Richard G Baldwin, (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-4S.DOC, Revised 7/21/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt. Copyright 1996, R.G.Baldwin.

Recursive Binary Search

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc362081161 � PAGEREF _Toc362081161 �1��

2. Discussion of the Recursive Binary Search Algorithm	� GOTOBUTTON _Toc362081162 � PAGEREF _Toc362081162 �1��

3. General Discussion of Recursive Functions	� GOTOBUTTON _Toc362081163 � PAGEREF _Toc362081163 �1��

4. Sample Program	� GOTOBUTTON _Toc362081164 � PAGEREF _Toc362081164 �2��

�

Introduction

We continue our exploration of recursion in this set of lecture notes. One definition of recursion is as follows:

A solution to a problem is recursive if it is expressible as a smaller version of itself, and if ultimately a simple nonrecursive solution can be found.

In order to solve problems recursively, we design functions that call on themselves. We call these functions recursive functions.

A function that calls itself directly or indirectly to solve a smaller version of its task until a final call which does not require a call to itself is a recursive function.

We developed an iterative binary search algorithm in an earlier set of lecture notes. In this set of lecture notes, we will develop a recursive binary search algorithm for searching an array of ordered data. This algorithm will replicate the capabilities of the earlier iterative algorithm.

Discussion of the Recursive Binary Search Algorithm

In general terms, our recursive function will begin with the section of the array containing data and match the test value against the value in the middle of the section. If there is a match, the function will return true and report back the index value of the array which contains the value.

If the test value does not match the value at the MidPoint of the current section of the array, the function will make a recursive call to search a section half as large as the current section, with the new section being either immediately above or immediately below the current MidPoint. This process will continue until the size of the next section to be searched goes to zero, or a match is found.

General Discussion of Recursive Functions

It is important to note that any problem that can be solved recursively can also be solved iteratively. However, the reverse is not true. There are problems that can be solved iteratively but it is not possible to find recursive solutions for them.

Recursion has advantages and disadvantages. In particular, a recursive solution may require a large number of function calls to be executed. Since there is overhead associated with every function call, a recursive solution may execute more slowly than an iterative solution.

Another possible disadvantage of a recursive solution is that it may consume large amounts of “stack” resource and result in a “stack overflow” message at runtime.

However, even given these drawbacks, there are some problems which can be more logically solved using recursion and it is fairly widely used among professional programmers. For example, one entire high-level programming language named Prolog is dedicated almost exclusively to the use of recursion. (The Prolog language is used in the area of “artificial intelligence.”)

Perhaps the most striking difference between an iterative solution and a recursive solution is the following:

Iterative solutions require the use of loops containing a loop-control test which must eventually return false in order for the loop to terminate properly.

Recursive solutions do not involve loops as their primary control structure. (Obviously a recursive solution could contain a loop for some other purpose). Rather, recursive solutions always involve the use of a selection construct such as if, switch, case, etc.

At least one of the branches in the selection must be such that it will eventually be taken and when it is taken, the recursion will be terminated. In other words, there must be one possible branch in the selection where the function will return without making a call to itself, and this branch must eventually be taken in order for the recursion to terminate properly. Otherwise, a runtime failure, such as a stack overflow error, will almost certainly occur.

To be of any value, all recursive functions must have at least one “action” statement (obviously they may have more than one). Generally speaking, those recursive functions which perform their actions in a “forward” direction have the action statement ahead of the recursive call, and those which perform their action in a “reverse” direction have their action statement following the recursive call.

It will be left as an exercise for the student to explore the natural “reversal” characteristic of recursive algorithms by using a recursive algorithm to print the contents of a list in reverse order.

Sample Program

Note that our recursive binary search algorithm has the characteristic selection statement which determines whether to cease or to continue making recursive calls.

//PROGRAM RecurSr1.cpp

/*This program illustrates a recursive binary search algorithm.

The class named ListType contains a function named BinarySearch

which uses a recursive algorithm to search for an integer value

in an ordered list in an array.

Note that the binary search algorithm will work only for ordered

data.*/

/**/

#include <iostream.h>

#define MAX 1000

class ListType

{

int Data[MAX]; //Actual data is stored here

public:

int BinarySearch(int FromLoc, int ToLoc, int Value,

 int &Location);

void Put(int data,int index){Data[index] = data;}

};

int ListType::BinarySearch(int FromLoc, int ToLoc, int Value,

 int &Location)

/*This function uses a recursive algorithm to perform a binary

search of an array containing ordered integer data, returning 0

if the item is not found, returning 1 and reporting back the

location of the data as an array index in a reference parameter

if the item is found.*/

{

 int MidPoint; //index of search area's midpoint

 if (FromLoc > ToLoc) return 0;//end search with no match

 else

 {//Search the current section of the array

	 //Get midpoint of this section of the array

	 MidPoint = (FromLoc + ToLoc)/2;

	 if (Value == Data[MidPoint])

	 { //found a match

		Location = MidPoint; //report back the location of data

		return 1; //return true

	 }

	 else if (Value < Data[MidPoint])

		//Go search a smaller section below current midpoint

		return BinarySearch(FromLoc,MidPoint-1,Value,Location);

	 else if (Value > Data[MidPoint])

		//Go search a smaller section above current midpoint

		return BinarySearch(MidPoint+1,ToLoc,Value,Location);

 }//Finished searching the current section of the array

}//End BinarySearch()

/***/

void main()

{

 int Location;

 ListType MyList; //declare an object

 //Create some ordered data for the search but don't

 //necessarily fill the array.

 for(int Index = 0; Index < MAX-99; Index++)

	 MyList.Put(2*Index,Index);

 cout << "Number data values = " << Index-1 << endl;

 cout << "Search for two values using a RECURSIVE "

	 "BINARY search\n";

 int SearchValue = 1000;

 if (MyList.BinarySearch(0,Index-1,SearchValue,Location) != 0)

	 cout << SearchValue << " found at location "

		<< Location << endl;

 else cout << SearchValue << " not found\n";

 SearchValue = 1001;

 if (MyList.BinarySearch(0,Index-1,SearchValue,Location) != 0)

	 cout << SearchValue << " found at location "

		<< Location << endl;

 else cout << SearchValue << " not found\n";

 cout << "Terminating Program";

}//end main

The output from running this program is shown below.

Number data values = 900

Search for two values using a RECURSIVE BINARY search

1000 found at location 500

1001 not found

Terminating Program

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #4S,

Recursive Binar
