Richard G Baldwin
,
(512) 223-4758
, baldwin@austin.cc.tx.us, www.geocities.com/Athens/70
77

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-8S.DOC, Revised 7/
21
/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.
 Copyright 1996, R.G.Baldwin

Linked Lists, Stacks, and Queues for User-Defined Types
(Includes Ordered Linked Lists)

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc353114250 � PAGEREF _Toc353114250 �
1
��
2. Required Program Modifications	� GOTOBUTTON _Toc353114251 � PAGEREF _Toc353114251 �
2
��
3. New Member Functions	� GOTOBUTTON _Toc353114252 � PAGEREF _Toc353114252 �
2
��
3.1 insertByValue	� GOTOBUTTON _Toc353114253 � PAGEREF _Toc353114253 �
3
��
3.2 removeByValue	� GOTOBUTTON _Toc353114254 � PAGEREF _Toc353114254 �
5
��
4. complex Data Type	� GOTOBUTTON _Toc353114255 � PAGEREF _Toc353114255 �
7
��
5. Testing the Program	� GOTOBUTTON _Toc353114256 � PAGEREF _Toc353114256 �
9
��
5.1 testComplexList()	� GOTOBUTTON _Toc353114257 � PAGEREF _Toc353114257 �
10
��
5.2 testComplexStack()	� GOTOBUTTON _Toc353114258 � PAGEREF _Toc353114258 �
11
��
5.3 testComplexQueue()	� GOTOBUTTON _Toc353114259 � PAGEREF _Toc353114259 �
12
��
5.4 testComplexListByValue()	� GOTOBUTTON _Toc353114260 � PAGEREF _Toc353114260 �
13
��
6. Possible Improvements	� GOTOBUTTON _Toc353114261 � PAGEREF _Toc353114261 �
15
��
�

Introduction
This is the second in a series of lecture notes which explore the development of a set of related classes. Three successively more complex programs are developed which provide the capability to instantiate objects which maintain and process linked lists (including ordered lists), stacks, and queues.

The first program, which was presented in a previous set of lecture notes under the name DATSTR02.CPP was intended to establish the class hierarchy and the algorithms involved while avoiding undue complexity. Thus, the first program was constrained to process only integer data, and provided a small subset of the interface functions normally associated with the linked list data structure.

The second program, under the name DATSTR03.CPP presented in this set of lecture notes, expands the capability of the first program to handle complex user-defined types, and also adds the capability to maintain the linked list as a sorted alphanumeric data structure (ordered list). Conversion of the program to handle complex data types in alphanumeric order illustrates the design requirements for the complex class, including the requirement to overload the insertion operator and several relational operators for that class.

The third program, which will be presented in a later set of lecture notes, converts the second program to a generic class architecture, thus providing the capability to use the class to handle any type of data.

The fundamental design concepts for linked list, stacks, and queues were discussed in the lecture notes presented with the first program. In addition, the hierarchy of the class structure was described at that time. That information won’t be repeated here. Rather, this set of lecture notes will describe the design of the complex class which the second program is designed to accommodate, and will also describe the added member functions required to maintain the linked list in sorted alphanumeric order.

Required Program Modifications
The following modifications were required to the first program to give it the added capability described above.

A new data type named complex was created by declaring and defining a class named complex.

Two new member functions were declared and defined to accommodate the insertion of a node on the basis of its value and to remove a node on the basis of its value. These member functions are named insertByValue() and removeByValue() respectively.

The program was edited where appropriate to replace the keyword int with the new class name complex. Only significant modifications to the program, such as the new member functions, are shown herein. An earlier version of the program without modifications can be seen in the set of lecture notes which describes the version of the program designed to operate on integer data only.

The various test functions were then modified to accommodate the new data type as well as the new insertion and removal capabilities.

New Member Functions
The List class was modified as shown below to include two new member functions: insertByValue and removeByValue. The definitions of these new functions are shown and discussed in the sections which follow:

class List{
public:
 List(); //constructor
 ~List(); //destructor
 void insertAtFront(complex &);
 void insertByValue(complex &);
 void insertAtBack(complex &);
 int removeFromFront(complex &);
 int removeByValue(complex &);
 int removeFromBack(complex &);
 int isEmpty() ;
 void print() ;
private:
 ListNode *firstPtr; //pointer to first node
 ListNode *lastPtr; //pointer to last node
 ListNode *getNewNode(complex &); //utility to get new node
};//end declaration of class List

insertByValue
A listing of the insertByValue function follows. A discussion of the function follows the listing.

void List::insertByValue(complex &value)
{
 if(isEmpty()) //List is empty, get memory, make this first node
 firstPtr = lastPtr = getNewNode(value);
 //if smaller than data in first node, insert at front
 else if(value <= firstPtr->data) insertAtFront(value);
 //if larger than data in last node, insert at back
 else if(value >= lastPtr->data) insertAtBack(value);
 else {//have to find a spot and insert in middle
 //declare and initialize a local pointer and get memory
 ListNode *newPtr = getNewNode(value);
 //declare temp pointer and initialize to front of list
 ListNode *currentPtr = firstPtr;
 while(currentPtr->nextPtr != 0)//loop until null pointer
 {
 if((value >= currentPtr->data)
 && (value <= ((currentPtr->nextPtr)->data)))
 {//insert the node
 newPtr->nextPtr = currentPtr->nextPtr;
 currentPtr->nextPtr = newPtr;
 break; //terminate loop
 }
 else currentPtr = currentPtr->nextPtr;
 }//end while loop
 }
}

The function uses the following code fragment to determine if the list is empty, and if so, to create a new node and to enter the new node as the first and only node in the list.

if(isEmpty()) //List is empty, get memory, make this first node
 firstPtr = lastPtr = getNewNode(value);

The function then uses the following code fragment to determine if the new node should appear at the beginning or the end of the list, by comparing its value with the values in the first and last node. If it is determined that the new node should be inserted at the beginning or the end of the list, the appropriate functions are called to cause this to happen.

//if smaller than data in first node, insert at front
 else if(value <= firstPtr->data) insertAtFront(value);
 //if larger than data in last node, insert at back
 else if(value >= lastPtr->data) insertAtBack(value);

If the value of the new node does not indicate that it should be inserted at the front of the list or the end of the list, it is necessary to find the proper location and insert it somewhere internal to the list. A new node is created and the data value is stored in the new node using the following statement:

ListNode *newPtr = getNewNode(value);

Then, the following code fragment: is used to declare a temporary local pointer named currentPtr and to initialize it to the value of the pointer in the List class which points to the first pointer in the list.

ListNode *currentPtr = firstPtr;

A while loop is used to traverse the list, comparing the data value in the new node with the data values in the existing nodes (which must have been created in alphanumeric order for this method to work properly) until the proper spot is found. At that point, the following code fragment is used to modify the pointers in such a way as to insert the new node into the list and break out of the while loop.

newPtr->nextPtr = currentPtr->nextPtr;
currentPtr->nextPtr = newPtr;
break; //terminate loop

removeByValue
A listing of the removeByValue function follows. A discussion of the function follows the listing.

int List::removeByValue(complex &value)
{
 if(isEmpty()) //List is empty
 return 0; //delete is unsuccessful
 else
 { //List is not empty
 if(value == firstPtr->data)
 {
 removeFromFront(value);
 return 1;
 }
 else if(value == lastPtr->data)
 {
 removeFromBack(value);
 return 1;
 }
 else
 {//have to find it in the middle of the list
 //declare temp pointers
 ListNode *currentPtr = firstPtr,*tempPtr;
 while(currentPtr->nextPtr != lastPtr)
 {
 //test to see if the value has been passed
 if(value < currentPtr->data)//can't find a match
 {
 cout << "No match found\n";
 return(0); //return unsuccessful delete
 }

 //test to see if the data in the next node matches
 if(value ==((currentPtr->nextPtr)->data))//delete next node
 {
 tempPtr = currentPtr->nextPtr;//save for delete operator
 //bypass next node
 currentPtr->nextPtr = ((currentPtr->nextPtr)->nextPtr);
 delete tempPtr; //return mem to system
 return 1;//return with successful delete
 }//end if

 //test to see if the next node is the last node
 if(((currentPtr->nextPtr)->nextPtr)==0)//can't find a match
 {
 cout << "No match found\n";
 return(0); //return unsuccessful delete
 }
 currentPtr = currentPtr->nextPtr; //move to next node
 }//end while loop
 }//end else
 }//end else
 cout << "Should never get this far before returning\n";
 return 2;
}//end function

The function tests to see if the list is empty by calling isEmpty() and if so, returns a zero indicating that the delete was not successful.

If the list is not empty, the function checks to see if the value contained in the node to be deleted matches the value in either the first or last nodes. If so, the appropriate function, either removeFromFront() or removeFromBack(), is called to perform the deletion.

If none of the above is true, it is necessary to search the list in an attempt to find and delete a node with a matching value.

Before entering a while loop which is actually used to traverse the list, two local temporary pointer variables are declared, and one of them is initialized to point to the first node in the list by the following code fragment:

ListNode *currentPtr = firstPtr,*tempPtr;

The function assumes that the list has been constructed in sorted alphanumeric order. As the list is traversed, the function checks each node to see if the value in the current node is greater than the specified value in the node to be deleted using the following code fragment.

if(value < currentPtr->data)//can't find a match
 {
 cout << "No match found\n";
 return(0); //return unsuccessful delete
 }

A true result in the above if statement indicates that the specified value cannot possibly be contained in the list, so the search is aborted. (See the section on Possible Improvements for a further discussion of this assumption.)

As the function traverses the list, it tests to see if the data in the next node matches the specified value, rather than testing to see if the data in the current node matches. This is necessary to make it possible to perform the proper pointer manipulations when a match is found. This test is made using the following if statement which performs a double indirection using the arrow operator (->).

if(value ==((currentPtr->nextPtr)->data))//delete next node

If the next node does contain a value which matches the specified value, a pointer adjustment is made so as to bypass the next node and then the next node is deleted returning its memory to the system. This is accomplished by the following code fragment.

tempPtr = currentPtr->nextPtr;//save for delete operator
//bypass next node
currentPtr->nextPtr = ((currentPtr->nextPtr)->nextPtr);
delete tempPtr; //return mem to system
return 1;//return with successful delete

Finally, if all of the above-described tests have failed, the program tests to see if the next node is the last node as indicated by the existence of a null pointer in its internal pointer variable. If so, the function returns with an unsuccessful delete. Otherwise, control transfers back to the top of the while loop and the function tests the next node. This test is accomplished by the following code fragment:

if(((currentPtr->nextPtr)->nextPtr)==0)//can't find a match
 {
 cout << "No match found\n";
 return(0); //return unsuccessful delete
 }

complex Data Type
The complex data type must be carefully designed in order to make it possible to simply substitute a user-defined complex data type for an integer type without modifying the code. In particular, the complex data type must be designed in such a way that an object of the complex type can simply replace an object of type int and all operations performed on the object will still be valid and provide results which are consistent with the results of performing those same operations on an object of type int. In general, this requires that several overloaded functions and overloaded operators be provided relative to the class.

The declaration of the complex type named complex used to test this program follows. Note that although the complex type used to test this program contains only two data members, this program should work with any declaration of a complex type having any combination of data members and member functions so long as it is named complex (or can have its type defined in such a way as to cause the program to believe that it is named complex) and the proper minimum set of overloaded functions and overloaded operators are made a part of the class definition.

The set of overloaded functions and overloaded operators which must be provided consist of three overloaded constructors, an overloaded insertion operator, and several overloaded relational operators. These overloaded functions are discussed more fully following the listing.

class complex{ //declare a complex class
 int data;
 char string[50];
public:
 complex(int InData) {//constructor w/one param
 data = InData;
 strcpy(string, "Empty String");
 }//end constructor w/one param
 complex(int InData, char* InStr) {//constructor w/2 params
 data = InData;
 strcpy(string,InStr);
 }//end constructor w/2 params
 complex() {}

 //Overload the insertion operator for the complex class
 friend ostream &operator<<(ostream &MyStream, complex &ob){
 MyStream << ob.data << " " << ob.string << " ";
 return MyStream;}

 //Overload the <= operator for the complex class
 int operator<=(complex ob){
 if((strcmp(string,ob.string)) <= 0) return 1;
 else return 0;
 }//end overloaded <=

 //Overload the >= operator for the complex class
 int operator>=(complex ob){
 if((strcmp(string,ob.string)) >= 0) return 1;
 else return 0;
 }//end overloaded >=

 //Overload the > operator for the complex class
 int operator>(complex ob){
 if((strcmp(string,ob.string)) > 0) return 1;
 else return 0;
 }//end overloaded >

 //Overload the < operator for the complex class
 int operator<(complex ob){
 if((strcmp(string,ob.string)) < 0) return 1;
 else return 0;
 }//end overloaded <

 //Overload the == operator for the complex class
 int operator==(complex ob){
 if((strcmp(string,ob.string)) == 0) return 1;
 else return 0;
 }//end overloaded ==

};//end complex class declaration

In general, the three overloaded constructors are used in that portion of the program which constructs new nodes and stores parameterized values in those new nodes. There is nothing special or unusual about them.

The overloaded inserter is used by that portion of the program which displays the data in the list. The inserter is shown by the following code fragment.

//Overload the insertion operator for the complex class
 friend ostream &operator<<(ostream &MyStream, complex &ob){
 MyStream << ob.data << " " << ob.string << " ";
 return MyStream;}

This is a fairly standard, overloaded inserter function which inserts the values of the two data members into the stream object which appears on the left-hand side of the insertion operator when an object of this class is the right-hand operand. Obviously, the designer of the custom inserter must determine how the various data members of a class are to be displayed when an object of that class is inserted into a stream object of the ostream class.

In general, the overloaded relational operators are used in that portion of the program which inserts and removes nodes based on the values of the data contained in those nodes, but there are some relational tests in other parts of the program as well. In designing this system, it was decided that all relational tests would be made on the string data member. This is reflected in code fragments such as the following:

//Overload the == operator for the complex class
 int operator==(complex ob){
 if((strcmp(string,ob.string)) == 0) return 1;
 else return 0;
 }//end overloaded ==

However, the design of the overloaded relational operators would probably vary from one project to the next. For example, if the complex class were being used to describe vectors in a three-dimensional space by maintaining X, Y, and Z coordinate values, the relational operators might be based on the resultant lengths of each of two vectors being compared, or on some other relationship appropriate to the task at hand. The important thing is that the class definition must define the manner in which two objects of the class are to be compared using relational operators.

Testing the Program
A main() function was provided which calls several other functions for purposes of testing the use of List, Stack, and Queue classes for data of type complex.

A listing of the main() function follows. The individual test functions are described in subsequent sections.

main()
{
 void testComplexList(); //function prototype
 testComplexList();
 void testComplexStack(); //function prototype
 testComplexStack(); //Exercise the stack
 void testComplexQueue(); //function prototype
 testComplexQueue(); //Exercise the queue
 void testComplexListByValue(); //function prototype
 testComplexListByValue();

 return 0;
}//end main

testComplexList()
This test function begins by declaring an object of type List named MyList. Further examination of the function reveals that the function performs a series of insertions of complex objects at the front and the back of the list object in no particular order.

Note the manner in which the objects are declared and brought into being by making a direct call to the constructor for class complex as a parameter to the insertion function call as illustrated by the following code fragment.

MyList.insertAtFront(complex(99,"John"));

(By the time you study this topic, you should be aware that an object can be created and passed to a function by making a call to the constructor as a parameter to the function call).

After inserting a series of objects into the list, the contents of the list are printed, and then objects are removed from the front and the back of the list, again in no particular order. Finally, the contents of the list are printed again, and the program terminates, causing the destructor for the List object to be called. There were two nodes still in the list when the program terminated causing the destructor to be called twice. The output from the test function follows the listing of the function.

void testComplexList()
{
 cout << "Testing a list of complex objects\n";
 List MyList; //declare a list object

 MyList.print();
 cout << "Put some data in the list\n";
 MyList.insertAtFront(complex(99,"John"));
 MyList.insertAtBack(complex(88,"Sue"));
 MyList.insertAtFront(complex(77,"Tom"));
 MyList.insertAtBack(complex(66,"Mary"));
 MyList.print();

 cout << "\nRemove data from the list\n";
 complex temp;
 if(MyList.removeFromFront(temp))
 cout << temp << " removed from list" << endl;
 else cout << "Removal unsuccessful\n";
 if(MyList.removeFromBack(temp))
 cout << temp << " removed from list" << endl;
 else cout << "Removal unsuccessful\n";
 MyList.print();

 cout << "Terminating complex test\n";
}//end testComplexList()

The output from executing this test function follows:

Testing a list of complex objects
The structure is empty
Put some data in the list
Contents: 77 Tom 99 John 88 Sue 66 Mary

Remove data from the list
77 Tom removed from list
66 Mary removed from list
Contents: 99 John 88 Sue
Terminating complex test
Destroying nodes ...
99 John 88 Sue
All nodes destroyed

testComplexStack()
This test function begins by creating a Stack object named MyStack. An array of pointers to strings is also created and initialized to be used later in a for loop to push objects onto the stack. Again, the objects are created and pushed all in the same operation by calling the object constructor as a parameter to the push() function. After four objects are pushed onto the stack, the contents of the stack are printed.

Then a for loop is executed which attempts to pop more objects off the stack than have been pushed onto the stack to test the ability of the pop() function to deal with an empty stack. Finally, one more object is pushed onto the stack prior to program termination to confirm proper operation of the destructor.

void testComplexStack()
{
 Stack MyStack; //create a stack object
 char* MyStr[4] = {"John","Tom","Sue","Mary"};
 cout << "\nTesting the stack with complex data\n";
 cout << "Push four complex data items onto the stack\n"
 "beginning with " << MyStr[0] << endl;
 for(int cnt = 0; cnt < 4; cnt++)
 MyStack.push(complex((cnt+1)*63,MyStr[cnt]));
 MyStack.printStack();

 cout << "\nTry to pop five complex items off the stack\n";
 complex MyData;
 for(cnt = 0; cnt < 5; cnt++)
 {
 if(!MyStack.isStackEmpty()){ //if stack is not empty
 MyStack.pop(MyData);
 cout << "Just popped " << MyData << endl;
 }
 else cout << "Can't pop an empty stack\n";
 }//end if

 cout << "Push a complex item to demonstrate the destructor\n";
 MyStack.push(complex(2048,"Jason"));
 MyStack.printStack();

}//end testStack()

The output from this test function follows:

Testing the stack with complex data
Push four complex data items onto the stack
beginning with John
Contents: 252 Mary 189 Sue 126 Tom 63 John

Try to pop five complex items off the stack
Just popped 252 Mary
Just popped 189 Sue
Just popped 126 Tom
Just popped 63 John
Can't pop an empty stack
Push a complex item to demonstrate the destructor
Contents: 2048 Jason
Destroying nodes ...
2048 Jason
All nodes destroyed

testComplexQueue()
This test function begins by creating a Queue object named MyQueue. An array of pointers to strings is also created and initialized to be used later in a for loop to put objects into the queue. The objects are created and enqueued all in the same operation by calling the object constructor as a parameter to the enqueue() function. After four objects are put into the queue, the contents of the queue are printed.

Then a for loop is executed which attempts to dequeue more objects than have been put into the queue to test the ability of the dequeue() function to deal with an empty queue. Finally, one more object is put into the queue prior to program termination to confirm proper operation of the destructor.

void testComplexQueue()
{
 Queue MyQueue; //create a Queue object
 char* MyStr[4] = {"John","Tom","Sue","Mary"};
 cout << "\nTesting the Queue with complex data\n";
 cout << "enqueue four complex data items onto the Queue\n"
 "beginning with " << MyStr[0] << endl;
 for(int cnt = 0; cnt < 4; cnt++)
 MyQueue.enqueue(complex((cnt+1)*63,MyStr[cnt]));
 MyQueue.printQueue();

 cout << "\nTry to dequeue five complex items off the Queue\n";
 complex MyData;
 for(cnt = 0; cnt < 5; cnt++)
 {
 if(!MyQueue.isQueueEmpty()){ //if Queue is not empty
 MyQueue.dequeue(MyData);
 cout << "Just dequeued " << MyData << endl;
 }
 else cout << "Can't dequeue an empty Queue\n";
 }//end if

 cout << "enqueue a complex item to demonstrate the destructor\n";
 MyQueue.enqueue(complex(2048,"Jason"));
 MyQueue.printQueue();

}//end testQueue()

The output from this test function follows:

Testing the Queue with complex data
enqueue four complex data items onto the Queue
beginning with John
Contents: 63 John 126 Tom 189 Sue 252 Mary

Try to dequeue five complex items off the Queue
Just dequeued 63 John
Just dequeued 126 Tom
Just dequeued 189 Sue
Just dequeued 252 Mary
Can't dequeue an empty Queue
enqueue a complex item to demonstrate the destructor
Contents: 2048 Jason
Destroying nodes ...
2048 Jason
All nodes destroyed

testComplexListByValue()
This test function begins by declaring a List object named MyList. Then a series of complex objects are inserted into the list object using the function named insertByValue() which inserts objects in ascending alphanumeric order. The order of insertion calls was purposely non-alphanumeric in order to test the ability of the function to arrange the nodes in proper alphanumeric order. The contents of the list were displayed following each insertion to confirm that the proper order was being maintained.

Then several objects were removed from the list on the basis of the value of the string data member of the object. The order of removal calls for these objects was chosen in an attempt to test the ability of the function removeByValue() to find and remove objects interior to the list, at the beginning and end of the list, and at the position which is the next-to-last object in the list.

void testComplexListByValue()
{
 cout << "Begin complex insertByValue test\n";
 List MyList; //declare a list object

 MyList.print();
 cout << "Put some data in the list\n";
 MyList.insertByValue(complex(99,"John"));
 MyList.print();
 MyList.insertByValue(complex(88,"Sue"));
 MyList.print();
 MyList.insertByValue(complex(77,"Zack"));
 MyList.print();
 MyList.insertByValue(complex(66,"Bill"));
 MyList.print();
 MyList.insertByValue(complex(66,"Tom"));
 MyList.print();
 MyList.insertByValue(complex(66,"Andy"));
 MyList.print();
 MyList.insertByValue(complex(66,"Larry"));
 MyList.print();

 cout << "Remove Larry from middle of list\n";
 MyList.removeByValue(complex(66,"Larry"));
 MyList.print();
 cout << "Remove Tom from next to last position\n";
 MyList.removeByValue(complex(66,"Tom"));
 MyList.print();
 cout << "Remove Joe who is not in the list\n";
 MyList.removeByValue(complex(66,"Joe"));
 MyList.print();
 cout << "Remove Zack at end of list\n";
 MyList.removeByValue(complex(77,"Zack"));
 MyList.print();
 cout << "Remove Andy at front of list\n";
 MyList.removeByValue(complex(66,"Andy"));
 MyList.print();

 cout << "Terminating complex insertByValue "
 "and removeByValue test\n";
}//end testComplexList()

The output from running this program follows:

Begin complex insertByValue test
The structure is empty
Put some data in the list
Contents: 99 John
Contents: 99 John 88 Sue
Contents: 99 John 88 Sue 77 Zack
Contents: 66 Bill 99 John 88 Sue 77 Zack
Contents: 66 Bill 99 John 88 Sue 66 Tom 77 Zack
Contents: 66 Andy 66 Bill 99 John 88 Sue 66 Tom 77 Zack
Contents: 66 Andy 66 Bill 99 John 66 Larry 88 Sue 66 Tom 77 Zack
Remove Larry from middle of list
Contents: 66 Andy 66 Bill 99 John 88 Sue 66 Tom 77 Zack
Remove Tom from next to last position
Contents: 66 Andy 66 Bill 99 John 88 Sue 77 Zack
Remove Joe who is not in the list
No match found
Contents: 66 Andy 66 Bill 99 John 88 Sue 77 Zack
Remove Zack at end of list
Contents: 66 Andy 66 Bill 99 John 88 Sue
Remove Andy at front of list
Contents: 66 Bill 99 John 88 Sue
Terminating complex insertByValue and removeByValue test
Destroying nodes ...
66 Bill 99 John 88 Sue
All nodes destroyed

Possible Improvements
One of the possible improvements to the program has to do with the possible mixing of sorted and unsorted data in the list. As written, the program would allow a user to construct an unsorted list and then attempt to remove a node by value. The function removeByValue() assumes a sorted list and therefore may not find and remove a node from an unsorted list. Either the program should be partitioned by inheritance to prevent the attempted use of the removeByValue() functions on unsorted lists, or that function should be modified to eliminate the built-in assumption that the list is sorted.

The first option could be implemented by deriving a SortedList class and moving the function removeByValue() to that class. Then it would only be available to objects of the SortedList class. That class should also be inherited in such a way as to disable access to the insertAtFront() and insertAtBack() functions so as to ensure that objects of the SortedList class could only be constructed in sorted alphanumeric order.

The second option (removing the assumption of a sorted list at removal time) could be implemented by making minor modifications to the code in the while loop in the removeByValue() function which performs a sequential search of the list.

Since the assumption of a sorted list in the removeByValue() function was made to improve speed, the best overall approach may be a combination of the two options. That is, derive a SortedList class and provide it with a function which removes nodes by value assuming a sorted list. In addition, provide a function for the List class having another name which can find and remove nodes on the basis of their value regardless of whether or not the list is sorted. Obviously, a number of design possibilities exist. As you examine this program, you may recognize other improvements which could be made.
-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #8S,
Linked Lists, Stacks and Queues for User-Defined Types, Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

