishard for the designer to consider all secondary sources the sensor will respondto. In addition, [Nol� et al. 94] notes that action selection design is madedi�cult by the strong sense-action coupling in behaviour based systems: therobot's behaviour depends on current stimuli, which depends on previousactions, ..., and a loop is formed. A choice of motor action is thus linked toprevious actions and we now have temporal agent-environment interactioncomplexities. 6



2.2 Evolution as the Solution?Given the above burdens on the designer and the resulting limitations designis placing on the behaviours achievable, using the semi-automatic methodof genetic algorithms is attractive. These population based, empirical creditassignment [Angeline 94] search methods have been applied successfully tomany AI �elds including the evolution of robot controllers. Their e�cacyaside they are also super�cially attractive for their biological metaphor andits relevance to evolving agents.Using evolutionary algorithms allows the roboticist to declare the robotcontroller at a task or behaviour level, ideally without having to worry aboutany lower level mechanisms. This is done through the user de�ned �tnessfunction, which also interacts with the environment, to de�ne successful be-haviour.A minimum evolutionary run might involve a population of 30 robots,running for 30 generations. It can be seen that a �tness evaluation time ofthe order of minutes will give a run time of the order of days. Such assessmenttimes may be practical for trivial behaviours such as obstacle avoidance but ascomplexity increases more time is needed to encounter and check for the fullrepertoire of behaviour. Multiple trials comprising a single assessment havealso shown to be bene�cial [Reynolds 94b, Jakobi 94a], further increasingrun times. Operating over such long periods of time the robot physiologyis susceptible to change | batteries lose capacity and drive-trains wear,leading to altered dynamics | something the evolutionary algorithm willhave to adapt to. Examples of real-world assessment are [Floreano 97] wherecollision avoidance takes 2-3 days to evolve and [Cli� et al. 92] where locationand movement to a visual target takes approximately 1 day to evolve.It can be seen that the principal problem for evolutionary robotics is oneof time duration. Solutions include assessment in simulation during evolu-7



tion then down load of the �ttest controller to the real robot [Nol� et al. 94,Jakobi 94a, Cli� et al. 93], and running parallel assessments as in nature(suggested by [Floreano & Mondada 96]). The common choice is simulationand indeed most evolutionary robotics is done in simulation. Such an ap-proach can accelerate assessment by a factor of 103 [section 5.1, below] andreduces the resources required, robotic and environmental, but brings withit a new set of challenges; Section 2.3 below details these.As well as being a necessary solution to human designer limits there is astronger viewpoint of evolutionary robotics as being emphatically preferableto hand-coded design: By choosing a low-level representation for the geneticalgorithm the controller can be more plastic than a prototype used by adesigner, allowing the controller structure to emerge from the evolutionaryprocess. In this way, with no dogmatic adherence to, e.g., behavioural orfunctional decomposition, the best controller type [or in practice degree ofeach] for the job can be selected [Harvey et al. 93]. Such an argument is morefundamentally about introducing assumptions/knowledge into the controller,and there are proponents for and against this. The task decomposition usedin this project is an example of introducing domain knowledge and section 3.3looks at this issue in more detail.2.3 Simulation as the Solution?Accepting that simulation is neccesary if robot controller evolution is to occurin feasible time introduces the central issue of simulation to reality transfer ofthe evolved robot. In an early evolutionary robotics paper [Brooks 92] high-lights some of the expected pitfalls: That e�ort will go into solving problemsthat do not come up with the real robot and world (regular validation on realrobots is recommended). That there is a near certainty that programs evolvedin simulation will fail on transfer to the real world because of the di�erences8



in sensing and actuation arising from the di�culty to simulate the actualdynamics of the real world. These are valid cautionary points and were per-haps a reaction to arti�cial life style `grid worlds' being used at the time, e.g.[Pollack & Ringuette 90]. Since then there has been much work, and successin \crossing the reality gap" e.g.[Lee et al. 97, Jakobi et al. 95, Nol� ss].A number of approaches have been used and shown to work, for simpleproblems at least:Mathematical modelling has been used by e.g. [Jakobi et al. 95]. A two-dimensional, spatially continuous world with discrete 100ms time steps wasmodelled, with the kinematics, sensor response and propagation of radiationbased on control theory and physics equations respectively with empiricallyde�ned constants. Noise at the real-world level is added. The level of detailand decidedly salient features to model were reached through intuition andexperimentation, and a need to keep computational costs for a single assess-ment low. Obstacle avoidance and light-seeking behaviours were evolved andtransferred to reality with no qualitative changes in behaviour.The look-up table approach [Nol� et al. 94] is a data intensive methodthat involves sub-sampling of sensor response over all possible scenarios thatcan be encountered in simulation. For example an IR sensor response to awall is measured over 20 distances over 180 orientations to the wall. Givena particular situation in simulation the actual responses of the sensors canthen be recalled | recreating a faithful representation of the robot's world.Such an approach takes into account the idiosyncracies of each sensor and[Nol� et al. 94] found that each sensor responded in a signi�cantly di�er-ent way from other `identical' sensors when exposed to the same situation.This approach can also be applied to the dynamics of the robot, measuringmovement for combinations of motor commands.In contrast to mathematical modelling, the look-up table approach o�ersgreater faithfulness to the real world and lower computational overheads,9



but has diminished generality. [Nol� et al. 94] recognise that the look-uptable approach becomes more costly as environmental complexity increases:Without any generic assumptions, samples of every obstacle must be taken,perhaps resulting in a too highly memory intensive simulation. Combiningsensor measurements from individual objects is a potential problem | com-binatorics prevent sampling of all relational positions. Non-symmetrical ob-jects require sampling frommany view points; in [Nol� et al. 94, Lee et al. 97]circular obstacles are used. For these reasons the scalability of such an ap-proach is questionable.The issue of scalability is of vital importance if evolutionary robotics isto transcend its relatively simple controller behaviour achievements, to ful�llits raison d'etre as a means for taking robotics past the limitations of humandesign.The Mathematical model approach has been validated in terms of cop-ing with sensor model complexity up to the level of IR and ambient lightsensors in fabricated `two dimensional' environments containing a few geo-metrically regular objects. The level of dynamical complexity modelled byeither approach is so far very basic, typically involving no interaction withthe environment except between the wheels and oor. The current state ofthe art using either approach is no interaction with walls and perhaps push-ing of a cylindrical box [Lee et al. 97]. Using the radical envelope of noiseapproach and minimal simulation, see section 2.3.1, [Smith 97] has modelledinteraction with walls and ball-pushing. It should be noted that in nearly allcases mentioned a LAMI Khepera research robot is used. The properties oflight weight, small size, cylindrical shape and precise P.I.D controlled steppermotors make it far easier to build an accurate simulation of a robot of thissort than it would be for many others [Harvey et al. 93].Although in principle entirely extensible, in practice limitations of thecomputational requirements of the model and the skill/resources of the mod-10



eller have prevented this. As mathematical models strive for increased realismat some point simulation-time or design-time will make the approach slowerthan real-world evolution. The success of such an approach therefore relieson the designer making the right approximations such that reality transferis still possible.2.3.1 NoiseA number of experiments into the e�ect of noise in simulation have shownthat it is important to faithfully represent the real environment's noise levels.In the extreme case of zero noise, evolution will exploit the fact that the robotwill behave identically in similar situations [Harvey et al. 93], but such reli-ability cannot be counted on in the real world. In the case of too much noiseone can get freak peak or trough levels that no longer trigger behaviours inthe real world. [Nol� et al. 94] discovered that adding a translational posi-tional noise they termed `conservative noise' to the robot in simulation elim-inated the drop in �tness upon reality transfer observed with conventionalor no-noise in simulation.In [Jakobi et al. 95], it is noted that noise added above the level of thatfound in the real environment \may help to cope with the inevitable de�-ciencies of the simulation by blurring them". This has since developed intothe radical envelope of noise hypothesis [Jakobi 97a] where a distinction ismade between features which may have some bearing on the robot behaviour(base set aspects) and those that should not a�ect behaviour (implementa-tion aspects). Non-reliance on implementation aspects is ensured throughmaking them unreliable through variation over trials; in such a situation �tindividuals must ignore these aspects of the simulation. This approach ispowerful in terms of allowing generalisation | e.g. the colour of a ball couldbe made an implementation aspect, ensuring that the controller would not besensitive to the actual colour of the ball in the real world | and evolving ro-11



bots that operate in more complex environments, by selectively removing theneed to model certain aspects by making them implementation aspects1. Theemphasis of simulator design moves away from trying to minimise all di�er-ences between simulation and reality to acknowledging these and preventingthe controller relying on them. This technique has been successfully appliedto evolution in simulation, and subsequent transfer to reality, of corridorfollowing, visual target seeking,[Jakobi 97b] and robot football [Smith 97].2.4 VisionThis project uses camera-like (one-dimensional) vision. It is intended thatthis be used for navigation purposes, facilitating identi�cation of objects ata distance. Given that the complexity of sensor required is related to therange of behaviours and environment in which the tasks are to be performed,it is essential evolutionary robotics tackle vision if it is to progress past `toyproblems'.Examples of simulating vision in evolution are [Floreano & Nol� 97] and[Smith 98] using thresholded and grey level Khepera vision module imagesrespectively. [Jakobi 98] and [Jakobi ng] use 32 pixel and video resolutionimages, modelled using the radical envelope of noise approach.2.5 CommentsThis chapter has focused on the issues of evolutionary robotics relevant tothis project. Other issues/challenges, not necessarily focussed on in thisproject, outlined by [Matari�c & Cli� 95] include:� Fitness Function Design: It is non-trivial expressing behaviours in the1although the base set must of course be adequate for the desired behaviour to be apriori possible 12



form of a �tness function. The exploitative nature of the GA willoften `cheat', �nding a way to satisfy the �tness function that doesnot produce the behaviour intended. The design process is often oneof incremental trial and error, which unfortunately is often masked byfailure to report on this process.High level �tness functions, e.g. goals scored, are often inadequate asthey do not provide enough guidance | the step from not scoring toscoring is a large one and the �tness landscape has no intermediatepoints, up which the evolution can gently climb. Given this, compon-ential �tness functions are required, for example the standard collisionavoidance one consists of move-fast, move-straight and avoid-objectscomponents. For more complex problems the interactions betweenthese sub-goals and their relative weightings further exacerbate design.Work towards high level �tness functions working in conjunction withecological constraints by [Floreano & Mondada 97] is a potential solu-tion. The decomposition used in this project, see chapter 3, is another.� Co-evolution: As a powerful method for searching �tness landscapes,in particular for evolving group or adversarial behaviour. See e.g.[Miller & Cli� 94, Floreano & Nol� 97].� Genetic Encodings: The controller must be expressible as an encod-ing, phenotypic or genotypic, suitable for manipulation by a geneticalgorithm. See chapter 3.� Evolving Morphology: Brooks advocates this in [Brooks 92] as a methodfor reducing the size of the search space. Robot morphology ostensiblyhas a large e�ect on behaviour, and co-evolution of body and control-ler can optimise both and the interaction between the two. Takingthis approach is consistent with the emerging view of mind-body asa strongly coupled whole [Clark 97]. [Hautop-Lund et al. 97] evolve13



wheel-base and radius, body size, and sensor positions along with thecontroller, in simulation only.The motivations behind evolutionary robotics have been outlined. Itpromises a great deal although in its present nascent stage is failing to workat even a labour-saving level, with evolved controllers taking more or the sameamount of e�ort as would have been required had they been hand crafted[Matari�c & Cli� 95]. The author considers the central problem to be one ofthe [inevitable] simulator design and subsequent need to cross the reality gap,with the scalability of technique used being paramount. There are advancesto be made in terms of complexity of dynamics and sensory environments.Additional approaches to crossing the reality gap include evolution in simu-lation followed by further evolution in the real environment [Nol� et al. 94],and choosing controller representations that are robust to real world transfer[see section 3.2, below].
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Chapter 3
Genetic Programming theController
The Genetic algorithm of choice for this project is Genetic Programming,GP, an evolutionary search algorithm with a tree data-structure encoding.Individual trees are (typically) functional, LISP-like programs. The possiblefunctions, located at the branching nodes of the tree, form the function setand the possible atoms, located at the leaf nodes, form the terminal set.A population of trees is manipulated by an evolutionary algorithm, brieydescribed in section 3.4. [Koza 92b] provides a comprehensive introduction toGP and it will only be discussed further in the context of the variant used inthe project. Evaluating the e�ects of variations of GP and GP parameters onthe evolution is not an aim of the project. The controller representation usedwas developed by [Lee et al. 97]. The `sgpc' program [Tackett and Carmi] isused as the GP engine.3.1 GP in Evolutionary RoboticsThe �rst example of GP use in evolutionary robotics is [Koza 92b], with wallfollowing and box pushing behaviours evolved in simulation. The function15



set was fIFLTE (if arg1 less-than-or-equal-to arg2, do arg3 else do arg4)1,PROG2 (a Lisp construct for sequencing evaluation of its two arguments)g;the terminal set consisted of sonar sensors (returning distances to the nearestwall at which they were pointing), actions ( moving backwards/forwards,turning by a constant amount), and carefully chosen constants such as theminimum safe distance to avoid hitting a wall. As a piece of evolutionary ro-botic research2 this work remains unvalidated since no attempt was made totest the controller in reality, and so it should be considered as Arti�cial Life.It has been criticised as: Relying on the simplicity of the simulated environ-ment [Brooks 92], with no noise modelling; Choosing the terminal/functionset on the basis of an existing control program [Matari�c 90] that could per-form similar tasks, thus providing no evidence for GP as a general method;Using arti�cial sensors, returning an absolute description rather than a re-sponse, and arti�cial actions, being absolute distances of motion not motorcommands.Another example is the sequence of work [Reynolds 94c, Reynolds 94a,Reynolds 94b] evolving corridor following and collision avoidance. The func-tion set was f+,-,*,% `protected divide' (preventing overow if division byzero is attempted),ABS,IFLTE,TURN,LOOK FOR OBSTACLE (returningthe distance to the nearest obstacle in the direction of its argument)g, theterminal set was real constants. This work is more realistic than [Koza 92b]with noise and robustness of controllers with respect to e.g. di�erent startingpositions being considered. However, the sensors used still return a distancerather than a real sensor response and the evolved controllers have not beenvalidated in reality. The tree representation used was real-valued with theoverall value of the tree being transformed to a steering direction, in which1A conditional statement returning a real number | consistent with the rest of thetree nodes2which the author may not have intended it be16



the robot moves for a �xed period of time.The work of [Lee et al. 97] is the only example, known to the author, ofGP evolved controllers being validated on real robots, and hence could besaid to be the sole example of GP evolutionary robotics, as opposed to GParti�cial life. Box pushing towards a light was evolved and this is at thecurrent state of the art in terms of behavioural complexity in evolutionaryrobotics. Lee's controller architecture is used in this project and is detailedin the next section.3.1.1 Controller ArchitectureIt is an entirely reactive, combinatorial logic system in which the output isdetermined solely by the sensor state at evaluation [Lee et al. 97]. A com-binatorial logic system can be mapped to a boolean network which can inturn be mapped to a boolean tree [Bryant 92], giving a architecture suitablefor use with a standard GP representation. The function set of the booleanvalued tree is fAND, OR, NOT, XORg3. The leaves of this boolean tree arestructured sensor conditionals, consisting of a comparison function (>= isused) taking terminals as arguments. The terminal set consists of real con-stants and sensor values. Thus sensor values are compared with other sensorvalues or `thresholded' against real constants (taking values in the range ofthe sensor values) to give a boolean value compatible with the higher levelbranches of the tree. Such a tree (see �gure 3.1), with two data types,functions designed for speci�c data types, and syntactic constraints on treestructure is termed a strongly-typed GP [Montana 93]. It would be possibleto do without syntactic constraints but would result in a higher proportion3although some of these are superuous in terms of being able to de�ne any booleannetwork this is not necessarily a bad thing. Although enlarging the search space, strictlyunnecessary functions may make a solution easier to �nd. Selection of function set remainssomething of an art form. 17



of ine�ective subtrees.As described so far, a tree will transform sensor state to a boolean value.A number of boolean values are required if the output is to be used to specifythe states of two motors (e.g. for a Khepera) so the values returned by Nsuch trees are used, these trees are joined by a dummy root node. WithN=6, as used in this project, the output of such a tree can be interpretedas 8�8 possible motor commands, and this is deemed continuous enough forthe purposes of the tasks attempted.
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Figure 3.1: A partially drawn controller-module. T denotes member of ter-minal set fSENSOR, REAL-CONSTANTg
3.2 Should GP be used?The review in section 3.1 shows the use of GP in evolutionary robotics to befairly limited. Neural networks (NNs) evolved using a genetic algorithm, arethe prevalent choice and a number of reasons have been cited for their use:18



� That small variations in the structure or synaptic values of a NN resultin small variations of the behaviour of the controlled robot, and that theresulting smooth �tness landscape of the search space aids the geneticalgorithm [Floreano & Mondada 96].� Their resistance to noise and breakdown, and their generalisation abil-ities [Floreano & Mondada 96].� That they have the ability to adapt through learning after evolution[Nol� et al. 94]. [Brooks 92] cites this as an essential feature of anycontroller evolved in simulation.� That the primitives manipulated in the evolutionary process should beat the lowest level possible since higher level semantics restrict the pos-sible set of controllers available to the evolutionary search [Harvey et al. 93].None of these properties of NNs, which GP programs may or may not haveto a lesser extent, is grounds for dismissing GP. [Floreano 97], who uses NNs,concedes that there is not enough evidence for the superiority of one type withregard to generalisation and complexity of behaviours of the evolved robot.Indeed the lack of work with GP, and the success of [Lee et al. 97] means it isa potentially fruitful area of research. The last objection is largely a matterof whether one sees designer input as misguided prejudices hindering theevolutionary process or expert domain knowledge cutting down the searchspace and guiding the evolutionary process. It is more relevant to the higherlevel behaviour language genetic programming representation proposed by[Brooks 92] than the low-level logic networks used in this project.Genetic programming is distinguished from the standard genetic algorithmstypically used to evolve neural net robot controllers by its variable length treerepresentation. Such extensibility is attractive if it is to be applied to evol-ution of arbitrarily complex robot controllers. Work at Sussex [Harvey 92]19



uses a variable length genotype genetic algorithm for similar means. In prin-ciple incremental evolution, starting with shorter genotypes with presumablysimpler behaviours and moving towards longer genotypes until su�cient be-havioural complexity is encoded, is possible. Given this the, roboticist needplace fewer prior restrictions on the size of controller; underestimation mayprune the set of all good controllers from the search space, overestimationmay unnecessarily slow the evolution.3.3 Shaping Through DecompositionIt is proposed that, at some level of behavioural complexity, evolution of com-plete homogeneous controllers will become intractable [Perkins & Hayes 96].An incremental method/architecture is thus eminently more scalable and thearchitecture of [Lee et al. 97] has this property via task decomposition andsubsequent recombination through arbitration. Task decomposition de�nesan incremental path through lower level behaviours being combined to formmore complex behaviours.Decomposition is done using the behaviour based archetype, where beha-viour producing primitives are coordinated through arbitration. The prim-itives have the form of the controllers already described and the arbitratorsare similarly reactive networks, their boolean output switching activationbetween behaviour primitives rather than being interpreted as motor output.Using such an approach, hierarchies of arbitrators and behaviour primitivescan be evolved so as to select the `correct' behaviour according to sensorstate. Such a plasticity a�ords evolutionary adaptation at the sensorimo-tor level and behaviour selection level. There is now a requirement for adesigner to select the decomposition of the task into sub-behaviours, andit is hoped that the modularisation chosen will be e�ective and that it willmake tractable, or speed up, the evolutionary process. This is likely since20



human designers are good at decomposing complex tasks at a coarse, orbehaviour scale, or are at least better at this than at a lower level sensor-imotor scale. Such a belief in the designer is the foundation of robot shaping[Perkins & Hayes 97], where a similar hybrid engineering-evolution approachis proposed.Using such a decomposition, suitable sub-sets of sensors can be selec-ted for each primitive/arbitrator. Such selection is again imparting domainknowledge, and prevents the evolutionary algorithm from having to ascertaine.g. that an IR sensor is useless when it comes to �nding the goal-mouth in arobot football game. Decomposition also makes design of the �tness functioneasier by reducing the number of components per function (see section 2.5)An example of a hierarchical architecture as used in this project is shownin �gure 8.1: using an example of a robot footballer, the root node might bean arbitrator between `�nd-ball' and `push-ball-to-goal' behaviour-producingsubtrees.3.4 The Evolutionary AlgorithmThe genetic programming works on a population of controller trees. The ini-tial population is randomly generated in this work although it can be seededwith hand-coded controllers in an attempt to guide evolution. The genera-tional variant is used initially, where the �tness of the entire population isevaluated before �tness based selection 4 of individuals to pass their geneticmaterial to the next generation. Selected individuals are either copied intothe next generation, mixed through crossover to produce o�spring, hopefullycombining good traits of both parents to produce even better individuals,or mutated. Mutation involves pruning and randomly re-growing sub-trees,4tournament or �tness-proportional methods were used, the choice was found to beinsigni�cant in terms of algorithm performance21



crossover involves swapping sub-trees between individuals, the details can befound in [Koza 92b]. The syntactically constrained nature of the controllertree requires syntax preserving crossover, which is simply a matter of selectingcrossover points in the parents to be at the same node class (logic-function,>= function, and terminal). The crossover, mutation and copying probabil-ities are �xed and user-de�ned. The success of the algorithm was found tobe dependent on, although not overly sensitive to, these parameters. As arough heuristic crossover values below 0.4, and a split of the remaining 0.6between mutation and copying, worked equally well.The evaluation involves running the robot in simulation for a given num-ber of time steps, possibly over multiple trials, and calculating its �tness overthese based on the �tness function. The controller is evaluated every 200ms,roughly approximating a continuous reactive controller, on the current sensorstate, the motor speeds being set according to the controller output and re-maining unchanged until the next update. The total �tness is typically theaccumulation of the �tness at each time step.Selectional pressure in the evolutionary process causes convergence. Pre-mature convergence, where the population is suboptimal and homogeneous,should be avoided. Diversity can be maintained through lower selectionalpressure (e.g. via smaller tournament size in selection) and through an islandor cellular model GP, both of which were available in the GP system used.In the island model smaller populations are evolved in parallel with occa-sional migration of the best individuals between populations. The migrationparameters must provide a balance between global mixing and maintaininglocal diversity. In the cellular GP individuals inhabit cells in a grid, matingis more likely with nearby individuals and so diversity can be maintainedthrough geographical isolation.Multiple trials are important to [statistically] counter the e�ects of non-determinism [Matari�c & Cli� 95] and to control for the e�ects of implement-22



ation aspects | for example the starting position of the robot. As in theJakobian de�nition, section 2.3.1 above, `implementation aspects' are thosethat the evolved robot should not rely on. Variation of these prevents `brittle'controllers from over-�tting, where exploitation of a regularity prevents gen-eralisation to other conditions. Experimentation has been done on the bestmethod of combining scores from multiple evalutations to give the �tness:[Jakobi 94b] notes how taking the mean gives a �tness closer to the truevalue5 but does not promote robustness; a controller that performs very wellon most of the training examples but fails on the others could be considered�tter than one which performs moderately on all of them. In contrast, takingthe worst score ensures robustness although information is discarded; per-forming badly on all runs gives equivalent �tness to scoring badly on justone run. [Smith 97] prefers median-score as the �tness measure. [Lee 97]investigates random selection of a sub-set, from a super-set, of starting po-sitions at each generation, �nding that it reduces the computational cost ofthe evolution6. The method of choice is still an open issue, being largelyproblem speci�c.

5The �tness averaged over N trials, as N tends to in�nity6[Gathercole 98] gives a thorough treatment of Dynamic Subset Selection in evolvingGP classi�ers 23
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Chapter 4
The Robot, the Task and theEnvironment

The task was inspired by robot football. The use of `football' to describethe behaviour is perhaps hyperbolic; more prosaically it is pushing an objectto a target. In terms of behavioural complexity in evolutionary roboticsthis task is state of the art. The task and environment were shaped by the25



properties/limitations of the Khepera robot and the K213 vision turret.4.1 The KheperaThe LAMI Khepera research robot with K213 vision turret is shown in �g-ure 4.1. It is small in size (57mm diameter, 60mm high), light weight witha smooth cylindrical plan pro�le, has an on-board 32 bit Motorola 68331processor, is equipped with eight short range (� 4cm) infra-red proximity,and ambient light sensors (not used here). It has two powered wheels, eachwith a feedback controller (P.I.D) with highly accurate positional encoding(� 10�1mm).

Figure 4.1: Khepera with K213 vision turretThe Khepera can run autonomously (for up to 30 minutes), using anon-board battery, or tethered with power being supplied by an overheadumbilical cord. Programs can be written in ANSI C using Khepera BIOSfunctions, compiled, then down loaded to the Khepera via this cord from a26



workstation serial line. The line also allows two-way communication with,and control of the Khepera using a communications package such as Kermit.Multi-tasking is possible, allowing the behaviour primitives to work inparallel with the output being selected by arbitration. In practice a serialimplementation is used for reasons of e�ciency: Arbitration gives the beha-viour primitive that has control, this is then evaluated to give the output.For this project a control program involves a `sense ! evaluate controller! send motor commands ! wait' loop with each loop-cycle duration being200ms.4.1.1 The Vision ModuleThe K213 vision module, �gure 4.2, plugs into the top of the Khepera. Itcontains a one-dimensional 64 pixel line camera1 and an ambient light in-tensity sensor. Output is a grey scale (256 levels with 0 being black) linearimage: �gure 5.3 shows images of background and ball against background.The view-angle is approximately 36 degrees and the focal range is 5 to 50cm.The scanning period can be set as fast 50ms; adequate for the 200ms timeslicing used in the project.The turret will return the brightest and darkest pixel indices if requested.Capture of sub-sampled images is also possible to give 16 or 32 pixel images.The light intensity sensor is used to adjust the integration time of thecamera according to the total ambient light level. This simulates an iris,improving the contrast of images and enabling operation over a wider rangeof lighting levels. An additional e�ect is to remove any cues of absolute lightlevels from the image; a white background can appear the same as a blackbackground due to iris compensation. This was to have repercussions in themodelling of the vision. The iris functionality is hardwired and cannot beswitched o�, though the light intensity sensor can be read.1Texas Instruments TSL213 27



Figure 4.2: Schematic of the K213 vision turretThe vision and IR sensors are noisy with respect to time, given a constantinput. Response characteristics vary over IR sensors and pixels in the camera.4.2 Robot FootballRobot football is a burgeoning �eld within AI/robotics. The task of footballhas been proposed as a benchmark problem as it ultimately requires techno-logies of: design principles of autonomous agents, multi-agent collaboration,strategy acquisition, real-time reasoning and sensor-fusion [Kitano et al. 97].There is a robot football world cup, the `RoboCup', receiving 100 entrantsthis year. The style of football herein is closer to that in the Autonom-ous Robot Football Tournament with its single player sides and rejection ofover-�eld cameras (permitted in RoboCup) allowing global position know-ledge. In the ARFT single robots (invariably Khepera's with K213 visionmodules because of size regulations) must push a tennis ball to a goal whilstan opponent is doing the same. Goals are coloured uniform black, the ballis white, the walls uniform grey and the Khepera's are dressed in black andwhite vertical stripes. The winner of this year's tournament scored 6 goalsin 20 minutes. 28



For the purposes of this project the opponent is removed; resources didnot allow the whole issue of coevolution that this would necessitate. Giventhis simpli�ed interpretation of robot football there are still signi�cant chal-lenges a successful controller must deal with. It must locate and move to-wards a ball using a limited (low resolution and one-dimensional) visionsensor, then push the ball towards the goal which must also be visuallylocated. Whilst pushing, the ball will tend to slide away laterally from theKhepera because of the point contact between two circular objects. The rollof the ball also introduces a natural time scale to the dynamics that theKhepera must keep up with.Modi�cations to the KheperaA fundamental problem is that the line camera is blinded by the ball whenpushing it; the ball �lls the �eld of view and the goal cannot be seen. Pushinga ball to goal with a reactive controller given such a situation seems infeasible.This is overcome by lifting the vision turret; the ball can be looked overwhen it is close but comes into view as separation increases because of lensdispersion in the vertical plane.4.3 The Pitch (no grass)This is a 800 � 700mm smooth surface. Walls are used to act as neutralbackgrounds, making the task of identifying ball and goal easier. For thispurpose they are dark green. They are visible up to a range of 40mm by theIR sensors, making collision avoidance possible. A tennis ball is used, this isa highly visible uorescent yellow, it is visible up to a range of approximately30mm to the IR sensors and the length of the pitch to the vision. The goalis a black (darker than the walls) and blue (lighter than the walls) verticallystriped region. In an image containing ball, goal and background there is29



good contrast between the three. The goal stripes provide a potential mech-anism for discrimination between ball and goal: It should be rememberedthat because of the iris, objects can not be reliably distinguished on intens-ity alone. The stripes are wide enough (15mm) so that the striped regioncan be resolved at distances of up to the maximum focal range using 32 or64 pixel images.The pitch is in a room that is consistently well lit with di�use overheaduorescent lighting. Steps were taken to remove any dependence on this, seesection 6.4, so that e.g. moving the pitch to another room will not result infailure.4.4 CommentsThe Khepera is a very convenient desk top research robot, but this is alsoa matter for caution: Its small size and desk top nature almost necessitateconstruction of special environments which can tend to be unnatural andsimpli�ed. The Pitch used here is a case in point. Success of a techniquein any such environment is diminished by issues of scalability to the `realworld'. It is however useful as an initial testing ground for the methods andthe author is sceptical of the capacity of the vision sensor to cope with morecomplex environments. If the work is successful, time allowing, realism couldbe increased by removing the visual screens (i.e. walls) for instance.
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Chapter 5
Modelling the Khepera
The infra-red sensor response and dynamics are modelled using the look-uptable approach introduced in section 2.3, above. Such a method can be usedbecause of the simplicity of each of these aspects for the environment-task-robot combination used and confers increased realism and less computationalintensity than the mathematical modelling approach. Modelling the visionproved more of a challenge, so a new approach of a higher-level `virtual' or`software sensor' was used.5.1 The SimulatorA simulator developed by Wei Po Lee [Lee 97] and integrated with sgpc wasadapted and used for the project. The simulator was ideal for adaptationand use in the project; being designed for Khepera and circular-box-pushing-to-a-target. The simulator does not model interaction with walls; collisionwith a wall results in termination of the run. This is �ne for the football taskas the walls were only introduced to provide a [IR] visible boundary to thepitch and to act as sight screens. The Khepera should not exploit physicalinteraction with the walls when playing.The IR sensor, vision and dynamics models detailed in the coming sec-31



tions were implemented. A run-time MATLAB graphical display was added;�gure 8.6 shows a screen shot. This proved invaluable for debugging and canbe run at speeds that allow the evolutionary process to be observed in reas-onable time. Watching the evolution can help identify how individuals areexploiting the �tness function to behave in unintended ways. It also becameapparent that such a facility would be very useful for run-time environmentalshaping, with the author frequently wanting to modify parameters to drivethe evolution in the direction that was really wanted. For example, as therobot comes to master the problem from all the starting positions speci�edit sometimes becomes apparent that its control strategy may fail in certainscenarios. Being able to introduce such scenarios would be extremely useful.Run time interaction with the evolutionary algorithm would also open upother shaping possibilities, incrementalness in terms of task/environmentalcomplexity for instance. The author is not aware of any such research inevolutionary robotics.The box kinematics model in the existing simulator treated the box asmoving freely when being pushed by the Khepera: moving along the normalto the point of contact, and being stationary otherwise. This was extendedto ball-like kinematics by letting the ball roll after it has been pushed; at thevelocity and direction it is pushed in, with deceleration at each time step.Noise is added to the deceleration, the direction of velocity, the directionof movement during pushing and the separation of the ball from the Khep-era after each pushing time-step. These aspects were designed to capturethe irregularities of the tennis ball's movement and shape, with the last as-pect approximating the tendency of the ball to rebound or roll away fromthe Khepera during pushing. In practice the ball-like aspects of the modelwere `switched o�' by choosing box-like values for the coe�cients becauseaccurately determining these was not possible given the lack of suitable ex-perimental equipment. Section 8.4.1 details an (unsuccessful) attempt at32



introducing ball dynamics through choice of coe�cients based on rough ob-servation.The simulator, with graphics disabled, gives speed up of order 103 overreal world evolution, allowing most runs to be completed in the order ofminutes.5.2 The Infrared SensorsInfrared snapshots of the wall and ball are taken starting from the point ofsaturation (2mm) and moving backwards in 2mm increments until the objectin question becomes invisible to the sensors (28mm and 48mm for the balland wall respectively). At each separation a 360 degree turn in steps of 2 de-grees is made, with 30 readings being made for each sensor, with the averageand standard deviation being recorded. The positional sampling frequencyis adequate, with the variations due to changes in distance/angle being be-low the level of noise. Analysis of the standard deviations shows the noisecharacteristics to be independent of the IR sensor and object being viewed,but a strong function of the IR sensor reading, see �gure 5.1. The noise ismodelled by calculating the mean standard deviation 1 over IR sensor value`buckets' to produce a noise look-up table, indexed by IR sensor reading.The IR data is used by the simulator to produce a two-dimensional look-up table, for wall and ball, that can be indexed by distance and angle toobject. The symmetry of the ball and walls requires only sampling overdistance-from-object and angle-to-object. The indexed element is an arrayof 8 IR sensor readings to which the empirically derived noise is added. Fordistances-to-object outside the range of the look-up table, the values at the1it can be seen that for medium band IR readings the distribution of standard deviationsis skewed. This was ignored and it was assumed that using the mean standard deviationwould provide an accurate enough model of the noise.33
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sensor readingFigure 5.1: Scatter plot of IR sensor noise as a function of sensor value fordata collectedappropriate limit are used.5.3 The DynamicsThe movement of the Khepera, given a left and right motor command for thetime slice duration, is described by a change in heading and a translation ofthe Khepera's centre.Experiments showed that the on-board odometry corresponded well tothe absolute movement of the Khepera. This allows high resolution [units of0.08mm] on board measurement of the short distances moved by each wheelfor each pair of motor commands. By measuring movement for sequences ofmotor commands it was found that it was reasonable to consider each pairof motor commands in isolation, with the movement being produced beinglargely independent of the prior and following commands. This approxim-34



ation starts to break down with oscillations between full forward and fullbackward speed [�10 0:08mm=10ms] where the positional deviation is stillless less than 5%. It is attractive to keep this approximation since the sizeof the motor look-up table will cube if the immediate context of the motorstate is considered.
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Figure 5.2: Movement of KheperaAll of the 8�8 combinations of motor commands were executed 10 times,the average and standard deviation movement of each wheel were recorded.These wheel movement measurements are transformed into translation andchange-in-heading look-up tables using a model of the khepera following acircular arc, with a constant angular velocity 2. See �gure 5.2 and table 5.1.Error for each of the quantities is also calculated and stored in look-uptables, combining the error in the measured quantities using the maximum2this was introduced to the author by John Hallam and Graham Horn35



4x and4y the x and y translation respectively of the Khepera centreand the change in heading 4h, in radians, are given by:4x = Rsin(!t)4y = R(1� cos(!t)) from trigonometry, where R is the radiusof the arc followed, ! the angular velocity,t the time slice.4h = !twhere !t is given by:!t = (�rt� �lt)=D= (dr � dl)=D where D is the wheel base of the Khepera,and �l;r are the over-ground velocities ofthe left and right wheels and are related tothe over-ground movements of the left andright wheels, dl;r, as is usual.and where R is given by:R = D2 dl+drdr�dlsince:R = �! from standard equations of motion, where� is the tangential velocity given by � =(�l + �r)=2, where �l;r are related to dl;r inthe usual wayTable 5.1:
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possible error approach. Translational noise is of order 10�1mm, headingnoise is of order 100 degrees, and in both cases is a function of the relevantquantity. These tables give movements in the Khepera's frame of reference.In simulation the values are indexed according to the motor commands givenby the controller, noise added, and then transformed to global coordinatesto give the absolute movement of the Khepera.Interaction with walls does not have to be modelled due to the terminationof the run upon contact with them. It was provisionally assumed that theKhepera's movement would not be altered when pushing the ball, with a viewto modifying this if this assumption caused problems upon reality transfer.The accurate P.I.D. controller and positional encoding of the Kheperagreatly simplify modelling the dynamics.5.4 The Vision SensorThe initial intention was to use an extended look-up table approach for thevision modelling | `Extended' because images of lone objects would have tobe fused to give images of scenes containing multiple objects as a result ofthe impracticality of capturing a database of images of all scenarios. With asingle object it is possible to do this but with multiple objects the exponentialcombinatorics make it totally unscalable. The idea is similar to cinema `bluescreen', where independent foreground and background images are combinedto give a seamless composite image. In the case of this project look-uptables of images of the wall, goal and ball were to be made, at each timestep the relevant individual images could be extracted and overlaid [withthe wall at the bottom and the ball at the top] with some smoothing atthe seams to avoid false edge artifacts. The pixel values of this compositeimage would then be used in the GP as terminals. Such an approach ispotentially scalable, with calculations of occlusion, and false edge artifacts,37



and the implicit assumption that the appearance of the object is independentof its position/environment (e.g. what about shadows, changes in lighting)becoming an issue in the more complex case.Characterisation of the K213 vision turret revealed some idiosyncraciesthat eventually contributed to the rejection of this technique. The scalinge�ect of the iris means that it is not a matter of simply superimposing ball onbackground. Figure 5.3 shows how the image of a ball against a backgroundis dependent on the brightness of the background, information that is notcontained in an image of the background-without-ball due the iris's intensitynormalisation.A potential solution would be to scale all images according to the iris valueto give absolute intensity images. But, the iris does not normalise the imagein the sense of giving a constant average intensity [or minimum or maximumintensity], nor is the average intensity a reliable function of the iris reading:A simple constant scaling or scaling based on an observable quantity wouldnot give an absolute value. In the end the iris was `paralysed' by pluggingit with an LED, which went part way to solving the problem, although thecontrasts of ball/goal/wall were greatly reduced.There were also problems in determining where exactly the ball extremit-ies were in the ball images3 so that the correct section of image could beprojected onto the background images. It was also expected that the GPrepresentation would not be powerful enough to deal with pixel level inputof the images, perhaps requiring an automatically de�ned function [Koza 92a]extension to the GP engine used4. These problems are probably surmount-able but an alternative approach of `virtual sensors' seemed fruitful...3positional measurements of the ball and Khepera were not accurate enough to usegeometry reliably4a considerable undertaking given the time available38
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Figure 5.3: Image 1, a background, contains no clues as to how an image ofa ball against it would appear (image 2) since the background could be lightor dark
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Chapter 6
Virtual Sensors
This chapter details the vision modelling technique used. The shortcomingsof existing methods have already been discussed in section 5.4.6.1 A What?A `virtual sensor' here is a software sensor or detector that returns an objectlevel description of an image. For example a ball detector that returns TRUEwhen a ball is visible, FALSE otherwise, or a goal position sensor that returnsa numerical value correlated to the position of the goal in the image.These sensors could conceivably be hand crafted if one possessed enoughexpertise, however the problem can be posed as one of supervised learningand hence its solution (hopefully) automated. To synthesise a ball detectorfor instance, involves training a detector to output TRUE when presentedwith an image containing a ball, FALSE otherwise.Given such high level sensors, vision at the pixel level need not be simu-lated, greatly simplifying the modelling of vision. Instead one need only knowthe output of the sensor for the particular positional scenario. Accuratelypredicting the output of the sensor requires identi�cation of all the factorsa�ecting its performance, which might be the angular width of the ball in41



the image or whether or not the ball is overlapping the goal for instance.With careful characterisation it should be possible to accurately predict thesensors' output for purposes of simulation. All parameters that could con-ceivably be factors were recorded during the collection of the images forthe supervised learning. These were angular width of ball/goal, distance toball/goal, angle to ball/goal and class of image with respect to occlusion, ofwhich there were 30, shown in �gure 6.1. The last factor classi�es the ballas `partially visible o� the left of the scene', `fully visible and occluding theright edge of the goal', `no ball', etc. The classi�cation was geometricallyderived, being calculated from the relative position of the Khepera, ball andgoal. A minor complication was the visible width of the ball changing withdistance from the Khepera as a result of the vision turret being set up topeer over the ball when close: the coe�cients of a parametric model of visualradius as a function of separation were derived empirically. Inspection ofimages showed that the geometrical classi�er, the labeller of the images forthe supervised learning, was reasonably reliable.6.2 Genetic ProgrammingGenetic Programming was chosen, somewhat arbitrarily, as the supervisedlearning method. Alternatives were decision trees 1 and, the more estab-lished, neural nets.Most of the examples of Genetic Programming image classi�cation usefeature rather than pixel level input. An exception is PADO(parallel Al-gorithm Discovery and Orchestration) [Teller & Veloso 95] which classi�es256*256 256-level grey scale images. The function set includes arithmetic1in preliminary tests classifying images containing balls from those containing justbackgrounds genetic programming outperformed the c4.5 decision tree algorithm by 97%to 90% images classi�ed correctly respectively42
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Figure 6.1: Classes of image with respect to overlapping edges of ball andgoal and visual limitsoperations, conditional constructs, pixel access, regional properties (such asmaximum and average), indexed memory and evolveable library, functions.This is sophisticated (including parallel orchestration of a set of classi�cationalgorithms and \not simply a genetic algorithm" [Teller & Veloso 95]) andcomputationally intensive well beyond what is possible here. [Johnson et al. 94]evolve programs to give the position of a person's hand on a full bodythresholded image, reporting that evolved routines perform better than thosethey were able to write by hand. [Tackett 93] evolves classi�ers to distinguish43



images containing visual targets from those that do not, using a statisticalfeature vector of the image as input. The function set is f+,-,*,%,IFLTEg.GP is compared to multi-layer perceptrons and binary tree classi�ers andfound to outperform them.6.3 The ImplementationConsideration of the Khepera CPU processing power, see appendix ??, shapedthe choice of function set. Arithmetic operators f+,{,*,%g and IFLTE com-prise the function set, these can be combined to give any vision processingfunction one might reasonably require. More powerful operators such as theregional property functions in PADO are not used. Pixel intensities are usedas input and two methods were implemented: One where each pixel is adistinct terminal, its value being the pixel's intensity; One where a PIXELfunction accesses the pixel at an index given by its numerical argument andreturns that pixel's intensity. In both cases the terminal set includes real con-stants (randomly generated in the initial population) in the range of pixelintensities or indices, respectively. The second method is more powerful,being able to direct attention to pixels depending on the image | the treebeneath a PIXEL function can contain other PIXEL functions. It is also morescalable with respect to larger images; a terminal set of size 64, as is requiredusing the pixel intensities method for the highest resolution K213 images,is getting to the point where certain pixels may not be well represented inthe initial population. The �rst method was implemented as a safeguard;[Reynolds 94a] associated failure of a corridor following robot with the useof directional attention 2. The terminal set is completed with the maximumand minimum pixel intensities or indices, depending on the implementation,to give some global information, and since these are available `free' from the2Referred to as `roving eyes' in [ibid] 44



Khepera's on-board vision processing.The �tness of a detector depends on its performance on the training set:a database of labelled images. For presence detectors a tree returning apositive value for an image is interpreted as a positive identi�cation. The�tness is the proportion of correct outputs over the whole training set, with1.0 corresponding to a perfect sensor. For the position sensors, a rank basedcorrelation method was used to avoid constraining the output to being any-thing more speci�c than a monotonically increasing/decreasing function ofposition. The images in the training set are ranked according to ball posi-tion and output of detector elicited. The correlation co-e�cients of the tworanked sets are then calculated using the standard r-formula 3. Again, a�tness of 1.0 corresponds to a perfect sensor.Evolution is allowed to run for a �xed number of generations, or untila good enough sensor is produced. The true performance of the sensors isjudged by evaluating �tness on an independent validation set. A sensor thatcan generalise4 past the training set to the distribution from which thosesamples were drawn will perform equally well on the validation set. If over-�tting to the training set is found to be a problem regular testing on thevalidation set can be used to stop the evolutionary process when there is adown turn in performance on the validation set.6.4 Training DataThe success of any supervised learning is dependent on its training data. Agood data set is one that is representative in some sense. In this case it shouldgive reasonably dense sampling over the images the robot will encounter with3the Spearman rank based correlation equation could not be used because it does nottake account of equal rankings4\The ability to deal with sparse and nonuniform statistical covering of sample space",[Tackett 93] 45



the distribution of sampling matching the probability of the image beingencountered. This matching of distributions is important if the learning isto focus on the important cases, i.e. those that are encountered most often.Given that we are evolving a detector for a robot whose behaviour can notbe known, such matching is unattainable and an educated guess about thecommon/uncommon types of images is the best that can be done.A program was written to semi-automate the data collection process.Given relative positional information about the ball and goal the Kheperacan use geometrical calculations to rotate almost past an object | until itis just visible at the far edge of the �eld of view, then rotate in 2 degreeincrements in the opposite direction until no object is visible. It repeatsthis, reversing each time. It was straight forward to sample over all thepossible ball and goal images, the former just requiring reversing away fromthe ball, the latter requiring additional repetition over o�sets from the centreof the goal due to the non-symmetry of the goal. Combinatorics of theimages containing ball and goal required more con�gurations for this classof image; the procedure for taking pictures of just the goal was repeated,at a coarser scale, with the ball being moved away from and o�set fromthe Khepera for each con�guration. Images of just the background were alsotaken. Whilst the images were being taken changes in lighting were simulatedby intermittently shading the Khepera/ball/goal | the evolved detectorsshould now be robust to such changes in lighting. From this database ofimages a training and validation set had to be selected to best meet thecriteria outlined above. They were chosen to consist of 30% ball, 30% goal,20% ball-and-goal, and 20% just background images making 50% of imagescontain ball and 50% contain goal. Within the set of ball-and-goal images,classes were represented in proportion to that in the collected data set. Thiswas deemed to reect the likelihood of such images given random movement,and no better approach was available. The selection of data within these46



constraints was done randomly, with data going into the training or validationset at random also.Collecting large amounts of data is straightforward and so training andtest sets can be made by simply randomly splitting the data and withouthaving to invoke methods, such as cross-validation, advisable for small setsof data. The training and validation sets each contained approximately 1000images giving a dense sampling of the image space whilst maintaining reas-onable computational requirements for the evolutionary run.Chapter 7 details the process involved in evolving the detectors.6.5 A Good Idea?The advantage in terms of ease of modelling for simulation of the virtualsensor approach has been noted. This section discusses other issues on thee�cacy of such an approach.The problem of evolving sensors becomes a time independent supervisedlearning problem. This has advantages in terms of evolving sensors to workin more general environments: a ball detector could be made to respond togolf balls as well as tennis balls by inserting suitably labelled images of golfballs into the training set. General environments can thus be expressed asa superset of speci�c environments and each of these speci�c environmentsneed only be sub-sampled. Evolving a similar sensor with simulated vis-ion would require complete capture of each environment in order to builda comprehensive model, then evaluation in each environment, in turn. Byremoving the time dimension it is true that dynamic sensors 5, combiningmovement and sensor readings are not possible. The evolved sensor could,5There is no ostensible requirement for such a sensor in this project. However, anexample is a distance-to-goal sensor that could conceivably scan the goal by rotating,measuring the intensity oscillation frequency arising from the stripes moving across theimage. Being a function of distance from goal, this frequency is a depth cue.47



however, be used by the evolved robot in a dynamic manner.The main issue is one of active perception versus designer foresight orknow-how when it comes to what should be sensed. Active perception isused here, following [Floreano & Mondada 94] as meaning:An autonomous choice of the sensory information extracted fromthat available and of the type of pre-processing performed onit.[ibid]This extraction and pre-processing, given that primitive sensor information isavailable, will emerge during the evolutionary process as agents interact withtheir environment, with those individuals that attend to salient6 information| using it in an e�ective manner, perhaps combining it with other sensoryinformation, and �ltering out irrelevant information | perpetuating theirgenetic material [ibid]. Use of the virtual sensor approach prevents suchautonomous extraction by imposing a representation, in this case at the levelof object (ball or goal), and discarding all lower-level raw-measurement in-formation. Using the virtual sensor approach one might expect there to beless harmony between sense and action than when sense and action-selectioncan co-evolve; adapting to, exploiting and shaping each others functionality.An example of this was encountered during the collection of the training setdata: With little knowledge about which images would be important to, andfrequently encountered by, the as yet unevolved controller, uniform samplingand penalty in the �tness function was the best one could do. With coe-volution the perception7 need only perform well in frequently encounteredsituations. In both cases the controller can still adapt to the sensors, com-pensating for de�ciencies in certain situations by learning to avoid these.One can counter that for this task, and perhaps most others, it is fairly6With respect to performing the declared behaviours7it is perhaps a false dichotomy to be talking of perception and controller moduleswhen this is the case, but it is done for comparison with the virtual sensor case48



obvious what the robot needs to sense: in this case it needs to �nd and pusha ball to a goal so a ball and goal detector will be useful. If the designermakes a good choice of representation it could be expected that a `solution'controller would be more tractable than the case where one uses low levelsensory information. This potential for increased tractability, the reasonbehind most engineering-evolution hybrid approaches, is promising in termsof scalability: the virtual sensor e�ectively hides the complexity of the visionfrom the controller by putting it in a `black box'.The complex problem of vision is not removed, it is merely being juggledwith. There is still the problem of building the virtual sensor, which lies inthe �eld of classical machine vision or pattern recognition. And that withinthese �elds object recognition in noisy dynamic environments is recognisedas a challenging problem [Boyle & Thomas 88]. It may be that the problemis being phrased in a more di�cult way and there is always the possibility(or maybe certainty) that, by hand selecting what is sensed, one may havemissed out on exploration of simple and more e�cient visual mechanism thatwill solve the problem.The experimental results of this project will contribute towards answer-ing these issues of shaping versus unconstrained evolution: Whether insertingdomain knowledge makes evolution easier by guiding the genetic algorithm inthe right direction, reducing the search space, or whether the designer's 8 pre-conceptions (perhaps misconceptions) are misguided, pruning simpler, moree�cient solutions from the search space.
8or rather my own 49
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Chapter 7
Evolving the Virtual Sensors isHard
This chapter describes the (lengthy) process involved in evolving the virtualsensors and the subsequent performance characterisation in preparation forevolution, in simulation, of the controller.7.1 SynthesisInitial results with the GP supervised learning setup detailed in the previouschapter were not `satisfactory'. After a number of strategies were progress-ively employed, most notably an edge detector addition to the function setand large population size, a ball detector that correctly classi�ed approxim-ately 90% of the validation set and a goal detector that correctly classi�edapproximately 80% of the validation set were synthesised. This poor up-per limit of goal detector performance was to have repercussions in control-ler evolution. Preliminary attempts were made at evolving a ball-positionsensor, though this was not used in the controller.It is di�cult to know what level of performance will be su�cient fore�ective control; manual characterisation of the evolved sensors is time con-51



suming and hinders the use of feedback of evolved controller performance todetermine whether the virtual sensors being evolved are good enough. Theperformance striven for was largely a matter of intuition and compromise.As good as possble virtual sensor performance was deemed important sincethe robot must take the sensor values as read; for each sensed property thereis only one sensor, so there is no context on which the robot can base sensorreliability. Also, being solely reactive, the controller cannot integrate sensorreadings over time to glean a more reliable indication of world-state.7.1.1 The Ball DetectorSetting ParametersA search over various parameters was undertaken to ensure the GP was beingused to full e�ect.During the data collection process 16, 32 and 64 pixel images were taken.Inspection shows that 32 pixels give high enough resolution to capture thegoal stripes and ball. With 16 pixels some stripes are missed. The GP wasrun on all three image resolutions: In line with the above observation theperformance of the evolved goal detectors on validation sets shows that 32pixel images are adequate, giving signi�cantly better performance than with16 pixel images1 and no di�erence to when 64 pixel images are used. 32pixel images were chosen, being more amenable to any on-board-Kheperaprocessing that might be required and perhaps improving GP tractability byremoving redundant information.Using PIXEL function accessing (see section 6.3) gives signi�cantly betterperformance than pixel accessing via terminals, and is the chosen method.1Where comparisons between variants are made, mean performance of the best indi-vidual in the last population on the validation set is taken over a number of runs (typically 5because of computation-time constraints). `Signi�cance' in performance di�erence is usedin the statistical sense and is determined using a t-test with � of 0.05.52



Training set performance is the same for both approaches; the more powerfulfunction accessing method is better able to generalise.A coarse grained search of GP parameters was made, varying each inde-pendently for the most part:� Steady-State versus Generational: The GP algorithm described earlierwas generational, having distinct generations where the whole popu-lation is evaluated and then individuals are selected to form a newpopulation to replace the previous generation. In the steady-state GPa single pair of mates is selected from the population one at a time,their o�spring replacing weaker members of the population [throughnon-deterministic selection]. There are no discrete generations but itis convenient to consider a population-size number of such events asa generation. The steady-state GP gave signi�cantly better perform-ance and is the chosen variant. The sgpc program requires tournamentselection2 to be used with this variant.� Tree Depth: Trees deeper than 8 and 14 levels give no signi�cant in-crease in performance for ball and goal detectors respectively. Usinglarger trees increases the GP computational requirements and oftenincreased the evaluations (the product of population size and genera-tions) required before validation �tness stopped decreasing. Depths of8 and 14, respectively, were selected for use.� Genetic Operator Probabilities: The probability that a selected indi-vidual will undergo crossover at any node, crossover at a function node,copying and mutation were varied over all combinations of f0.0, 0.2,0.4g,f0.0, 0.2, 0.4g and f0.1, 0.3, 0.5g respectively, with the mutationrate set so as to make the sum of probabilities 1.0. The performance2the �ttest of N randomly picked individuals is selected53



was largely insensitive to these and values of 0.2, 0.15, 0.15, 0.5 wereselected.� Cellular GP: Cellular occupancy of f10,2,50g by f1,5,10g grids withlocalised selection gave no signi�cant increase in performance.After search and selection of these parameters the upper limit of perform-ance was approximately 80% correct. An experiment was run to indicatewhether this was a true upper limit: Parameters were con�gured to give lowselectional pressure and encourage diversity (tournament-size-two selection,cellular occupancy, Large populations and higher mutation probability) andno limit was placed on the number of generations before stopping. Largecpu-time allocation was required because of the the non-aggressive nature ofthe search (population size 1500 was used). Con�gured in this way the GPis resistant to premature convergence and is closer to truly open-ended evol-ution, i.e it is more likely to �nd the `solution' given enough processing time.Figure 7.1 shows how the performance continued to increase on the trainingset but the validation �tness reaches a limit. The continued improvementon the training set indicates that evolution is continuing, and in conjunctionwith the over-�tting to training data suggests that 80% is an a priori limit onthe performance of a ball detector using the tree representation and trainingmethod detailed so far.Problem ImagesIt was possible that the bad performance was in part due to `anomalous'images in the training set. Such images, e.g. a background image incorrectlygeometrically classi�ed as a ball, may be few but could have disproportion-ately adverse e�ects on the training. To check for this the �nal populationis run on the training set and the incorrect classi�cations for each imageare accumulated: anomalous images should be revealed by being incorrectly54
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Figure 7.1: Fitness as a function of generation: Showing over-�tting to thetraining data and the upper limit of classi�cation performance on `unseen'dataclassi�ed by a high proportion of the population.Inspection of such images shows the geometrical classi�cation to be re-liable. Most of the problem images correspond to: Situations where theview-angle of the ball is comparable to the view-angle of the goal's stripes;making identi�cation of ball against goal very di�cult (see �gure 7.2a). Orsituations where the goal is going o� the edge of the image with only onestripe being visible; being essentially equivalent to a partially visible ballimage. It is doubtful whether such images are classi�able, the author hastrouble doing this visually. There are a subset of background images thatare truly anomalous, see �gure 7.2b. The strong peaks could be caused bythe contrast enhancement e�ects of the iris. It was decided to remove thesefrom the training set so not as to `confuse' the GP with images that were55



similar to ball images but were not. This is bona �de since performance of theevolved sensors is measured against the validation set, which still containssuch images.
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Figure 7.2: Problem Images: a) `spot the ball'. b)A uniform-backgroundimage!With the cleaned up training set the performance increased signi�cantly,but only by a small amount: � 2% more correctly classi�ed.Edge DetectionThe next essay at getting decent performance was to increase the power ofthe GP function set by adding an edge detector. The number and separationof edges in an image are strong indicators of the image class and give theGP a higher level representation to work with. A weighted second orderderivative and �rst order derivative function were tried. See equations 7.13and 7.2 respectively, where I(x) is the intensity of pixel x. A ball-and-goalimage processed using these functions is shown in 7.3.3Used in [Smith 97] for Khepera vision processing, this responds to curves.56



edge(x) = I(x)� (0:25I(x� 1) + 0:5I(x) + 0:25I(x+ 1)) (7.1)edge(x) = I(x+ 1)� I(x) (7.2)
5 10 15 20 25 30

0

100

200

raw image

in
te

ns
ity

5 10 15 20 25 30
−40

−20

0

20

40
second order derivative

pixel

5 10 15 20 25 30
−200

−100

0

100

200
first order derivative

Figure 7.3: Edge Detection on an image of the goal and ball (far right)Adding the �rst order edge detector to the function set gave signi�cantimprovement in performance; to 87% correct classi�cation at convergencewith population size 1000. Adding the second order edge detector to thefunction set gave no signi�cant improvement in performance, perhaps be-cause of the extra sensitivity to noise inherent in a second order derivativecalculation. Performance with the function set containing the �rst order de-rivative edge detector was deemed good enough to work with; a ball detectorevolved at this stage was characterised and used in the controller evolution.57



7.1.2 Ball-position SensorPreliminary experiments evolving a ball-position sensor with a data set con-taining only just-ball images showed that the GP could essentially make aternary classi�cation of position, see �gure 7.4. Comparable performancecould probably be achieved by looking at the index of the MAX pixel. Thedetector was not developed further; although conducive to a higher perform-ance controller it was deemed unessential.
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Figure 7.4: Ball-position Sensor: showing essentially 3-way classi�cation
7.1.3 Goal DetectorUsing the same approach as with the �nal ball detector a goal detector with79% correct classi�cation was evolved. The e�cacy of the detector was worsethan this percentage suggests since it tended to give false negatives, result-58



ing in missing the goal 25% of the time. As a �nal attempt to get decentperformance a more specialised goal detector was evolved:It is noted above that images containing ball and goal are potentiallyharder to classify 4. By removing these from the training and validation setthe learning process can concentrate on the simpler, and most important taskof distinguishing goal from ball and background. This will be detrimental tothe performance on ball-and-goal images but this may not be so bad in termsof controller performance; a goal made `invisible' by a ball in the �eld of viewwill appear as the Khepera's viewpoint changes. A training and test set werecompiled that contained 50% just-goal, 30% just-ball, and 20% backgroundimages.Using this approach performance increases to 82% correct classi�cation,with 78% performance on just-goal images, at convergence with populationsize 1000. This is not ideal but it was decided to work with this in thecontroller evolution and see how the controllers could cope with such unreli-ability.7.1.4 Why does GP Struggle?Beyond the fact that it is a vision classi�cation problem with the associateddi�culties of high dimensional complex and noisy input, and that there areambiguous images, can reasons for the relatively poor performance of the GPsystem be given?One is the di�culty of acquiring global information given the GP treerepresentation: for example a tree version equivalent of the MAX terminalwould require a tree of depth order log2 number of pixels, with a highlyregular structure; each node being an IFLTE function taking PIXEL(index1),430% of ball-and-goal images against 20% of just-goal images were misclassi�ed by theaforementioned goal detector, although it should be noted that the training set containedmore of the latter so better performance on these could be expected59



performance with MAX and MIN without MAX and MIN0.969 � 0.004 0.85 � 0.010.92 � 0.01 0.83 � 0.040.96 � 0.02 0.81 � 0.01Table 7.1: Mean � standard error performance. Rows are over di�erent GPparameter settingsindex1, PIXEL(index2), index2 as arguments. The importance of such globalproperties to a successful ball detector, and the di�culty GP has in evolvingsub-trees that approximate these was demonstrated by running the GP withand without the fMIN ,MAXg terminals. Table 7.1.4 shows the results fordata sets containing just-ball and background images (simpli�ed from thegeneral case being evolved for, above) over various other parameters.Another potential problem is the lack of re-usability of sub-trees. Imageprocessing algorithms often involve repeated application of a procedure togroups of pixels in an image. There is no mechanism for this in the mono-lithic GP tree representation used here. Automatically de�ned functions[Koza 94] are such a method for co-evolving sub-routines within GP, theirimplementation was not possible given time resources.7.2 CharacterisationThe performance of the virtual sensors must be faithfully reproduced in sim-ulation if the evolved controllers are to transfer to reality. Behaviours relianton non-existent properties of the sensors are likely to fail completely whenusing the real sensors.The method of characterisation is data intensive and in the ethos of thelook-up table approach rather than mathematical modelling: The chosen de-60



tectors are run on those images collected but not used in the training orvalidation set | this will be referred to as the test set, it contains approx-imately 12000 images | with each classi�cation being recorded as right orwrong. The data is then divided into `buckets' with respect to the parametersrecorded during data collection, such as angle-to-ball and distance-to-goal,and the performance of the detector over the data in each bucket calculated.Analysis of variance is then used to look for buckets over which the perform-ance di�ers5. The performance over homogeneous buckets can be representedsimply by the mean performance over such buckets. This gives the empiric-ally derived probability that an image of the scenario described by the saidrange of parameters will be correctly classi�ed. Parametric models were not�tted.One-way factorial without repeated measures analysis of variance wasperformed on each of the parameters to look for factors that had signi�cant(at � = 0.01) e�ects on virtual sensor performance. Using just one-way ana-lysis when there is more than one e�ective parameter it is possible to misssigni�cant parameters because of variance from other factors contributingto within-bucket variance: such variance can swamp between-bucket vari-ance of the parameter under consideration, hiding the dependency. To tryand counter this, one-way analysis over all parameters is done for each classseparately; since image class was shown to have the largest e�ect on perform-ance. Visualisation techniques were used in conjunction with the analysis ofvariance to identify such cases. At the end of the classi�cation each classhas a look-up table, ranging from zero to two dimensions, to be indexed bythe value of the relevant parameters (those that were determined to have ane�ect on performance) during simulation.Figure 7.2 shows the performance (proportion misclassi�ed) of the ball5Analysis of variance is a statistical technique used to test for equality of populationmeans 61



detector as a function of image class. Figure 7.2 shows performance of thegoal detector on a single image type as a function of two paramaters: thematrix plotted is the look-up table used in simulation.
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Figure 7.5: Misclassi�cation rate as a function of image type for the balldetector used. The image classes consistently misclassi�ed typically containfew (< 10) images.
7.3 CommentsWhatever the advantages of the virtual sensor approach, the work chron-icled in this chapter supports the reservations in section 6.5 about shiftingthe problem of perception into the non-temporal object recognition domain:evolving sensors was a challenge and in some cases the �nal product was lessthan desirable. It remains to be seen whether or not controllers can evolveto cope with this unreliability...
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Chapter 8
Controller Evolution
Virtual sensors have been synthesised and the sensory and dynamical aspectsof the Khepera and environment characterised and simulated. Now the con-troller is to be evolved and successfully transferred to reality (or not) on thestrength of these.8.1 Evolution PreliminariesFitness functions are all scaled to be in the range f0..Tg, where T is themaximum number of time-steps for a single trial, following the conventionof increasing �tness with numerical value. Sensor values are normalised andconsequently the constants 1 are in the range f0..1g. The best of run indi-vidual is de�ned as the �ttest controller in the last generation.The number of runs for each starting position is chosen as a functionof the noise of the sensors in the terminal set | assuming this to be theprincipal source of statistical variation in �tness. Choice and number ofstarting positions is guided by the same issues of representative-ness as inchapter 6, but with the constraint of much smaller training sets; necessary1Randomly generated in the initial population65



with the increased computation of evaluating performance on a single traininginstance, or in this case a run. Subset selection was found to inject a lot ofnoise into the evolutionary process | e�ectively producing varying �tnessfunctions, according to the particular sub-set selected, across generations.The degree to which this is detrimental to the selectional process is notknown, however applications of dynamic subset selection in [Gathercole 98]use sub-sets of order 102 training instances, where statistical uctuations willbe at a minimum. In any case, the speed of the simulator meant that sub-setselection was obsolete as a means of reducing run-time. Preliminary runs,taking the mean �tness over multiple trials produced controllers that workedwell over all the starting positions, and this is method of �tness combinationused.8.2 The DecompositionThe hierarchical structure of the controller, whose modules are to be evolved,is shown in �gure 8.1. It is similar to that used in [Lee et al. 97]. Thecomplete task of scoring goals is decomposed into homing in on the balland pushing the ball towards the goal. The root node will switch betweenthese two behaviours, requiring the ball detector and IR sensors to determinewhen the ball is contiguous and so start pushing-to-goal behaviour. Homingbehaviour comprises moving within close vicinity of the ball as quickly aspossible and the sensors to be used for this are the ball detector and theIR s (for any collision avoidance that might be required). Pushing-to-goalbehaviour is decomposed in to ball-pushing and ball-spiraling. The intentionbeing that the arbitrator will switch between pushing the ball when it isaligned with the goal along the Khpera's line of sight, and search for suchan alignment otherwise. Hence it requires the goal detector. In this contextball-pushing comprises fast pushing of the ball in a straight line; IR s are66
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Figure 8.1: The hierarchical decomposition of the task showing the arbitrat-ors, primitives and relevant terminal sets.
used for the proximal sensing this demands. Ball-spiraling is a behaviourthat will bring the Khepera, ball, and goal into alignment quickly, allowingfor detection of this by the arbitrator. IR sensors are used, for the samedemands.The choice of decomposition arises from expectations of tractability, per-ception of `natural' division of behaviours, and ease of �tness function design.It is a highly unscienti�c design process!67



8.3 Ball HomingThe �tness function expressing the requirement to get within close vicinityof the ball as quickly as possible is shown in equation 8.1.if ( centre to centre Khepera-ball separation < � )then �tness = time steps remaining;terminate trial;else �tness = 0 (8.1)
Having a single term it has no parameters to tweak. Unlike the �tnessfunctions in sections 8.4 and 8.5, it contains no sensor readings | it is saidto be an external �tness function| because the inherent noisiness of the balldetector was deemed a bad parameter to base the �tness on. A � of 66mmis used to get the Khepera in the vicinity of being able to see over the ballto spot the goal, whilst still being able to sense the ball with the IRs.Six Khepera starting states were chosen for the evolution, tending to bedistanced from the ball rather than random. Three runs of each startingstate were made because of the noisy nature of the ball detector being used.Each run lasted a maximum of 200 time steps. GP parameters are shown intable 8.1 and were chosen to be similar to those in [Lee et al. 97]. They didnot have to be tweaked.Eight evolutionary runs were made. Figure 8.2 shows the progressionof �tness during these, the asymptotic best of run �tness corresponds toreaching the ball in approximately �ve seconds.All of the best of run individuals could successfully home in on the ball insimulation and displayed qualitatively identical behaviour: Moving towardsthe ball at full speed when it is seen and circling-search for the ball when it isnot, see �gure 8.3a. Occasionally the Khepera is deceived by the goal, moving68



generations 50population size 30Steady State ONmax depth for new trees 5max depth after crossover 8max mutation depth 3selection Tournament, size 2crossover probability 0.4copied probability 0.15mutation probability 0.55parsimony factor 0.00000Table 8.1: GP parameters for Ball-homing evolution
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Figure 8.2: Fitness as a function of generation for ball homing.
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a substantial distance towards it, or loses the ball whilst heading towards it| in which case it circles until it picks it up again: see �gure 8.3b. Both ofthese are a result of the unreliability of the ball detector.It was noted that the circling-search radius corresponded to just less thanthe closest Khepera-wall separation in the training set. Such a strategy hadavoided the need for collision avoidance but is an example of over-�tting| when the Khepera was placed nearer to a wall it circled into the walland exhibited dysfunctional behaviour (going o� on a wall following tour!),having not evolved behaviour for such a situation. The original behaviourwas perfectly valid (perhaps optimal) given the training set but illustrateshow the �tness function and the training set interact to de�ne the evolvedbehaviour. The run was repeated with two extra starting positions 5cm froma wall with the Khepera facing a wall and corner respectively. Figures 8.4a,bshow that the subsequently evolved controllers included collision avoidancecomponents.It is arguable that ball homing behaviour is trivial given the high levelsensor used | just moving forward when the ball is visible, turning to searchotherwise, would work. The behaviour evolved even appears sub-optimal at�rst glance | wouldn't spinning on the spot to search for the ball be faster?In fact, the controllers are found to be behaviourally more advanced thanat �rst glance and the strategy evolved performs better than the obviousapproach: Inspection of the sensor and motor values shows that when theball is seen the controller switches between moving forward at full speedand intermittently slowing one of the motors so as to turn in the oppositedirection to the circling-search. This behaviour compensates for the turningbehaviour, required when the ball is not in the �eld of view, activating whenthe ball momentarily disappears, and produces approximately straight linemovement to a ball once it has been `locked on' to even though it is not alwaysdetected. Evolution has found a way to cope with the unreliability of the70



Figure 8.3: Aspects of a single Ball-homing controller's behaviour: a) circle! locate ! move to ball. b) ball 'disappears' ! circling to relocate.virtual sensor. If one considers the obvious approach again then it becomesapparent that whilst moving towards the ball the Khepera will continually71



Figure 8.4: A Ball Homer with collision avoidance skills: a) during circlingsearch. b) escaping from a corner.be stopping as the ball intermittently `disappears'.The way this behaviour is produced, by exploiting the noise of the IR72



sensors, is interesting too: Analysis of one of the controller trees shows theswitching, in this particular case, to be dependent on whether IR detector sixis reading larger or equal to IR detector one. Whilst the Khepera is movingtowards a ball it is generally in the open and its IRs will be returning noiseabout the zero level. The IR6>=IR1 is thus equivalent to a uniform f1, 0grandom number generator, and the controller is using this to overcome thedeterministic nature of the tree evaluation and provide stochastic switchingbetween behaviours. A reactive controller that produces di�erent behavioursgiven the same perceptual cues has been evolved!8.3.1 Reality TransferA single controller was transferred to reality and tested over the eight startingpositions used in training, three times each. The behaviour was qualitativelythe same (the noise compensation behaviour was observed). The behaviourwas found to be quantitatively the same too: The �tness of each run wasrecorded and the mean over all trials did not di�er 2 from identical trials insimulation: �tness in reality in simulation156�19 166�7The success of the reality transfer validates the modelling of the balldetector.8.4 Ball PushingThe �tness function expresses ball pushing as moving forward fast, in astraight line with the ball to the front of the Khepera; having a compon-ent for each 3. See equation 8.22a t test gave �means different < 0:7 (d.o.f. = 12)3as used by [Lee et al. 97] 73



fitness = TXt=1 � a(t) + � b(t) +  (1� c(t)) (8.2)a(t) is the average of the front two normalised IR readingsb(t) is the normalised average wheel speed: vl + vr2 vmaxc(t) is the normalised di�erence in wheel speeds: vl � vr2 vmaxThe weightings used were � = 0.6, � = 0.2,  = 0.2, as in [ibid]. Initialruns indicated the need for an extension to the function: terminating therun upon collision with a wall was preventing further �tness accumulation,e�ectively penalising straight line pushing and hence was in conict withthe latter two components in the �tness function. Evolved controllers wouldpush the ball in a circle of diameter approximately equal to arena size. Thesimple solution was to add a perfect �tness score for each time step left ifthe ball was pushed into contact with the wall. In fact it was found that therest of the �tness function is now unnecessary4 | such a monolithic �tnessfunction does not have the disadvantage of the need for parameter tuning.Six Khepera starting states were chosen for the evolution, each within � 5of the ball centre. Only one run of each starting point was made becauseof the relatively low noise in the IR sensors. A trial lasted for up to 200time steps. The GP parameters were as in section 8.3. A ball-as-box modelwas used, given the lack of ball dynamics characterisation, with a view toaugmenting this if it was detrimental to reality transfer. Seven runs weremade, the graph of the evolutionary process is shown in �gure 8.5.Six of the seven best of run controllers were high performance ball push-ers 6; turning to meet the ball then pushing at maximum forward speed for4Although the results are for the original �tness function5the distance used in section 8.3, for compatibility6the other pushing backwards, more slowly74
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Figure 8.5: Fitness as a function of generation for ball homing.the most part with occasional switching of one motor to the next fastestspeed to keep the ball centred. Figure 8.6 shows a typical push.8.4.1 Reality TransferThe ball pushing transferred qualitatively to reality, but with a performancedecrease; perhaps inevitable given the approximations of the ball model. Asin simulation the Khepera makes a tight turn to meet the ball then com-mences pushing. The path taken by the ball veers more than in simulation,and the Khepera spends more time making heading corrections.An attempt was made at improving the reality transfer by evolving usingheading and pushing-direction noise (section 5.1, above) in the ball modelwith magnitudes of 15:0� and 5:0� respectively. The evolved controllersmoved more slowly and exhibited spinning behaviour when the ball devi-ated sharply, see �gure 8.7. Transferred to the Khepera the performance was75



Figure 8.6: Typical ball pushing. Ball-as-box model.noticeably worse than with the ball-as-box model controllers. [Nol� et al. 94]mention the importance of modelling noise at the real world levels | thisis a case in point; the values chosen were based on rough observation andprobably give a model as inaccurate as the original one.The near-success of the reality transfer shows the dynamical modellingto be adequate but incomplete7.8.5 Ball SpiralingThe Khepera line of sight being at a tangent to the direction of motionrequires the Khepera to periodically face the ball as it circles, e.g. helicalorbiting of the ball, it if it is to be able to align the ball between itself and thegoal. The �tness function expressing this behaviour is shown in equation 8.3:7which was always appreciated 76



Figure 8.7: Typical ball pushing | Unvalidated ball model. Closer spacingof tracer dashes than in �gure 8.6 shows slower movement.the �rst term rewards facing the ball from di�erent directions, and the secondterm rewards doing this quickly.fitness = 0:5 T svS + 0:5 (T � tterminate) (8.3)S is the number of sectors the direction [0� to 360�] fromball centre is divided in to.sv is the number of sectors visited | one in which thefront IR activation was larger than the limit threshold.tterminate is the time at which the trial is terminated:when sv = S or t = T
77



The starting state, number-of-run parameters, and maximum time stepswere as for the ball pushing. Initial runs showed that satisfaction of the�tness function was not unique to the desired behaviour; pushing the boxo�-centre, causing it to follow a circular path, resulted in procession of theKhepera around the ball with the IR s above the limit threshold. An environ-mental modi�cation was made to remove this as a solution | by making thekinematics of the ball random and sensitive, ball pushing was no longer feas-ible. Before the desired behaviour was consistently evolved the power of theGP had to be turned up. Eight runs of population size 40 on a 4�1 cellularoccupancy grid, run for 50 generations were made. Figure 8.8 describes therun. The average best of run �tness corresponds to approximately visitingall the sectors surrounding the ball in 40 seconds.
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Figure 8.8: Fitness as a function of generation for ball homing.Six of the eight runs evolved successful controllers, achieving the task us-ing qualitatively di�erent behaviours, three of which are in �gure 8.9. Duringeach of these orbits the Khepera is frequently `looking up' to allow for check-78



ing of alignment with the ball and goal.

Figure 8.9: Behaviours to allow search for alignment of the ball and goal inthe direction of the Khepera: a) helical orbiting, b) circling of the ball withperiodical spinning on the spot, c) saw-tooth orbit.8.5.1 Reality TransferThe controller from �gure 8.9b was chosen for reality transfer; this was suc-cessful. Placed within � of the ball it would settle into the same circling andspinning behaviour. A quantitative comparison was made at the behaviourallevel by recording the box revolution rate and the number of on-the-spotspins per revolution. This was done for a single trial of ten revolutions inreality and multiple trials in simulation. The results are shown in table 8.5.1,a Z-test con�rms the quantities are signi�cantly di�erent. There has been adegradation of performance upon reality transfer.The solely qualitative transfer of the behaviour has shown the sensor andKhepera-dynamics modelling to be adequate, but imperfect.8.6 Pushing to GoalThis module arbitrates between the already evolved ball-pushing and ball-spiraling primitives. The �tness function expressing fast pushing of the ball79



in simulation in realityspins per ball revolution 19 10 � 1time steps per ball revolution 326 230 � 40Table 8.2: Degradation of Ball spiraling upon reality transferto the goal is shown in equation 8.4. It provides an incremental path for theevolution: encouraging �rst closer and closer movement of the ball to thegoal, then faster scoring of goals once this behaviour is acquired.fitness = 0:5 (T � ttermination) + 0:5 T (1�Dt termination) (8.4)where ttermination is T , or the time step at which a goal isscored, should this happen. D is the scaled(�1/500) centre to centre goal-Khepera separation.The ball is always placed on the centre spot of the pitch, requiring a`dribble' of 40cm to score. Khepera starting positions and runs per startingposition were as in section 8.5. The maximum-time-steps, T , was set to 500as an approximation of the time a reasonable attempt on goal might takegiven the spiraling velocity, etc. Forty generations were run with tournamentsize 4, cellular occupancy and other-parameters as in section 8.4 8. Theevolved, intended, behaviour of spiraling for alignment, then pushing forwardis shown in �gure 8.10. It can be seen that two helical orbits are made duringthe push to goal, as a result of goal detector unreliability causing the goalto `disappear'. This is an uncharacteristically e�cient push to goal; mostinvolved 5 or 6 helical orbits of the ball and correspondingly approximately8increasing selective pressure (tournament size 4) to give more aggressive search whilstmaintaining diversity (cellular occupancy) 80



three minutes to score.

Figure 8.10: Hierarchical goal scoring behaviour | spiraling to align ball,goal and Khepera, then pushing to goal.8.6.1 Reality TransferThe evolved behaviour does not work on the the real robot because the goal isnever detected whilst spiraling. This anomaly can be traced to the rotatingmotion of the Khepera whilst ball-spiraling and is presumably caused bymotion blurring of the goal. Such an e�ect was never considered9 duringthe vision modelling stage and the evolved controller has relied upon anapproximation (or rather oversight) that is not valid. This failure highlightsthe implicit assumptions in, and approximate nature of any model. Such`quirks' of real world systems are bad news for the simulation approach toevolutionary robotics.9quite understandably! 81



8.7 A Monolithic Push-to-goal ControllerHaving traced the cause of reality-transfer failure, it would be possible to re-evolve ball spiraling with an additional constraint on the rotational velocityof the ball-spiraling Khepera. However, the behaviour in simulation showedthe approach to be rather ine�cient, suggesting that the decomposition ofpushing to goal, at least in this manner, is not a good idea; perhaps havingno `natural' sub-modularity and best left as a monolithic behaviour.An attempt at evolving a pushing-to-goal primitive, to address this hy-pothesis, was made. The terminal set comprised real constants, IR and goaldetector sensors. The �tness function was as in section 8.6 and the power ofthe GP was turned up to cope with the expected decrease in tractability ofthe problem: population size 400, 100 generations, cellular occupancy andmaximum tree depth 10 were used. The evolution was successful and thebehaviour of the evolved controller is shown in �gure 8.11. Its strategy isto push the ball in a circle to the right when the goal is not visible, thenwhen the goal comes into view spin away and back in to contact with theball so that the goal is out of sight and the ball is pushed in an arc to the left.The motion of the Khepera brings the goal into view again and the processis repeated: the aggregate e�ect is movement of the ball in a straight linetowards the goal. It can consistently score from all starting positions.Its scoring rate is approximately �ve times that of the hierarchical control-ler in section 8.6, which could be a result of the more powerful evolutionaryrun used. The setup in section 8.6 was run using the same GP parameters toshow that the better performance was not due to this. Figure 8.12 describesaverages over runs of both approaches. It can be seen that the hierarchicalcontroller �tness has already converged in the initial population but to alower �tness than the monolithic controller; this represents the upper limitof performance using the constraints conferred by the designer's decomposi-82



Figure 8.11: Monolithic goal-scoring controller behaviour | circling withball to locate goal then pushing to goal: a) starting facing way from thegoal, b) starting facing perpendicular to the goal.
83



tion. It should also be noted that the �ttest hierarchical controllers did notcombine the ball-spiraling and pushing in the way intended, spiraling andpushing quasi-continuously to goal. Comparison of the number of controllertree evaluations10 before convergence, considering the evolution required forthe arbitrator's primitives also, gives approximately 106 against 105 in favourof the hierarchical approach.
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Figure 8.12: Fitness as a function of generation for pushing-to-goal: Mono-lithic and hierarchical controller.Reality transfer of the monolithic controller is successful in part. TheKhepera can score when up to approximately a quadrant of the circularsearch path has to be made to achieve alignment of the Khepera, goal andball; in which case it proceeds to push the ball to the goal in the mannerseen in simulation. This means that the Khepera can start facing up to90� from the goal (40cm away) and be able to score. Full circling happens10The product of population size,generations and time steps84



occasionally but the diameter of orbit is usually larger than the size of thestadium. The failure of transfer of the circling behaviour can be attributedto the unmodelled complexity of the ball, compared with box, motion; thereliability of the ball dynamics in simulation allow behaviour that is notpossible with the less reliable, and systematically di�erent, ball dynamics inthe real world.An arbitrator between ball-homing and pushing-to-goal behaviours, giv-ing the complete goal-scoring behaviour, was not evolved because of timelimitations.8.8 DiscussionSuccessful, consistent, evolution of all controllers in simulation is shown. Acommon feature of the (hierarchical controllers) synthesis is the low popula-tional requirements of the GP runs necessary for evolution: the population-size, generations product is typically order(s) of magnitude smaller than otherwork in the �eld, evolving comparative behaviours for Kheperas. The GPpopulational requirements agree with [Lee et al. 97], the basis of this work,and strongly suggest that Lee's controller architecture is particularly e�cientand suitable for genetic programming. The inclusion of a high-bandwidthvision sense has not increased the populational requirements necessary forcontroller evolution. The controllers have coped with the unreliable virtualsensors evolved, in some cases exhibiting novel behaviours and methods todo this; the quasi-nondeterministic reactive controller in section 8.3 in par-ticular.The crux of any approach to evolutionary robotics is its ability to `crossthe reality gap'. The approaches used can be seen to be a success in this re-spect, with qualitative and occasional quantitative transfer for the most part.The results show that with careful capture and representation of actual sense85



and action it is likely that evolved controllers will transfer to reality. Con-versely, the partial transfer of behaviours involving motion of the ball showthat without su�cient modelling reality transfer should not be expected.The quantitative reality transfer of ball-homing shows that it is possible tosu�ciently accurately predict virtual sensor output, through empirical char-acterisation on a set of test images, for purposes of simulation. The completefailure of goal-pushing upon reality transfer, due to motion-blur, highlightsa caveat to simulatory evolutionary robotics: that there will always be un-modelled and unknown aspects of the real robot and environment, and thatthese can signi�cantly e�ect performance.The chronicle of getting the behaviours to evolve should make apparentthat �tness function design is not just about the �tness function! In practiceachieving the desired behaviour is a balance between environmental proper-ties, training set, and �tness function, with all of these interacting to de�nethe true `�tness landscape' and `solution' behaviour: Section 8.4 shows howan environmental property (of contact with the walls giving termination) canreduce a necessarily componential �tness function to a monolithic one. Sec-tion 8.3 shows the importance of a representative training set to evolving thegeneral, rather than a speci�c11 sub-set of, desired behaviour. Section 8.5shows how arti�cial properties of the environment, in this case the `impossi-ball' modelling of the ball, can be introduced to shape the behaviours evolved.Decomposition has been shown to have advantages in terms of increasingtractability: the task of goal-scoring has been partially solved requiring evol-utionary resources linear to to the number of modules. Through decomposi-tion individual evolutionary runs have been no more demanding than that ofsimple behaviours such as collision avoidance and light following, seen in earlyevolutionary robotics work. In these terms decomposition seems a candidatefor overcoming the barrier of tractability to solving real world, rather than11and often optimised to the exact situation evolved for86



`toy', problems. However, an experiment with a monolithic controller showsthat decomposition may impose sub-optimal strategies upon the controller.For the task of pushing-to-goal a monolithic controller was far superior to ahierarchical one.The decomposition chosen was not a good one, highlighting the di�-culties of decompositional design, with the �ttest hierarchical controllers insection 8.7 combining the behaviour primitives in an unintended way; sincethe behaviour primitives were as they were because of this intended use thedecomposition has failed at the level of design. It is noted that the searching,circling behaviour used by the monolithic push-to-goal controller was evolvedin initial attempts at ball spiraling but was rejected as not being of the de-sired behaviour. The �tness function was further constrained to remove sucha strategy as a solution. This shows that the initial implementation, specify-ing what should be done | looking towards the ball from di�erent directions,rather than trying to constrain how it should be done | ball spiraling, wasthe way to proceed. The project has only begun to touch upon the issue ofdecompositional design, factors e�ecting choice were listed in section 8.2 butmuch work would need to be done to establish if, when, and how decomposi-tion should proceed. Work on this project has led the author to the followingtwo, rather vague, guidelines:� Check for tractability of the task; if it's evolvable then �ne. If not,or �tness function design is a problem then recursively sub-divide theproblem according to these two heuristics.� In isolation the components of decomposition should be behavioursthat a monolithic controller should, or ideally must, do. De�ning howthe behaviours should be produced, in the example of box-spiralingfor instance, may be indicative of an ine�cient or over-constraineddecomposition. 87



An example of a decomposition meeting the second heuristic is goal-scoring being divided into ball-homing and pushing-to-goal: to score therobot must move to the goal and push the ball to goal12. Here the designeris imparting true domain knowledge to the evolution instead of a, possiblyawed, intuition | as in the case of assuming ball-spiraling and ball-pushingto be a good/best strategy for scoring.

12Unfortunately lack of time prevented evaluation of the e�cacy of this decomposition88



Chapter 9
Conclusion
Successful simulation, evolution and transfer to reality of a goal-scoringKhepera using visual perception has been shown. This was done through:� Implementation of vision at an object level, removing the need forpixel-level modelling in simulation, and allowing insertion of domainknowledge in the form of useful perceptual constructs into the evolu-tionary algorithm.� Careful representation of the virtual sensor, IRs and Khepera dynamicsthrough sampling of real world responses and recalling these in simu-lation, recreating a `virtual reality'.� Using a monolithic controller, which was seen to perform considerablybetter than a hierarchical one.The results are relevant to issues of combining engineering design andevolution. Experiments on decomposition showed that there are potentialgains in tractability to be had at the risk of restricting the search spaceto sub-optimal regions of the �tness landscape; some guidelines for whenand how to decompose behaviours are given. The virtual sensor approach89



showed that it is possible for designers to determine useful perceptual con-structs. Work on simulation and reality transfer showed that with thoughtfulmodelling it is likely that the reality gap will be crossed: a failure to cross thereality gap highlighted the inescapable possibility that a signi�cant quirk ofreality may have been overlooked. The novel technique of virtual sensors wasdeveloped and was seen to be advantageous in most aspects assuming onehas these virtual sensors, further discussion is given below. The independentevolution of these proved time-consuming and it is unclear whether or notthe problem of vision was moved in to a more di�cult domain; given that acomparison was not possible with limitations of time. The work is relevantin that behaviours were evolved at the current limit of behavioural complex-ity in evolutionary robotics. The techniques used show promise in terms ofscalability, partially validated in this respect by working on a complex task.Further work on task decomposition and virtual sensors is needed to assesstheir true worth.Genetic programming of controllers at the behavioural level through the�tness function, environment and training set was interesting to work with.As evolutionary run-time approaches standard compiler times this starts toresemble a behavioural-level language. The desired results are not alwaysachieved �rst time but the required parameter adjustments are usually obvi-ous from observation of the deviant behaviour.9.1 Virtual SensorsOnce the virtual sensors had been evolved they were a success | with evol-ution of controllers using vision sensors requiring the same populational re-sources as for the lower bandwidth IR sensors. The ease of evolution andfairly optimal behaviour of evolved controllers shows the evolution couldcope with the perceptual constructs imposed by the designer and discredits90



the arguments for active perception in such a problem domain; where it isseemingly fairly obvious what the robot should sense. Their use greatly sim-pli�ed the modelling of vision and allowed the look-up table approach to beused, o�ering considerable speed-up over the ray tracing methods requiredin mathematical modelling.If one considers the computation required to evolve the virtual sensorsthen the approach is probably not such a success in terms of increasing tract-ability. However the lack of comparison with a pixel-level vision simulationprevents any conclusions being drawn; the problem of visual perception forthis task may just be very hard. The application of the approach to morecomplex visual environments/tasks is reliant on the synthesis of sensors forsuch environments/tasks. It is tempting to assume that by applying moresophisticated techniques from the vast body of machine vision or supervisedlearning techniques this will always be possible. This may be presumptuousbut there is no evidence to suggest such methods are less powerful than thealternative approach of evolving active perception.9.2 Further WorkThe project has touched on a lot of issues and most of these remain openissues. Task decomposition and its generic technique of hybrid approachesdemand attention and systematic work, e.g. [Perkins & Hayes 97], is onlyjust starting in this area. A more systematic study, ideally comparative, ofvirtual sensors would be welcome.The techniques used could be extended to more complicated tasks andenvironments, removing the sight screens would be an initial step in thisdirection. Generalisation to multiple or varied environments is another.The promising controller architecture of [Lee et al. 97] could be exten-ded beyond being solely reactive. Recurrency through side-e�ect memory91



read-and-write functions was considered, with time constraints preventingimplementation.The look-up table approach, with its faithful reproduction of the envir-onment, has implications for a new simulator and robot design methodology.Coupled with automatic data collection techniques, robots could be evolvedin situ, capturing their environment then evolving controllers speci�cally forthis. Such highly speci�c controllers are likely to be easier to evolve thanfor the generic environment and can be highly optimised to the environment.This may be some time o�!
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