Richard G Baldwin
,
(512) 223-4758
, baldwin@austin.cc.tx.us, www.geocities.com/Athena/7077

CIS2204 Intermediate C++ Programming and Data Structures
, File 2204-7S.DOC, Revised 7/21
/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.
 Copyright 1996, R.G.Baldwin.

Linked Lists, Stacks, and Queues for Intrinsic Types

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc362084805 � PAGEREF _Toc362084805 �
1
��
2. Self-Referential Classes	� GOTOBUTTON _Toc362084806 � PAGEREF _Toc362084806 �
2
��
3. Linked Lists, Stacks, and Queues	� GOTOBUTTON _Toc362084807 � PAGEREF _Toc362084807 �
2
��
4. The Linked-List Portion of the Program	� GOTOBUTTON _Toc362084808 � PAGEREF _Toc362084808 �
3
��
4.1 The ListNode Class	� GOTOBUTTON _Toc362084809 � PAGEREF _Toc362084809 �
3
��
4.2 Friends of ListNode	� GOTOBUTTON _Toc362084810 � PAGEREF _Toc362084810 �
3
��
4.3 Data Members of ListNode	� GOTOBUTTON _Toc362084811 � PAGEREF _Toc362084811 �
3
��
4.3.1 Data	� GOTOBUTTON _Toc362084812 � PAGEREF _Toc362084812 �
3
��
4.3.2 Pointer to Next Node	� GOTOBUTTON _Toc362084813 � PAGEREF _Toc362084813 �
4
��
4.4 Member Functions of ListNode Class	� GOTOBUTTON _Toc362084814 � PAGEREF _Toc362084814 �
4
��
4.4.1 Constructor for ListNode	� GOTOBUTTON _Toc362084815 � PAGEREF _Toc362084815 �
4
��
4.4.2 getData() Member Function	� GOTOBUTTON _Toc362084816 � PAGEREF _Toc362084816 �
4
��
5. The List Class	� GOTOBUTTON _Toc362084817 � PAGEREF _Toc362084817 �
5
��
5.1 Private Members	� GOTOBUTTON _Toc362084818 � PAGEREF _Toc362084818 �
5
��
5.2 Member Functions	� GOTOBUTTON _Toc362084819 � PAGEREF _Toc362084819 �
5
��
5.2.1 Constructor for List	� GOTOBUTTON _Toc362084820 � PAGEREF _Toc362084820 �
5
��
5.2.2 Destructor	� GOTOBUTTON _Toc362084821 � PAGEREF _Toc362084821 �
5
��
5.2.3 insertAtFront	� GOTOBUTTON _Toc362084822 � PAGEREF _Toc362084822 �
6
��
5.2.4 insertAtBack	� GOTOBUTTON _Toc362084823 � PAGEREF _Toc362084823 �
7
��
5.2.5 removeFromFront()	� GOTOBUTTON _Toc362084824 � PAGEREF _Toc362084824 �
8
��
5.2.6 removeFromBack()	� GOTOBUTTON _Toc362084825 � PAGEREF _Toc362084825 �
9
��
5.2.7 isEmpty()	� GOTOBUTTON _Toc362084826 � PAGEREF _Toc362084826 �
10
��
5.2.8 getNewNode()	� GOTOBUTTON _Toc362084827 � PAGEREF _Toc362084827 �
10
��
5.2.9 print()	� GOTOBUTTON _Toc362084828 � PAGEREF _Toc362084828 �
11
��
5.2.10 Additional Member Functions	� GOTOBUTTON _Toc362084829 � PAGEREF _Toc362084829 �
11
��
5.3 Testing the Linked List	� GOTOBUTTON _Toc362084830 � PAGEREF _Toc362084830 �
12
��
6. The Stack Portion of the Program	� GOTOBUTTON _Toc362084831 � PAGEREF _Toc362084831 �
14
��
7. The Queue Portion of the Program	� GOTOBUTTON _Toc362084832 � PAGEREF _Toc362084832 �
16
��
8. Summary	� GOTOBUTTON _Toc362084833 � PAGEREF _Toc362084833 �
18
��
�

Introduction
Our purpose is not to teach you to become experts in the development of data structures. Most of the data structures that you will need are provided by the various container classes which are included in most modern C++ program development environments. Rather, our purpose is to teach you enough about containers that you can reuse the containers in those class libraries rather than to reinvent your own.

Therefore, this is the first in a series of several lecture notes which explore the development of a reusable (but incomplete) set of related classes. (With some additional effort, this set of related classes could be compiled into your own class library, but unless you don’t have access to the standard container libraries, there would be no reason to do that.) Several successively more complex programs are developed which provide the capability to instantiate objects for maintaining and processing linked lists, stacks, and queues.

The first program, a simple linked list, is intended to establish the class hierarchy and the algorithms involved while avoiding undue complexity. This program is designed to accommodate only integer data, and provides only a subset of the interface methods normally associated with a linked list data structure.

Another program, presented in a later set of lecture notes, expands the capability of the first program to handle user-defined types, and also adds the capability to maintain the linked list as a sorted alphanumeric data structure. Conversion of the program to handle user-defined types in alphanumeric order illustrates the design requirements for the complex class, including the requirement to overload the insertion operator and several relational operators for that class.

Another program in a later set of lecture notes converts the second program to a generic class architecture, thus providing the capability to use the class to handle any type of data.

Self-Referential Classes
A self-referential class contains a pointer member that points to a class object of the same class type. For example, the definition

class Node {
 ...
 Node *nextPtr;
public:
 ...
};//end class definition

defines a type, Node. The type has a private data member which is a pointer variable named nextPtr. The pointer member points to an object of the same type as the one being declared. This leads to the term “self-referential class.” This pointer data member is referred to as a link. That is, the data member named nextPtr can be used to link an object of type Node to another object of the same type.

Linked Lists, Stacks, and Queues
A linked list is a linear collection of self-referential class objects called nodes, connected by pointer links.

A linked list is accessed using a pointer to the first node of the list. Subsequent nodes are accessed via the link-pointer member stored in each node. By convention, the link pointer in the last node of a list is set to null (zero) to mark the end of the list. While linked lists can be constructed using arrays for data storage, the programs developed here store the data in the linked list using dynamically allocated memory. Each node is created when it is needed, and not before. Whenever a node is no longer needed, it is destroyed and the memory is returned to the system.

Stacks and queues are also linear data structures, and can be constructed as constrained versions of a properly-designed linked list. We will construct a stack and a queue through inheritance of our linked-list data structure with the access specifier in the inheritance being used to apply the proper constraints.

The Linked-List Portion of the Program
The following linked-list program consists of two classes: ListNode and List. ListNode is the class used to construct an actual node, while List is the class used to maintain a linked list of such nodes. Because of its length, this program is presented and discussed in sections. Those portions of the program pertaining to the stack and the queue will be discussed after the discussion of the linked-list is completed. For the record, the header information for the program is as follows:

/*File DATSTR02.CPP
This program creates and tests an integer linked list. Then the
linked list is inherited in a constrained manner to produce a
stack and a queue, both of which are tested.
*/
#include <iostream.h>
#include <assert.h>
#include <iomanip.h>

A test program is provided which manipulates a list of integer values, a stack of integer values, and a queue of integer values. The test program as well as the output from the test will be shown and discussed following the discussion of the various parts of the program.

The ListNode Class
The actual nodes in the list are objects of the class named ListNode which is declared as follows. A discussion of this code follows the listing.

class ListNode{
 friend class List; //make List a friend
public:
 ListNode(int &); //constructor
 int getData() ; //return the data in the node
private:
 int data; //data
 ListNode *nextPtr; //pointer to next node in the list
};//end class declaration for class ListNode

Friends of ListNode
Later when we examine the function getNewNode() which is a member function of the List class, we will see that the function uses the new operator to allocate memory for a node of type ListNode which has the effect of declaring an object of that type. Subsequently, several other member functions of List manipulate the private data members of the ListNode object. To make it possible for those functions to have direct access to the private data members of ListNode, the entire List class is made a friend of the ListNode class. Hence, the member functions of List have direct access to the private members of an object of type ListNode.

Data Members of ListNode
ListNode has several data members.

Data
As mentioned earlier, this program was specifically designed to maintain a linked list of integer data. Thus, the data member called data is of the int type.

Pointer to Next Node
In addition to the data member named data, the class contains a pointer variable of the same type as the class (self-referential). In practice, this pointer variable contains the address of the next node in the linked list. In the case where this is the last node in the list, the pointer variable contains zero (null pointer).

(Note that some implementations of a linked list will maintain two pointers in each node. One pointer points to the next node while the other pointer points to the previous node. While this consumes more memory, it also makes it easier to perform certain operations on the list, such as traversing the list in the reverse direction.)

Member Functions of ListNode Class
The class contains two member functions as declared by the following prototypes:

 ListNode(int &); //constructor
 int getData() ; //return the data in the node

The parameterized constructor receives a reference parameter of type int.

The getData() function returns a copy of the data stored in the data member of the node.

The actual definitions of these member functions are shown below:

Constructor for ListNode
A listing of the constructor function follows. A discussion of the code follows the listing.

ListNode::ListNode(int &info)
{
 data = info;
 nextPtr = 0; //initialize to null pointer
}//end constructor definition

This is a parameterized constructor which assigns the value of the reference parameter to the integer data member of the object. This data member is named data. The other data member which is a pointer variable is set to zero (null pointer).

getData() Member Function
This member function of the ListNode class simply returns a copy of the integer data member of the object.

int ListNode::getData() {return data;}

The List Class
The following code provides the declaration of the List class. A discussion of the code follows the listing.

class List{
public:
 List(); //constructor
 ~List(); //destructor
 void insertAtFront(int &);
 void insertAtBack(int &);
 int removeFromFront(int &);
 int removeFromBack(int &);
 int isEmpty() ;
 void print() ;
private:
 ListNode *firstPtr; //pointer to first node
 ListNode *lastPtr; //pointer to last node
 ListNode *getNewNode(int &); //utility to get new node
};//end declaration of class List

Private Members
The class contains three private members, two are data members and one is a private member function.

The two data members are both pointer variables. One of the pointer variables is used to maintain a pointer to the first node in the linked list. The other pointer variable is used to maintain a pointer to the last node in the linked list. The pointers are of type ListNode.

The private member function as well as eight public member functions are discussed in the sections which follow.

Member Functions
The class contains several member functions.

Constructor for List
As shown by the following code fragment, the constructor for the List class simply initializes the pointers to the first and last nodes to zero, the null pointer. This is the indication of an empty list which contains no nodes.

List::List(){firstPtr = lastPtr = 0;}//set pointers to null

Destructor
A listing of the destructor member function follows. A discussion of the destructor code follows the listing.

List::~List()
{
 if(!isEmpty()) {//List is not empty, traverse and destroy nodes
 cout << "Destroying nodes ... " << endl;
 //declare two local pointers and initialize one of them
 ListNode *currentPtr = firstPtr, *tempPtr;
 while(currentPtr != 0) {//delete remaining nodes
 tempPtr = currentPtr;
 cout << tempPtr->data << endl;
 currentPtr = currentPtr->nextPtr;
 delete tempPtr;
 }
 }
 cout << "All nodes destroyed" << endl << endl;
}

The destructor begins by calling a function named isEmpty() to determine if the list is empty (contains no nodes). If the list is empty, the function simply prints an exit message and returns, having done nothing.

If the list is not empty, the destructor traverses the list and uses the delete operator to return the memory occupied by each node to the operating system.

In order to accomplish this, the destructor uses two temporary local pointer variables: currentPtr and tempPtr. These two pointer variables are declared, and currentPtr is initialized to the value of firstPtr which is a data member of the List class which points to the first node in the list.

The program then executes a loop to traverse the list, from the first node to the last node, displaying the data contained in each node, and then using the delete operator to destroy the node and return the memory to the system. The loop continues until the node with a null pointer (last node) has been destroyed, at which time the loop terminates, an exit message is displayed, and control returns to the calling function.

At the beginning of each loop, a pointer to the next remaining (current) node is stored in currentPtr. A copy of the current pointer is assigned to tempPtr and the value of the data is displayed using this value. Following this, a pointer to the next node is retrieved from the internal pointer variable in the current node and assigned to currentPtr. Then the current node is deleted using the pointer to the current node which is stored in tempPtr. Finally, a new iteration of the loop begins with a pointer to the next remaining (current) node stored in currentPtr.

As you have probably have concluded by now, an iterative structure of this type can be used for a variety of purposes, such as printing the values contained in each node, etc.

insertAtFront
This member function is used to insert a new node at the front of the list. A listing of the function follows. The big issue, from a programming viewpoint in inserting nodes is rewiring the pointers. A discussion of the code follows the listing.

void List::insertAtFront(int &value)
{
 //declare and initialize a local pointer
 ListNode *newPtr = getNewNode(value);

 if(isEmpty()) //List is empty
 firstPtr = lastPtr = newPtr;
 else{ //List is not empty
 newPtr->nextPtr = firstPtr;
 firstPtr = newPtr;
 }
}

This function receives a reference to a value to be stored in a new node which is to be inserted at the front of the list. Essentially three steps are involved:

Create the new node using dynamically allocated memory.
Store the data value in the data member of the new node.
Rewire the pointers so that the pointer variable in the new node points to the previous first node, and the pointer variable in the List object which points to the first node in the list points to the new node as the new first node.

The first two steps are accomplished by calling getNewNode() and passing the new data value to that function. getNewNode(), which we will discuss later causes memory to be allocated for the new node, causes the data value to be stored in the new node by way of a parameterized constructor, and returns a pointer to the new node.

The insertAtFront() function then checks to see if the list is empty. If so, the pointers in the List object which point to the first and last nodes are assigned values to cause them to point to the newly-created node. When both pointers point to the same node, this is an indication that the list contains only one node.

If the list is not empty, the pointer variable in the new node which points to the next node is assigned the old value of the pointer to the first node in the List class. The pointer variable in the List class which points to the first node is then caused to point to the new node.

insertAtBack
This function causes a new node to be inserted at the back of the list. A listing of this function follows. A discussion of the code follows the listing.

void List::insertAtBack(int &value)
{
 //declare and initialize a local pointer
 ListNode *newPtr = getNewNode(value);

 if(isEmpty()) //List is empty
 firstPtr = lastPtr = newPtr;
 else { //List is not empty
 lastPtr->nextPtr = newPtr;
 lastPtr = newPtr;
 }
}

As was the case with the previous function, this function receives a reference to a value that is to be stored in a new node, but the new node in this case is to be inserted at the back of the list, not at the front. As before, three steps are involved:

Create the new node using dynamically allocated memory.
Store the data value in the data member of the new node.
Rewire the pointers so that the pointer variable in the new node is a null pointer, (indicating that it is the last node in the list), the pointer variable in the List object which points to the last node points to the new node as the new last node, and the pointer variable in the old last node which points to the next node in the list points to the new node as the next node in the list.

As before, the first two steps are accomplished by calling getNewNode() and passing the new data value to that function. getNewNode() causes memory to be allocated for the new node, causes the data value to be stored in the new node by way of a parameterized constructor, and returns a pointer to the new node. The constructor for the new node also causes the pointer in the new node which points to the next node in the list to be set to zero (null pointer).

The insertAtBack() function then checks to see if the list is empty. If so, the pointers in the List object which point to the first and last nodes are assigned values to cause them both to point to the newly-created node. When both pointers point to the same node, this is an indication that the list contains only one node.

If the list is not empty, the pointer variable in the old last node which points to the next node is caused to point to the new node. The pointer variable in the List class which points to the last node is then caused to point to the new node.

removeFromFront()
This function causes a node to be removed from the front of the list. A listing of this function follows. As with insertion, the big issue in removing nodes is rewiring of the pointers. It is also important that the memory be returned to the operating system whenever a node is removed. A discussion of the code follows the listing.

int List::removeFromFront(int &value)
{
 if(isEmpty()) //List is empty
 return 0; //delete is unsuccessful
 else { //List is not empty
 //declare and initialize a local pointer
 ListNode *tempPtr = firstPtr;

 if(firstPtr == lastPtr)
 firstPtr = lastPtr = 0; //set both to null
 else
 firstPtr = firstPtr->nextPtr;

 value = tempPtr->data; //data being removed
 delete tempPtr; //return memory to system
 return 1; //delete successful
 }
}

This function receives a reference parameter and stores the integer node value in that parameter before deleting the node. Hence, the data value being removed is passed back to the calling program.

The function checks first to see if the list is empty, and if so, returns a 0 indicating that a node was not successfully removed from the list. If the list is not empty, the function declares a local pointer named tempPtr and initializes it with the value of the pointer in the List object which points to the first node in the list. The local pointer named tempPtr then points to the first node in the list.

The function then checks to see if the pointers in the List object which point to the first and last nodes both point to the same node. If so, this indicates that there is only one node in the list. It is to be removed, leaving an empty list. In this case, the two pointers in the List object which point to the first and last nodes in the list are both set to zero (null).

If there is more than one node in the list, the value of the pointer in the first node which points to the second node is extracted and assigned to the pointer in the List object which points to the first node, because the second node will become the first node when the current first node is deleted.

tempPtr which contains a pointer to the first node is used to retrieve the data value in the first node and assign it to the reference parameter. Then tempPtr is used to delete the first node and return the memory occupied by that node to the system.

Finally, the function returns a value of 1 to indicate a successful deletion.

removeFromBack()
This function causes a node to be removed from the back of the list. A listing of this function follows. As you will see, this is a little more complicated than removing a node from the front of the list. A discussion of the code follows the listing.

int List::removeFromBack(int &value)
{
 if(isEmpty()) //List is empty
 return 0; //delete unsuccessful
 else { //List is not empty
 //declare and initialize a local pointer
 ListNode *tempPtr = lastPtr;
 if(firstPtr == lastPtr)
 firstPtr = lastPtr = 0; //set both to null
 else {
 //declare and initialize another local pointer
 ListNode *currentPtr = firstPtr;
 while(currentPtr->nextPtr != lastPtr)//find the next-to-last node
 currentPtr = currentPtr->nextPtr;
 lastPtr = currentPtr;
 currentPtr->nextPtr = 0; //set to null
 }
 value = tempPtr ->data;
 delete tempPtr;
 return 1; //successful delete
 }
}

As with the previous function, this function receives a reference parameter and stores the integer node value in that parameter before deleting the node. Hence, the data value being removed is passed back to the calling program.

The function checks first to see if the list is empty, and if so, returns a 0 indicating that a node was not successfully removed from the list. If the list is not empty, the function declares a local pointer named tempPtr and initializes it with the value of the pointer in the List object which points to the last node in the list. The local pointer named tempPtr then points to the last node in the list.

The function then checks to see if the pointers in the List object which point to the first and last nodes both point to the same node. If so, this indicates that there is only one node in the list. It is to be removed, leaving an empty list. In this case, the two pointers in the List object which point to the first and last nodes in the list are both set to zero (null).

If there is more than one node in the list, another local pointer named currentPtr is declared and assigned the value of the pointer in the List object which points to the first node in the list. At this point, the pointer named tempPtr points to the last node in the list and the pointer named currentPtr points to the first node in the list.

Removing the last node is more complicated than removing the first node due to the fact that the next-to-last node must be accessed in order to set its internal pointer (which points to the next node) to zero indicating that it is the new last node in the list. With this list design, the only way to access the next-to-last node is to start at the front of the list and traverse the entire list, stopping at the next-to-last node. This is one of those operations that would be easier if each node contained two pointers, one pointing to the previous node and one pointing to the next node.

A while loop is used to traverse the list until the node is reached which has an internal pointer which points to the last node (which matches the pointer in the List object which points to the last node). This is the next-to-last node. When this node is reached, currentPtr points to it. The value of currentPtr is assigned to the pointer in the List object which points to the last node in the list. The value of currentPtr is also used with the -> operator to set the internal pointer in the next-to-last node to zero (null).

Finally, tempPtr which points to the still-existing last node is used to retrieve the data value from the last node and assign it to the reference parameter, and is then used to delete the last node and return the memory occupied by that node to the system.

After all of this takes place, the function returns a value of 1 to indicate a successful deletion

isEmpty()
The function which is used to determine if the list is empty is shown below. This function simply tests to see if the pointer in the List object which points to the first node is a null pointer. If so, this indicates an empty list and the function returns true. Otherwise, it returns false.

int List::isEmpty() {return firstPtr == 0;}

getNewNode()
The function which is used to allocate memory for a new node is named getNewNode(). This function requests a block of memory sufficient to contain type ListNode and passes an integer value to the constructor so that it will be stored in the new node. The function then uses the assert operator as a “quick and dirty” way to confirm that the memory was successfully allocated. If not, the program will terminate with certain standard information regarding the termination being displayed on the screen. Normally, however, this information is less descriptive than that which can be provided if the programmer constructs a custom version of the code to test and terminate. Therefore, you should probably modify this code to provide a more-descriptive termination message if you decide to use this program for more than demonstration purposes.

Note that the most recent versions of some C++ compilers do not return a null pointer on failure to allocate with the new operator. In those cases, it is necessary to make use of exception handling to deal with the problem of failure to allocate.

If the memory is successfully allocated, the integer data value is stored in the new node by way of a constructor in the class and the pointer to the block of memory is returned to the calling function. Note that even though memory has been allocated and data has been stored in that memory, the memory representing the new node has not yet been linked into the list. This function simply returns a pointer to the new node to the calling function which is responsible for properly linking it into the list.

ListNode *List::getNewNode(int &value)
{
 //get pointer to new memory
 ListNode *ptr = new ListNode(value);
 assert(ptr != 0); //quick and dirty test for success
 return ptr;
}

print()
The following function traverses the list from front to back displaying the value of the integer data member stored in each node.

void List::print()
{
 if(isEmpty()){
 cout << "The structure is empty" << endl;
 return;
 }

 //declare and initialize a local pointer
 ListNode *currentPtr = firstPtr;
 cout << "The structure contains: ";

 while(currentPtr != 0){ //traverse the list and display data
 cout << currentPtr->data << ' ';
 currentPtr = currentPtr->nextPtr;
 }

 cout << endl;
}

If the list is empty, a message to that effect is displayed. Otherwise, a local pointer named currentPtr is used in a while loop to start at the first node, display the data value stored in that node, and then use the internal pointer in the node, which points to the next node, to move to the next node and repeat the process as needed. The internal pointer in the last node is always a null pointer, and that fact is used to terminate the loop.

Additional Member Functions
Two member functions normally associated with linked lists are not included here. For completeness, there should probably be a member function to allow for insertion of a new node somewhere in the list on an alphanumeric or sorted basis. Also for completeness, there should probably be a function which allows for deletion of a node having a data value matching a specified data value. That capability is added to the program subsequent set of lecture notes.

Testing the Linked List
The following main() function is used to call three test functions.

main()
{
 void testIntegerList(); //function prototype
 testIntegerList(); //Exercise using integers
 void testStack(); //function prototype
 testStack(); //Exercise the stack
 void testQueue(); //function prototype
 testQueue(); //Exercise the queue
 return 0;
}//end main

The test function named testIntegerList() is used to test the linked-list portion of the program. That test function is shown below. As you can see, this test function makes a series of insertions at the front and the back of the list and prints the contents of the list following each insertion. This makes it possible to see how the list grows with each insertion.

Following this, the function makes a series of removals from the front and the back of the list, again printing the contents of the list following each removal. The output from running this portion of the program follows the listing.

void testIntegerList()
{
 cout << "Testing a list of integer values\n";
 //Declare an integer list object
 List MyList;

 cout << "Put some data in the list and watch it grow\n";
 MyList.print();
 MyList.insertAtFront(10);
 MyList.print();
 MyList.insertAtBack(20);
 MyList.print();
 MyList.insertAtFront(30);
 MyList.print();
 MyList.insertAtBack(40);
 MyList.print();
 MyList.insertAtFront(50);
 MyList.print();
 MyList.insertAtBack(60);
 MyList.print();

 cout << "\nRemove data from the list and watch it shrink\n";
 int temp;
 if(MyList.removeFromFront(temp))
 cout << temp << " removed from list" << endl;
 else cout << "Removal unsuccessful\n";
 MyList.print();
 if(MyList.removeFromBack(temp))
 cout << temp << " removed from list" << endl;
 else cout << "Removal unsuccessful\n";
 MyList.print();
 if(MyList.removeFromFront(temp))
 cout << temp << " removed from list" << endl;
 else cout << "Removal unsuccessful\n";
 MyList.print();
 cout << "Terminating integer test\n";

}//end testIntegerList()

The output from running the linked-list portion of this program follows:

Testing a list of integer values
Put some data in the list and watch it grow
The structure is empty
The structure contains: 10
The structure contains: 10 20
The structure contains: 30 10 20
The structure contains: 30 10 20 40
The structure contains: 50 30 10 20 40
The structure contains: 50 30 10 20 40 60

Remove data from the list and watch it shrink
50 removed from list
The structure contains: 30 10 20 40 60
60 removed from list
The structure contains: 30 10 20 40
30 removed from list
The structure contains: 10 20 40
Terminating integer test
Destroying nodes ...
10
20
40
All nodes destroyed

The Stack Portion of the Program
A stack is a linear data structure which allows data to be inserted and removed at only one end. Thus, a stack is a last in, first out (LIFO) data structure.

Since our List class will allow data to be inserted or removed at either end, it is a relatively simple matter to convert it to a stack simply by disabling the ability to insert and remove data at one end.

We will create a Stack class which is derived from our List class. We will inherit the List class as private to disable the ability of program code to access the public member functions of the List class via a Stack object.

Normally, we think in terms of pushing data onto a stack and popping data off of a stack. We will provide public member functions named push() and pop() in our Stack class which will access the insertion and removal functions for only one end of the data structure provided by the List class.

We will also provide a public member function for our Stack class which will access the print() member function of the List class, and will provide a public member function which will access the isEmpty() member function of the List class. Once we have done these four things, we will have created a stack data structure, and we will provide a test function to test it.

The code which implements the Stack class follows. Note that all of the member function definitions are included in the class declaration as automatic in-line functions.

class Stack : private List {
public:
 void push(int &d) {insertAtFront(d); }
 int pop(int &d) {return removeFromFront(d); }
 int isStackEmpty() {return isEmpty(); }
 void printStack() { print(); }
};//end stack class declaration

The small amount of code required to implement the Stack data structure as a class derived from our List class attests to the power of inheritance provided by C++. The amount of additional code required to effectively test the stack is greater than the additional code required to implement the stack. The test code follows:

void testStack()
{
 Stack MyStack; //create a stack object
 cout << "\nTesting the stack\n";
 cout << "Push four integers onto the stack\n";
 for(int cnt = 1; cnt < 5; cnt++)
 {
 MyStack.push(cnt*5);
 MyStack.printStack();
 }//end if

 cout << "\nTry to pop five integers off the stack\n";
 int MyData;
 for(cnt = 0; cnt < 5; cnt++)
 {
 if(!MyStack.isStackEmpty()){ //if stack is not empty
 MyStack.pop(MyData);
 cout << "Just popped " << MyData << endl;
 }
 else cout << "Can't pop an empty stack\n";
 }//end if
 cout << "Push an integer to demonstrate the destructor\n";
 MyStack.push(2048);
 MyStack.printStack();
}//end testStack()

The output from running this program follows:

Testing the stack
Push four integers onto the stack
The structure contains: 5
The structure contains: 10 5
The structure contains: 15 10 5
The structure contains: 20 15 10 5

Try to pop five integers off the stack
Just popped 20
Just popped 15
Just popped 10
Just popped 5
Can't pop an empty stack
Push an integer to demonstrate the destructor
The structure contains: 2048
Destroying nodes ...
2048
All nodes destroyed

The Queue Portion of the Program
A queue is a linear data structure which allows data to be inserted only at one end and removed only at the other end. Thus, a queue is a first in, first out (FIFO) data structure.

Since our List class will allow data to be inserted or removed at either end, it is a relatively simple matter to convert it to a queue by simply disabling the ability to insert data at one end and disabling the ability to remove data at the other end.

We will create a Queue class which is derived from our List class. As with the Stack, we will inherit the List class as private to disable the ability of program code to access the public member functions of the List class via a Queue object.

Normally, we think in terms of engueueing data onto a queue and dequeueing data off of a queue. We will provide public member functions named enqueue() and dequeue() in our Queue class which will access the insertion and removal functions at opposite ends of the data structure provided by the List class.

We will also provide a public member function for our Queue class which will access the print() member function of the List class, and will provide a public member function which will access the isEmpty() member function of the List class. Once we have done these four things, we will have created a queue data structure, and we will provide a test function to test it.

The code which implements the Queue class follows. Again, the member function definitions are included in the class declaration as automatic in-line functions.

class Queue : private List {
public:
 void enqueue(int &d) {insertAtBack(d); }
 int dequeue(int &d) {return removeFromFront(d); }
 int isQueueEmpty() {return isEmpty(); }
 void printQueue() { print(); }
};//end stack class declaration

While we had the option to insert our data at either end and remove it from the other end to implement our queue, you may recall that removal from the back of our linked list is more difficult than removal from the front. Therefore, we chose to “insert at the back” and “remove from the front.”

As with the Stack class, less code is required to properly inherit the Queue class from the List class than is required to test the Queue class once it is inherited. The test function used to test the Queue class follows:

void testQueue()
{
 Queue MyQueue; //create a Queue object
 cout << "\nTesting the Queue\n";
 cout << "Enqueue four integers onto the Queue\n";
 for(int cnt = 1; cnt < 5; cnt++)
 {
 MyQueue.enqueue(cnt*5);
 MyQueue.printQueue();
 }//end if

 cout << "\nTry to dequeue five integers off the Queue\n";
 int MyData;
 for(cnt = 0; cnt < 5; cnt++)
 {
 if(!MyQueue.isQueueEmpty()){ //if Queue is not empty
 MyQueue.dequeue(MyData);
 cout << "Just dequeud " << MyData << endl;
 }
 else cout << "Can't dequeue an empty Queue\n";
 }//end if

 cout << "Enqueue an integer to demonstrate the destructor\n";
 MyQueue.enqueue(4096);
 MyQueue.printQueue();
}//end testQueue()

The output from running this test program follows:

Testing the Queue
Enqueue four integers onto the Queue
The structure contains: 5
The structure contains: 5 10
The structure contains: 5 10 15
The structure contains: 5 10 15 20

Try to dequeue five integers off the Queue
Just dequeud 5
Just dequeud 10
Just dequeud 15
Just dequeud 20
Can't dequeue an empty Queue
Enqueue an integer to demonstrate the destructor
The structure contains: 4096
Destroying nodes ...
4096
All nodes destroyed

Summary
While not complete as an Abstract Data Type, the above sample program provides an example of the beginnings of such an ADT. Several improvements can be readily identified which should be included in such a general ADT. First, there are additional insertion and removal capabilities commonly associated with linked lists which could and should be added to this program. Prominent among them are functions which allow nodes to be entered at a position which makes it possible to always maintain the list in sorted order. In addition, a function should be added which makes it possible to remove a node by matching the data value contained in the node against a specified data value. These functions should either be designed to prevent the insertion of records having duplicated keys into the list, or designed to accommodate records with duplicated keys.

Beyond this, the program should be upgraded using the template keyword to cause the List, Stack, and Queue classes to be generic classes which can be used with a variety of data types simply by declaring the type of data when an object of the class is instantiated. An example program which illustrates this capability will be provided in a later set of lecture notes.

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #7S,
Linked Lists, Stacks and Queues for Intrinsic Types, Copyright 1996, R.G.Baldwin, Page � PAGE �
18
�

