Richard G Baldwin (512) 223-4758,

baldwin@austin.cc.tx.us,
www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-6S.DOC, Revised 7/21/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt. Copyright 1996, R.G.Baldwin

Dynamically Expandable Array Class for User-Defined Data Types

� TOC \o "1-4" �
1. Introduction	
�

GOTOBUTTON
_Toc362621427

�

PAGEREF
_Toc362621427

�
1
�
�

2. Sample Program	
�

GOTOBUTTON
_Toc362621428

�

PAGEREF
_Toc362621428

�
2
�
�

�
Introduction
One of the primary disadvantages of using arrays in C and C++ is the real possibility of overflowing the bounds of the array at runtime. This topic was explored in an earlier set of lecture notes which developed a “safe array” class. That set of lecture notes also explored the use of a copy constructor and an overloaded assignment operator to allow for safe initialization of the array and safe assignment of one array object to another.

Another disadvantage of using arrays is the fact that with normal arrays, the programmer must decide on the maximum required size of the array at compile time. This often leads to the development and use of dynamically-allocated linked lists instead or other similar containers which allow the determination of maximum size to be made at runtime instead of compile time.

This set of lecture notes explores another alternative which allows the determination of maximum size to be made at runtime and still maintains most of the benefits of the use of an array. In particular, we will develop an array class from which objects can be instantiated which expand themselves at runtime to accommodate the required maximum size.

In order to avoid undue complexity in this demonstration program, we do not include a copy constructor or an overloaded assignment operator. However, the development of such features is essentially the same as with the safe-array class developed earlier, and such features should be provided in any actual usage of this technique.

With this program, when instantiating an object, the user specifies the initial size of the array as well as a “Delta” value. The Delta value specifies the number of elements which will be added to the array each time it is determined that a specified positive index is outside the current array boundaries.

This program maintains the boundary monitoring and control features developed earlier for the safe array. If the program attempts to store into a negative index, or if the program attempts to fetch from any index outside the current boundaries of the array, the operation is aborted and an error message is produced.

Whereas the previous development for the safe array was for an array of integers, this development is for an array which stores a user-defined data type. The user-defined type used for the demonstration program contains only one data member which is an integer. This choice was made due simply to the ease with which the program can be tested using loops. However, this technique is not limited to integers, but will accommodate any user-defined type for which appropriate Get and Put member functions can be defined to store data into or fetch data from the data members of the user-defined type.

Sample Program
Certain interesting aspects of the following program are highlighted using boldface.

//Program ARRAY02.CPP
/*
This program illustrates development of a dynamically expandable
"safe array" class for a user-defined data type.

Whenever an attempt is made to store data at a negative index
value, or to fetch data outside the bounds of the array,
the operation is aborted and an error message is produced.

Whenever an attempt is made to store data at a positive index
which is outside the current bounds of the array, the size of
the array is successively expanded by a Delta value until the
array is large enough to accommodate the new index value.
*/

#include <iostream.h>
#include <stdlib.h>

//Define a simple user-defined type which is sufficient to
//test the concept. Integer data was chosen because it is
//easy to write test loops. This is the type of data which
//is stored in the dynamic array by the Put function and
//which is fetched from the dynamic array by the Get
//function.
class MyInteger{
 int MyData;
public:
 void PutMyData(int SomeData){MyData = SomeData;}
 int GetMyData(){return MyData;}
};//end class MyInteger

class ArrayClass {
 MyInteger *PtrToMem; //pointer to dynamic memory
 int ArraySize;
 int Delta; //amount to increase size of array
public:
 ArrayClass(int size, int delta) {//constructor
	 PtrToMem = new MyInteger[size];//establish initial array
	 if(!PtrToMem) exit(1);
	 ArraySize = size;
	 Delta = delta;
	 }//end constructor

	 ~ArrayClass() {
		cout << "In destructor\n";
		delete [] PtrToMem;}//destructor

	 //member function to store data in the array
	 void Put(int Location, int Data);

	 //member function to fetch data from the array
	 int Get(int Location)
	 {//Get a data value from Location in the array
		if(Location < 0 || Location >= ArraySize)
		{
		 cout << "\nArray out of bounds on Get at "
			 << Location << endl;
		 return 9999;
		}
		//Else return data member from user-defined type stored
		//in the array
		else return PtrToMem[Location].GetMyData();
	 }//end Get()
};//end class ArrayClass

//member function to store data in the array
void ArrayClass::Put(int Location, int Data)
{//store a data value at Location in the array
 MyInteger *TempPtr;
 int cnt;
 if(Location < 0) cout
	 << "Array out of bounds on Put at " << Location << endl;
 else
 {//if necessary, expand array before storing into it
	 while(Location > ArraySize-1)
	 {
		cout << "Expanding array by " << Delta << endl;
		//Get memory for larger array
		TempPtr = new MyInteger[ArraySize+Delta];
		if(!TempPtr) exit(1);
		//Copy data from old array to new array
		for(cnt = 0; cnt < ArraySize; cnt++)
		 TempPtr[cnt]=PtrToMem[cnt];
		//Establish size of new array
		ArraySize = ArraySize+Delta;
		//Return memory from old array to operating system
		delete [] PtrToMem;
		//Store pointer to new array in PtrToMem data member
		PtrToMem = TempPtr;
	 } // end while
	 //Store the data into the data member of the user-defined
	 //object at Location in the array.
	 PtrToMem[Location].PutMyData(Data);
 }// end else
}//end Put

/***/
void main()
{ //Test program
 cout << "Declare 5-element array object with a delta of 2\n";
 ArrayClass OriginalArray(5,2);
 int cnt;

 cout << "Put ten data values into Array and display it\n";
 for(cnt=0; cnt < 10; cnt++) OriginalArray.Put(cnt,cnt);
 for(cnt = 9; cnt >= 0; cnt--)
	 cout << OriginalArray.Get(cnt) << ' ';
 cout << "\n";

 cout << "Put five more data values into Array and display it\n";
 for(cnt=10; cnt < 15; cnt++) OriginalArray.Put(cnt,cnt);
 for(cnt=15; cnt >= -1; cnt--)
	 cout << OriginalArray.Get(cnt) << ' ';
 cout << "\n";

 cout << "Try to store into negative index\n";
 OriginalArray.Put(-1,17);

 cout << "Terminating program\n";
}//end main

The output from running this program follows:

Declare 5-element array object with a delta of 2
Put ten data values into Array and display it
Expanding array by 2
Expanding array by 2
Expanding array by 2
9 8 7 6 5 4 3 2 1 0
Put five more data values into Array and display it
Expanding array by 2
Expanding array by 2

Array out of bounds on Get at 15
9999 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Array out of bounds on Get at -1
9999
Try to store into negative index
Array out of bounds on Put at -1
Terminating program
In destructor

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #6S,
Dynamically Expandable Array Class for User-Defined Data Types, Copyright 1996, R.G.Baldwin, Page � PAGE �
4
�

