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Binary Search Trees
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Introduction
Previous sets of lecture notes have introduced you to binary search concepts as well as recursion.  That knowledge should prepare you to understand the concept of a Binary Search Tree.

Linked lists, stacks, and queues are linear data structures.  With a linked list, for example, it is possible to begin at one end of the structure and traverse to the other end without encountering any forks in the road.  However, you must encounter every node in the list to traverse the list from one end to the other.

Linked lists have many advantages.  However, they have one major disadvantage.  When a linked list is used to contain ordered or sorted data, when you need to find a data node, insert a new data node, or delete a data node, you must touch at least half the nodes on the average.  From our studies of binary search algorithms, you should have learned that there are much more efficient ways to store and retrieve ordered data.

A tree is a nonlinear data structure with some special properties.  (Your instructor will sketch a tree on the chalkboard during class to give you an idea what they look like.)  Tree nodes contain two or more links.  This set of lecture notes discusses binary trees whose nodes all contain two links (not including the possibility of a third link which points backwards).  Of the two links, neither, one, or both may be NULL.  

The first node in the tree is referred to as the root node.  Each link in the root node refers to a child.  The left child is the first node in the left subtree, and the right child is the first node in the right subtree.  A node with no children is called a leaf node.  When the tree contains only one node, the root node is also a leaf node.

In this set of lecture notes, we partially develop and discuss a binary search tree with no duplicate node values allowed.  Such a binary search tree has the characteristic that the values in any left subtree are less than the value in its parent node, and the values in any right subtree are greater than the value in its parent node.  

The actual shape of a binary search tree can vary depending on the order in which the data are inserted into the tree.  This will be demonstrated when we test our sample program.

From a programming viewpoint, binary search trees are rather complex data structures.  So, why bother with them in the first place.  The binary search tree is a linked structure which has the advantages normally attributed to linked lists and other structures commonly implemented in dynamic memory, and has the additional advantage of being very fast to traverse under certain conditions.  Being fast to traverse means that data can be found, inserted, or deleted very rapidly.  Under ideal conditions, the number of comparison operations required to locate a node having a specific value in a binary search tree is comparable to that of the binary search algorithm that we discussed in a previous set of lecture notes.  Thus, under the right conditions, a binary search tree provides binary-search speed to a linked structure using memory allocated at runtime.


Ideal Conditions
The ideal conditions for operation of a binary search tree require that the data be inserted into the tree with the key values being in random order.  This will provide a tree which has the largest number of branches terminated by leaves (often referred to as a fluffy tree).  This in turn results in the ability to find a node with the smallest number of comparison operations required.

On the other hand, if data are inserted into a binary search tree in sorted order, the tree will degenerate to something resembling a simple linked list containing ordered data.  Therefore, you should not use a binary search tree unless you expect it to be populated with data having no duplicate keys, and where the key values will be inserted into the tree in random order.


Sample Program
Assuming that it doesn’t get corrupted by the printing process, the first binary search tree that we will develop and test using integer data values in the individual nodes will look something like the following.  Please note, however, that different fonts on different printers could corrupt this format and make it unrecognizable as a binary search tree.

					13
				   /      \
				 10        25
				/         /
			     6         22
			    /  \      /  \
			   1    9   19   23
					/
				     15

The root node has a value of 13 while the leaves have values of 1, 9, 15, and 23.  These values have been highlighted in boldface in the above diagram.  To traverse from the value of 13 in the root to the value of 15 in the bottom leaf requires that we touch on five levels including the first and the last.  

Thus, in this tree which contains 10 values, the node containing the value of 15 can be located by performing five comparison operations.  As with binary search algorithms in general, the benefit of the binary approach increases dramatically as the number of nodes increases (so long as the tree remains “fluffy”).


General Comments
Please note that this set of lecture notes is not intended to teach you to become an expert in the development of binary search trees.  In fact, it is assumed (and hoped) by the author of these lecture notes that you will never “reinvent” the binary search tree, but rather will take advantage of existing and readily available container class libraries which provide a variety of available data structures, including several types of binary search trees.  The purpose of this set of lecture notes is to prepare you to understand what a binary search tree is so that you will be better prepared to make informed decisions on the use of container class libraries.

For example, while this partially complete example does show you how to insert a node, it does not show you how to delete a node.  Deleting a node from a binary search tree is considerably more complicated than deleting a node from a simple linked list.  However, the deletion process is defined in many good textbooks.  It will be left as an exercise for the student to upgrade this program to include the necessary operation to delete a list if she or he desires.

Also, there are several well-known ways to traverse a binary search tree.  This sample program illustrates only one way -- a traversal which will locate and display the data in numeric order.  Again, the other methods for traversal are documented in many textbooks and the upgrading of the program to include those methods will be left as an exercise for the student.

Finally, to be a truly useful ADT, this program should be upgraded to make it generic by using function and class templates. Template features were purposely not included in this program in order to avoid syntactical complexity.  Upgrading the program to make use of template functions and classes would be another good exercise for the student.

Because of the length and complexity of this program, we will examine and discuss it in parts.  For the record, a copy of the program is stored on the author’s computer in the file shown below:

/*File BINTREE2.CPP
This file contains a partially complete binary search tree ADT.
Operations are provided to

* insert nodes in the tree,
* find nodes with data matching a specified search key
  (returning a pointer to the node on success and NULL on
  failure), and
* traverse the tree displaying the data in numeric order.

In order to illustrate the concepts involved without undue
complexity, this program was designed to operate on integer
data only.

*/
#include <iostream.h>
#include <assert.h>



Node Type
The definition of the data nodes which will be stored in the tree is shown below:

class TreeNode{ //This class defines the type used for a node
  //All member functions in Tree can access private members
  // of TreeNode objects because class is declared a friend.
  friend class Tree;
public:
  TreeNode(int); //constructor
  int getData(); //return data from a node
private:
  int data;           //data member of the node
  TreeNode *leftPtr;  //pointer to left subtree
  TreeNode *rightPtr; //pointer to right subtree
};//end class TreeNode

The three private data members consist of one member to store the data in the node and two pointers.  The program could be upgraded to accommodate user-defined data types by modifying the type of the member named data from int to some user-defined type.  If this were done, however, the user-defined type would require the appropriate complement of overloaded assignment and relational operators as well as the appropriate constructors and destructors.

The two pointers are used to point to the left and right subtrees which are the children of the node.  They are initialized to NULL by the constructor which is the indication that the node has no children.

//TreeNode Constructor
TreeNode::TreeNode(int d)
{
  data = d;
  leftPtr = rightPtr = NULL;  //initialize pointers to null
}//end constructor

//Return a copy of the data value from the node
int TreeNode::getData(){return data;}

As you can see, the TreeNode class contains two public member functions, one is a constructor which initializes the two pointers to NULL and the other provides access to the private data stored in the node.


Tree Type
The following code defines the class used to instantiate tree objects.

//This class is used to instantiate Tree objects.
class Tree{
public:
  Tree(){ rootPtr = NULL;} //constructor
  void InsertNode(int ); //inserts new node in the tree
  //Find node in tree, return pointer to node if successful.
  //Return NULL if not successful.
  TreeNode* FindNode(TreeNode* ,int);
  //traverses tree, prints data in order
  void ShowInOrderTraversal();
  //following function returns the rootPtr member
  TreeNode* GetRootPtr() {return rootPtr;}
private:
  TreeNode *rootPtr; //contains pointer to the root of the tree
  //utility functions
  void InsertNodeRecur(TreeNode *&,int);//pass ref to pointer
  void ShowInOrderRecur(TreeNode*);
};//end class Tree

This Tree class includes several member functions which will be discussed in detail later.  A Tree object contains one data member (shown highlighted in boldface) which is a pointer to the root node of the tree.  Each of the nodes then contain data members which point to their children.

Two of the functions are automatic inline functions and will be discussed in this section.

The constructor, highlighted in boldface simply sets the pointer to the root to NULL indicating that the tree is empty.

The other inline function, GetRootPtr, also highlighted in boldface, provides access to the private data member which contains a pointer to the root node.

All of the non-inline functions are discussed in the sections which follow.


InsertNode Function
Unfortunately, we will need to begin with the most complex of all the functions.

In an earlier set of lecture notes we learned 

A solution to a problem is recursive if it is expressible as a smaller version of itself, and if ultimately a simple nonrecursive solution can be found.

In order to solve problems recursively, we design functions that call on themselves.  We call these functions recursive functions.

A function that calls itself directly or indirectly to solve a smaller version of its task until a final call which does not require a call to itself is a recursive function.

A binary search tree provides a very good example of the type of problem which can be solved recursively.  Recall our earlier description of a binary search tree.

A binary search tree has the characteristic that the values in any left subtree are less than the value in its parent node, and the values in any right subtree are greater than the value in its parent node.

Thus, from the viewpoint of any node in the tree, that node and its subtrees is simply a smaller version of the overall tree.  We will take advantage of this characteristic to use recursive functions for traversing the tree to insert new nodes, find nodes having specific values, and display the values of the nodes.

void Tree::InsertNode(int value)
//Inserts a new node in the tree
{
  //Invoke a recursive insertion process
  InsertNodeRecur(rootPtr, value);
}//end InsertNode

You will note in the above code fragment that the InsertNode() function simply calls another function which will operate recursively to find the correct spot to insert a new node.  A pointer to the root node and the value to be inserted are passed to the recursive function.


InsertNodeRecur() Function
In a binary search tree, a new node can only be inserted as a leaf node.  Therefore, the purpose of the recursive function is to find the appropriate existing leaf node onto which the new leaf should be attached causing the original leaf node to no longer be a leaf node.  

You might find the syntax in the formal argument list for this function unusual (with the unusual portion highlighted in boldface below). 

void Tree::InsertNodeRecur(TreeNode*& RootPointer,int value)

The reason for this unusual syntax is that the function receives a pointer variable as a reference parameter.  The code uses the pointer variable to access items in the node to which the variable points.  However, whenever a new node is created, it is necessary to modify the value of the pointer variable.  For that reason, it is passed as a reference parameter.  

It is also possible to accomplish the same objective by using pointers-to-pointers but this causes the syntax of the code in the body of the function to become much more complex.

Comments included in the body of the function generally explain how the function works.  Certain particularly interesting items are highlighted in boldface.

//This function receives a reference to a pointer variable.  The
//pointer variable is used to access data members of the class.
//The pointer is passed as a reference because it must be
//changed from NULL to an address whenever the new operator is
//used to create a new node.

void Tree::InsertNodeRecur(TreeNode*& RootPointer,int value)
{
  if(RootPointer == NULL) {
	 //Could be a completely empty tree, or could be that the
	 //root of the current subtree is a leaf.  Either
	 //way, create a new node in dynamic memory, store the
	 //data there, and store the address of the new node
	 //into the pointer passed to this recursion as a reference
	 //parameter.
	 RootPointer = new TreeNode(value);
	 assert(RootPointer != NULL); //exit on failure to allocate
  }//end if
  else  //tree is not empty
	 //Get the data value pointed to by the contents of the
	 //pointer passed to this recursion.  Test that value against
	 //current insertion value to decide whether to go left or
	 //to go right or to declare a duplicate key and terminate
	 //the recursion.
	 if(value < RootPointer->data)
		//Make a recursive call down the left subtree passing the
		//pointer which points to the left as a reference
		//parameter.  This parameter is a pointer to the root of
		//the left subtree.  If the current node is a leaf,
		//the pointer value is NULL.
		InsertNodeRecur(RootPointer->leftPtr, value);
	 else
		if (value > RootPointer->data)
		//Make a recursive call down the right subtree passing the
		//pointer which points to the right as a reference
		//parameter.  This parameter is a pointer to the root of
		//the right subtree.  If the current node is a leaf,
		//the pointer value is NULL.
		  InsertNodeRecur(RootPointer->rightPtr,value);
		else
		  //Not greater than and not less than, must be equal.
		  //Found a duplicate value.  Discard it and return from
		  //the recursion path.  A real program would need to
              //take more corrective action at this point
		  cout << "Discarding duplicate value of "
			 << value << endl;
}//end InsertNodeRecur


FindNode() Function
The function to find a node containing a specific value is similar to but somewhat less complex than the function to insert a new node.  This function also uses a recursive method to do the real work, but since the function has no reason to modify the pointer passed to it, it is not necessary to pass it as a reference parameter.

As an added feature in this demonstration program, an uppercase X is displayed at the beginning of each recursion.  This provides a visual indication of the number of comparisons that must be performed in order to find a specific value.

This function returns a pointer to the node where the matching value is found, or returns NULL if a match is not found.

TreeNode* Tree::FindNode(TreeNode* RootPointer,int value)
{
  //Display an X upon entry of each new recursion to show
  // the number of comparisons that are required to either
  // find the search value or determine that the tree doesn't
  // contain the search value.
  cout << "X ";
  if(RootPointer == NULL) {
	 //Subtree is empty.  Could be an empty tree, or could
	 //be that the root of the current subtree is a leaf.  Either
	 //way, the value being searched for was not found.
	 return NULL;
  }//end if
  else  //tree is not empty
	 //Get the data value pointed to by the pointer passed to this
	 //recursion.  Test that value against current search value to
	 //decide whether to go left or to go right or to declare a
	 //match and return a pointer to this node.
	 if(value < RootPointer->data)
		//Make a recursive call to search the left subtree passing
		//the pointer which points to the left.
		return FindNode(RootPointer->leftPtr, value);
	 else
		if (value > RootPointer->data)
		  //Make recursive call to search the right subtree passing
		  //pointer which points to the right.
		  return FindNode(RootPointer->rightPtr,value);
		else
              //Not greater than or less than, must be equal.
		  //Found a match.  Return a pointer to this node.
		  return RootPointer;
}//end FindNode


ShowInOrderTraversal() Function
As mentioned earlier, there are many ways to traverse a tree.  This particular function traverses the tree in such a way as to display all the data values in the tree in numeric order.

This function also calls a recursive function to do the real work passing a pointer to the root when a call is made.

//This function traverses the tree printing all the data in
//the tree in numeric order.
void Tree::ShowInOrderTraversal()
{
  ShowInOrderRecur(rootPtr);//call the recursive traversal function
}//end ShowInOrderTraversal


ShowInOrderRecur() Function
This function is the real workhorse of the process which traverses the tree and displays the data in numeric order.  It is similar but somewhat less complex than the two previous recursive functions.

//This function implements a recursive algorithm to traverse
//the tree to display all of the data contained in the tree
//in numeric order
void Tree::ShowInOrderRecur(TreeNode* ptr)
{
  if (ptr != NULL) {//current node is not a leaf
	 //make a recursive call to display entire left subtree
	 ShowInOrderRecur(ptr->leftPtr);
	 //return to here after displaying entire left subtree
	 cout << ptr -> data << ' ';//display data in current node
	 //make a recursive call to display entire right subtree
	 ShowInOrderRecur(ptr -> rightPtr);
  }//end if
}//end ShowInOrderRecur

Since by definition, all the data in the left subtree is less than the data in a parent node, and all the data in any right subtree is greater than the data in a parent node (and we don’t allow duplicate values), the data can be displayed in order by performing the following three steps: 

Displaying all the data in the left subtree, then
Displaying the data in the parent node, and then
Displaying the data in the right subtree.  

These three steps are accomplished in this function by the following code fragment which is the heart of the function.  Each of the highlighted statements in this code fragment correspond to one of the steps listed above in the same order.

	 //make a recursive call to display entire left subtree
	 ShowInOrderRecur(ptr->leftPtr);
	 //return to here after displaying entire left subtree
	 cout << ptr -> data << ' ';//display data in current node
	 //make a recursive call to display entire right subtree
	 ShowInOrderRecur(ptr -> rightPtr);


Test Driver Program
We will discuss the test of our ADT in two parts.  The first part creates and then exercises a “fluffy” tree by inserting data values in random order.  The second part creates and then exercises a “spindly” tree by inserting pre-sorted data.


The “Fluffy” Tree
That portion of the test program which creates and exercises a fluffy tree is shown below.  The output is shown following the program.  An attempt was made in the comments to provide a drawing which approximates the shape of the tree (although it may not hold up during the entire printing process for these lecture notes due to differences in fonts and printers).

//Test driver program
main()
{
  Tree intTree; //declare a Tree object

  //Declare an array containing some data which will be used
  //for inserting and searching.
  int DataValue[12] = {13,10,25,6,22,1,9,25,23,19,15,12};

  cout << "Insert 11 random values in random order with "
	 "one duplicate value." << endl;

  for(int cnt = 0; cnt < 11; cnt++)
	 intTree.InsertNode(DataValue[cnt]);

/*The above insertions will produce a tree that looks something
like the following

					13
				   /      \
				 10        25
				/         /
			     6         22
			    /  \       /  \
			   1    9    19   23
					/
				     15
*/

  cout << "\nUse ShowInOrderTraversal function to display all "
	 "data in order." << endl;
  intTree.ShowInOrderTraversal();

  cout << endl;
  cout << "Search for some values.  Display an X each time a "
	 "comparison \nis made.\n";

  TreeNode* TempPtr;
  //Search for the values in the array
  for(cnt = 0; cnt < 12; cnt++)
  {
	 cout << "Search for " << DataValue[cnt] << ' ';
	 TempPtr = intTree.FindNode(intTree.GetRootPtr(),DataValue[cnt]);
	 if (TempPtr) cout << "Found " << TempPtr->getData() << endl;
	 else cout << DataValue[cnt] << " not found\n";
  }//end for loop

The output from this part of the program follows.  You can count the number of X’s in each case to determine the number of comparisons required to find a particular value.  You should be able to verify the number of comparisons required against the shape of the tree shown above.

Insert 11 random values in random order with one duplicate value.
Discarding duplicate value of 25

Use ShowInOrderTraversal function to display all data in order.
1 6 9 10 13 15 19 22 23 25 
Search for some values.  Display an X each time a comparison 
is made.
Search for 13 X Found 13
Search for 10 X X Found 10
Search for 25 X X Found 25
Search for 6 X X X Found 6
Search for 22 X X X Found 22
Search for 1 X X X X Found 1
Search for 9 X X X X Found 9
Search for 25 X X Found 25
Search for 23 X X X X Found 23
Search for 19 X X X X Found 19
Search for 15 X X X X X Found 15
Search for 12 X X X 12 not found


The “Spindly” Tree
The next test involved inserting pre-sorted data into the tree.  In this case, the shape of the tree degenerated to something approximating a linked list.  Although these notes don’t show the exact shape of the tree, you should be able to infer the shape by counting the number of comparisons required to find a specified value.  As before, the output display shows an upper-case X each time a comparison is made.

cout << "\nNow demonstrate result of inserting "
	 "pre-sorted data.\n";

  Tree AnotherTree; //declare another Tree object

  //Declare an array containing some data which will be used
  //for inserting and searching.
  int NewDataValue[11] = {1,6,9,10,13,15,19,22,23,25,12};
  cout << "Insert 10 presorted values into the tree";

  for(cnt = 0; cnt < 10; cnt++)
	 AnotherTree.InsertNode(NewDataValue[cnt]);

  cout << "\nUse ShowInOrderTraversal function to display all "
	 "data in order." << endl;
  AnotherTree.ShowInOrderTraversal();

  cout << endl;
  cout << "Search for some values.  Display an X each time a "
	 "comparison \nis made.\n";

  //Search for the values in the array
  for(cnt = 0; cnt < 11; cnt++)
  {
    cout << "Search for " << NewDataValue[cnt] << ' ';
    TempPtr = AnotherTree.FindNode(AnotherTree.GetRootPtr(),
	NewDataValue[cnt]);
    if (TempPtr) cout << "Found " << TempPtr->getData() << endl;
    else cout << NewDataValue[cnt] << " not found\n";
  }//end for loop

  cout << "Terminating program\n";
  return 0;
}//end main

The output from running this portion of the program follows.  Again, the number of X’s associated with any particular search value indicates the number of comparisons required to find the value.  The number of comparisons shown indicates that the shape of the tree was a close approximation to the shape of a linear ordered linked list.


Now demonstrate result of inserting pre-sorted data.
Insert 10 presorted values into the tree
Use ShowInOrderTraversal function to display all data in order.
1 6 9 10 13 15 19 22 23 25 
Search for some values.  Display an X each time a comparison 
is made.
Search for 1 X Found 1
Search for 6 X X Found 6
Search for 9 X X X Found 9
Search for 10 X X X X Found 10
Search for 13 X X X X X Found 13
Search for 15 X X X X X X Found 15
Search for 19 X X X X X X X Found 19
Search for 22 X X X X X X X X Found 22
Search for 23 X X X X X X X X X Found 23
Search for 25 X X X X X X X X X X Found 25
Search for 12 X X X X X X 12 not found
Terminating program

-end-.
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