Richard G Baldwin
,
(512) 223-4758
, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-5S.DOC, Revised 7/
21
/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.
 Copyright 1996, R.G.Baldwin.

Safe-Array Class

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc362082082 � PAGEREF _Toc362082082 �
1
��

2. Sample Program	� GOTOBUTTON _Toc362082083 � PAGEREF _Toc362082083 �
1
��

�

Introduction

One of the problems encountered in using arrays in both C and C++ is that it is very easy to overflow the array boundaries. This normally results in overwriting other data which will usually result in a system crash. Even more important, the result of overwriting an array boundary will sometimes not be apparent. The system may continue to run using corrupt data.

You can guard against this type of problem in C++ by creating a “safe array” class and instantiating objects of that type. You can design this class in such a way that it is not possible to either read or write outside the established array boundaries. Of course, you must decide what action is to be taken if a program attempts to read or write outside the boundaries. The demonstration program described below simply displays an error message when this occurs. While error messages are good for demonstration programs, in a real program, you would probably want to devise a means of shutting the program down gracefully with an indication to the user as to the nature of the problem.

Another feature which you can easily implement with your safe-array class is the capability to assign one array to another array, a capability that is not normally available in C or C++.

This program makes use of new and delete as well as a copy constructor and an overloaded assignment operator function. Therefore, it should not be introduced until the student understands the material covered in Chapter 6 in the textbook by Schildt.

Sample Program

Some of the more interesting features in this program are highlighted using boldface.

//Program ARRAY01.CPP

/*This program illustrates development of a "safe array" class.

Whenever an attempt is made to store data outside the bounds

of the array or to fetch data outside the bounds of the array,

the operation is aborted and an error message is produced.

(While error messages are useful for demonstration programs,

in a real program, such an illegal operation should normally

trigger some action other than simply producing an error

message.)

In addition, the program illustrates the use of an overloaded

assignment operator which makes it possible to assign one

"safe array" object to another "safe array" object.

Finally, the program illustrates the use of a copy constructor

which makes it safe to declare a new "safe array" object and

initialize it with an existing "safe array" object. The

copy constructor also makes it safe to pass a "safe array"

object to a function or to return a "safe array" object from

a function.

*/

#include <iostream.h>

#include <stdlib.h>

class ArrayClass {

 int *PtrToMem; //pointer to dynamic memory

 int ArraySize;

public:

 ArrayClass(int size) {//constructor

	 PtrToMem = new int[size];

	 if(!PtrToMem) exit(1);

	 ArraySize = size;

	 cout << "Using normal constructor\n";

	 }//end constructor

	 ~ArrayClass() {

		cout << "In destructor\n";

		delete [] PtrToMem;}//destructor

	 //new default constructor

	 ArrayClass(){ArraySize = 0;PtrToMem = NULL;}

 //copy constructor

	 ArrayClass(const ArrayClass &a);

	 //overloaded asg operator

	 ArrayClass ArrayClass::operator=(ArrayClass &a);

	 void Put(int Location, int Data)

	 {//store a data value at Location in the array

		if(Location>=0 && Location<ArraySize)

		 PtrToMem[Location] = Data;

		else cout << "\nArray out of bounds on Put at "

		 << Location << endl;

	 }

	 int Get(int Location)

	 {//Get a data value from Location in the array

		if(Location < 0 || Location >= ArraySize)

		{

		 cout << "\nArray out of bounds on Get at "

			 << Location << endl;

		 return 9999;

		}

		else return PtrToMem[Location];

	 }//end Get()

};//end class ArrayClass

//Copy constructor

ArrayClass::ArrayClass(const ArrayClass &a)

{

 int i;

 PtrToMem = new int[a.ArraySize]; //allocate memory for copy

 if(!PtrToMem) exit(1);

 for(i = 0; i < a.ArraySize; i++) PtrToMem[i] = a.PtrToMem[i];

 ArraySize = a.ArraySize;

 cout << "Using copy constructor\n";

}//end copy constructor

//Overload the assignment operator

ArrayClass ArrayClass::operator=(ArrayClass &ob)

{

 if(ArraySize < ob.ArraySize)

 {//allocate more memory

	 if (PtrToMem != NULL) delete [] PtrToMem;//NULL on startup

	 PtrToMem = new int [ob.ArraySize];

	 if(!PtrToMem) exit(1);

 }//end if

 //Now copy the data into the new space

 for(int i = 0; i < ob.ArraySize; i++) PtrToMem[i] = ob.PtrToMem[i];

 ArraySize = ob.ArraySize;

 cout << "Using overloaded assignment operator\n";

 return *this;//return the object that is assigned

}//end overloaded assignment operator function

/***/

void main()

{

 cout << "Declare 10-element array object "

	 "named OriginalArray\n";

 ArrayClass OriginalArray(10);

 int cnt;

 cout << "Put some data into OriginalArray and display it\n";

 for(cnt=0; cnt < 10; cnt++) OriginalArray.Put(cnt,2*cnt);

 for(cnt = 9; cnt >= 0; cnt--)

	 cout << OriginalArray.Get(cnt) << ' ';

 cout << "\n";

 cout << "Declare InitializedArray and initialize "

	 "with OriginalArray\n";

 ArrayClass InitializedArray = OriginalArray;//copy constructor

 cout << "Modify data in OriginalArray with array overflow\n";

 for(cnt=0; cnt < 11; cnt++) OriginalArray.Put(cnt,cnt);

 cout << "Display new data in OriginalArray with "

	 "array overflow\n";

 for(cnt=10; cnt >= -1; cnt--)

	 cout << OriginalArray.Get(cnt) << ' ';

 cout << "\n";

 cout << "Display data in InitializedArray for comparison\n";

 for(cnt=9; cnt >= 0; cnt--)

	 cout << InitializedArray.Get(cnt) << ' ';

 cout << "\n";

 cout << "\nDeclare AssignedArray and assign "

	 "InitializedArray to it\n";

 ArrayClass AssignedArray;

 AssignedArray = InitializedArray;

 cout << "Now modify data in InitializedArray and "

	 "display new data\n";

 for(cnt=0; cnt < 10; cnt++) InitializedArray.Put(cnt,3*cnt);

 for(cnt=9; cnt >= 0; cnt--)

	 cout << InitializedArray.Get(cnt) << ' ';

 cout << "\n";

 cout << "Display data in AssignedArray for comparison\n";

 for(cnt=9; cnt >= 0; cnt--)

 cout << AssignedArray.Get(cnt) << ' ';

 cout << "\n";

 cout << "Terminating program\n";

}//end main

The output from running this program follows. You should make certain that you completely understand this output, particularly the various calls to constructors and destructors.

Declare 10-element array object named OriginalArray

Using normal constructor

Put some data into OriginalArray and display it

18 16 14 12 10 8 6 4 2 0

Declare InitializedArray and initialize with OriginalArray

Using copy constructor

Modify data in OriginalArray with array overflow

Array out of bounds on Put at 10

Display new data in OriginalArray with array overflow

Array out of bounds on Get at 10

9999 9 8 7 6 5 4 3 2 1 0

Array out of bounds on Get at -1

9999

Display data in InitializedArray for comparison

18 16 14 12 10 8 6 4 2 0

Declare AssignedArray and assign InitializedArray to it

Using overloaded assignment operator

Using copy constructor

In destructor

Now modify data in InitializedArray and display new data

27 24 21 18 15 12 9 6 3 0

Display data in AssignedArray for comparison

18 16 14 12 10 8 6 4 2 0

Terminating program

In destructor

In destructor

In destructor

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #5S,

Safe Array Class, Copyright 1996, R. G. Baldwin, Page � PAGE �
1
�

