Richard G Baldwin, (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-11S.DOC, Revised 7/21/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt. Copyright 1996, R.G.Baldwin

Iterators, Passing Functions to Functions

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc362096506 � PAGEREF _Toc362096506 �1��

2. First Sample Program	� GOTOBUTTON _Toc362096507 � PAGEREF _Toc362096507 �1��

2.1 NodeType	� GOTOBUTTON _Toc362096508 � PAGEREF _Toc362096508 �2��

2.2 ListType	� GOTOBUTTON _Toc362096509 � PAGEREF _Toc362096509 �3��

2.3 Public Member Functions of ListType	� GOTOBUTTON _Toc362096510 � PAGEREF _Toc362096510 �3��

2.4 The Iterator Function	� GOTOBUTTON _Toc362096511 � PAGEREF _Toc362096511 �4��

2.5 Iterator Processing Functions	� GOTOBUTTON _Toc362096512 � PAGEREF _Toc362096512 �4��

2.6 Test Program	� GOTOBUTTON _Toc362096513 � PAGEREF _Toc362096513 �5��

2.7 Program Output	� GOTOBUTTON _Toc362096514 � PAGEREF _Toc362096514 �6��

3. Iterator Classes	� GOTOBUTTON _Toc362096515 � PAGEREF _Toc362096515 �6��

4. Another Sample Program	� GOTOBUTTON _Toc362096516 � PAGEREF _Toc362096516 �7��

�

Introduction

As mentioned in previous lecture notes, this set of lecture notes is not intended to teach you to become an expert so that you can “reinvent” iterators. In fact, it is assumed (and hoped) by the author of these lecture notes that you will never “reinvent” iterators, but rather will take advantage of existing and readily available container class libraries which provide these capabilities. The purpose of this set of lecture notes is to prepare you to understand what an iterator is so that you will be better prepared to make informed decisions on the use of container class libraries.

Generally speaking, an iterator is a process which moves through a data structure, stopping at each node in the structure and performing some action on the data contained therein.

In the interest of generality and reusability, iterators are frequently written in such a way that the using programmer specifies the action that is to be taken. Often this specification takes the form of calling the iterator and passing it a pointer to a processing function. The iterator then moves through the data structure and makes each node available to the processing function. In this manner, an iterator function which handles the mechanics of moving through the structure and stopping at each node can be used to implement a large number of specific actions on the data in the node. Each specific action is defined by a processing function which is passed to the iterator in some particular instance. As the user of a container class library, it will usually be up to you to write the various processing functions.

First Sample Program

In this set of lecture notes, we will illustrate the use of iterators with two fairly simple programs. Each of the programs maintains a list in a “safe array” object. Various utility functions are provided to put data into the list and get data from the list. In addition, an iterator function is provided which moves through the list, stopping at each node, and passing a copy of the node to a processing function which is passed as a parameter to the iterator function.

The differences between the two sample programs resides in the manner in which the iterator function is defined. In the first sample program, it is not a member of a class. In the second sample program, it is a member of a class which is a friend of the class for which it is an iterator.

Three different processing functions are developed and demonstrated for purposes of illustration. One processing function displays a char data member contained in each node in the list object. A second processing function displays an int data member contained in each node in the list object. A third processing function computes and displays a running sum of the int data values contained in each node of the list object.

For the record, the first sample program is currently stored on the author’s computer in the file shown below.

//File ITER01.CPP

/*This program demonstrates a simple iterator function which

iterates through a list in an array and passes each node in

the list to a processing function which is passed as in input

parameter to the iterator function.

Three different processing functions are demonstrated. One

displays a field in each node which contains character data.

The second displays a field in each node which contains

integer data. The third calculates and displays a running

sum of the values in the field which contains integer data.

*/

#include <iostream.h>

#define MAX 9

The manifest constant named MAX is used to control the size of the array which contains the list nodes.

NodeType

The actual type of each node is defined by the following code.

class NodeType{//This class defines a node in the list

 char CharData;

 int IntData;

public:

 void PutCharData(char InData){CharData = InData;}

 void PutIntData(int InData){IntData = InData;}

 char GetCharData(){return CharData;}

 int GetIntData() {return IntData;}

};//end class nodetype

As you can see, each node consists of two data members, one char and one int. In addition, list objects have access to four utility member functions for storing and retrieving data in each node.

ListType

The following class is used to instantiate list objects.

class ListType{ //A list is an object of this type

 NodeType Data[MAX];

 int Length; //Number of data values stored in the array

public:

 //Function to put data in the list and maintain

 //a "safe array"

 void Put(int Index, NodeType InData)

 {

	 if(Length+1 > MAX)

		cout << "Array size exceeded, don't store.\n";

	 else {

		Data[Index] = InData;

		Length++; }//new data stored in the array

 }//end Put

 //Function to get a data node from the list

 NodeType Get(int Index){return Data[Index];}

 //Function to get the number of data values in list

 int GetLength() {return Length;}

 ListType(){Length = 0;}//constructor

};//end class listtype

Objects of this class contain two private data members. One data member is an array named Data which contains the actual list data. The other data member is named Length. This data member contains an integer which specifies the number of actual nodes that have been stored in the array. If the array is populated from the bottom up, the value of Length indicates the highest numbered element containing data. If the array is populated by writing into array elements in a random fashion, the value of Length is meaningless.

Public Member Functions of ListType

Objects of this class also have a constructor and three public member functions. The function named Put is used to deposit data nodes in specified array elements. This function monitors for array overflow and refuses to deposit data in an element which is outside the bounds of the array.

The function named Get returns a copy of the node stored in a specified element.

The function named GetLength returns the number of elements actually stored in the array. As mentioned above, this design assumes that data will not be “put” into the array on a random element basis, but rather will be put into the array in such a way as to fill it from the bottom. The value of the Length member would not necessarily represent the highest number element containing data if data were put into the array on a random element basis. (However, the purpose of this program is to illustrate iterators and not to illustrate how to design an array-based list.)

The constructor initializes the Length to zero when an object of the class is instantiated.

The Iterator Function

The iterator function is show below.

/*Define an iterator function which will move to each

successive node in the list and pass a COPY of that node

to a processing function which is defined as an input parameter

to the iterator function. Note the syntax of the formal

argument list. Note that this design does not allow the

processing function to modify the data in the list. A

different design would be required if that were the objective.*/

void Iterator(ListType Obj, void (*ptr)(NodeType))

{

 NodeType TempNode;//declare a temporary node object

 for(int cnt = 0; cnt < Obj.GetLength(); cnt++)

 {

	 TempNode = Obj.Get(cnt); //get next node

	 ptr(TempNode); //pass it to the processing function

 }

}//end Iterator

Note in particular the syntax of the second argument in the formal argument list. This is the syntax required in C++ to specify a pointer to a (potentially overloaded) function which returns nothing and receives one parameter of type NodeType. This specification matches the processing functions which are passed to this iterator function for purposes of processing the data in each node.

As you can see, this function uses a for loop to access each node in the array and passes a copy of that node to the function identified by the pointer passed in as the second argument. The actual call to the processing function is highlighted using boldface.

Note that since a copy of the node is being passed to the specified processing function, that function cannot modify the original data in the list. Another design approach might pass the node by reference so that the processing functions could modify the data in the list.

Iterator Processing Functions

The following three processing functions perform the rather simple actions indicated in the comments. The fact that the actions performed are simple in this demonstration case does not imply that iterator processing functions must always perform simple actions. In fact, very complex actions can and often are assigned to iterator processing functions.

/*Define a processing function which is called by the iterator

function to display the data in the char field of a node.*/

void DisplayCharField(NodeType TempNode)

{

 cout << TempNode.GetCharData() << " ";

}//end DisplayCharField

/*Define a processing function which is called by the iterator

function to display the data in the int field of a node.*/

void DisplayIntField(NodeType TempNode)

{

 cout << TempNode.GetIntData() << " ";

}//end DisplayIntField

/*Define a processing function which is called by the iterator

function to calculate and display a running sum of the values

in the int field of the nodes.*/

void DisplayIntSum(NodeType TempNode)

{

 static int Sum;

 Sum += TempNode.GetIntData();

 cout << Sum << " ";

}//end DisplayIntSum

Note that the third processing function uses a static variable named Sum to accumulate the running sum, and no provisions are made to reset this variable to zero (static variables are automatically initialized to zero when the program loads). Therefore, this processing function can be used only once during each session of the program.

The use of a static variable in the processing function creates an undesirable side effect which causes separate list objects to have a common link through this static variable. If this were a real-world problem and not just a demonstration program, a different design would likely be required to cause the accumulator to be bound directly to each object, and also to provide a means of resetting the accumulator to zero.

Test Program

The code used to test and demonstrate this program follows. Basically it stores some data into the list, purposely overflowing the array bounds to demonstrate that the array is a “safe array.”

Then it calls the iterator function three times, each time passing a pointer to a different processing function.

As you should already be aware, the name of a function with no argument list in C++ is a pointer to the function. However, in order to accommodate the possibility that the function has been overloaded, the pointer variable to which it is assigned, or the function argument which is initialized by the call must have been defined showing the return type and the formal argument list as in the following header for the iterator function.

void Iterator(ListType Obj, void (*ptr)(NodeType))

main()

{

 cout << "Program ITER01.CPP\n";

 ListType List; //declare a list objects

 NodeType TempNode;

 cout << "Put some data into the list and purposely overflow "

	 "the array.\n";

 for(int cnt = 0; cnt < 10; cnt++)

 {

	 TempNode.PutCharData(cnt+'A');

	 TempNode.PutIntData(cnt);

	 List.Put(cnt,TempNode);

 }

 cout << "Call the iterator to display character data.\n";

 Iterator(List, DisplayCharField);

 cout << "\nCall the iterator to display integer data.\n";

 Iterator(List, DisplayIntField);

 cout << "\nCall the iterator to display running sum of "

	 "integer data\n";

 Iterator(List, DisplayIntSum);

 return 0;

}//end main

Program Output

The output from running this program follows:

Program ITER01.CPP

Put some data into the list and purposely overflow the array.

Array size exceeded, don't store.

Call the iterator to display character data.

A B C D E F G H I

Call the iterator to display integer data.

0 1 2 3 4 5 6 7 8

Call the iterator to display running sum of integer data

0 1 3 6 10 15 21 28 36

Iterator Classes

Obviously, this program could be enhanced in many ways. Hopefully, however, this simple program has given you a sufficient introduction to the use of iterators and the passing of functions to functions that you will be able to read and understand the usage instructions for container class libraries which provide iterator capabilities for a wide variety of data structures.

There is one enhancement that we need to make to better prepare you to use container class libraries. In the program above, the iterator function was not a member of a class. That approach was taken to eliminate undue complexity.

However, when you start reading the usage instructions for container class libraries, you will see references to instantiating iterator objects. The designers of container classes frequently associate classes in pairs. One class of the pair is used to instantiate container objects. The other class in the pair is a friend of the first class, and is used to instantiate objects having iterator functions designed to be used to iterate the first class. By making the iterator class a friend of the first class, member functions in the iterator class have direct access to the public and private data of the first class.

Another Sample Program

This isn’t as complicated as it may sound. The previous program was enhanced to provide this capability with minimal effort. A listing of the modified program follows with the significant changes highlighted in boldface. This program produces the same output as the first program. You would do well to study this program and understand the differences.

//File ITER02.CPP

/*This program demonstrates an iterator class which provides

a member function which iterates through a list in an array

and passes each node in the list to a processing function

which is passed as in input parameter to the iterator function.

Three different processing functions are demonstrated. One

displays a field in each node which contains character data.

The second displays a field in each node which contains

integer data. The third calculates and displays a running

sum of the values in the field which contains integer data.

*/

#include <iostream.h>

#define MAX 9

/*--*/

class NodeType{//This class defines a node in the list

 char CharData;

 int IntData;

public:

 void PutCharData(char InData){CharData = InData;}

 void PutIntData(int InData){IntData = InData;}

 char GetCharData(){return CharData;}

 int GetIntData() {return IntData;}

};//end class nodetype

/*--*/

class ListType{//A list is an object of this type

 NodeType Data[MAX];

 int Length; //Number of data values stored in the array

 friend class MyIterator;//make the iterator class a friend

public:

 //Function to put data in the list and maintain

 //a "safe array"

 void Put(int Index, NodeType InData)

 {

	 if(Length+1 > MAX)

		cout << "Array size exceeded, don't store.\n";

	 else {

		Data[Index] = InData;

		Length++; }//new data stored in the array

 }//end Put

 //Function to get a data node from the list

 NodeType Get(int Index){return Data[Index];}

 //Function to get the number of data values in list

 int GetLength() {return Length;}

 ListType(){Length = 0;}//constructor

};//end class listtype

/*--*/

/*This iterator class is a friend of ListType. Thus, the

member functions of this class have direct access to all

public and private members of objects of class ListType. This

class provides an iterator function as described below.*/

class MyIterator{

public:

	void Iterator(ListType Obj, void (*ptr)(NodeType));

};//end MyIterator class

/*Define an iterator function which will move to each

successive node in the list and pass a COPY of that node

to a processing function which is defined as an input parameter

to the iterator function. Note the syntax of the formal

argument list. Note that this design does not allow the

processing function to modify the data in the list. A

different design would be required if that were the objective.*/

void MyIterator::Iterator(ListType Obj, void (*ptr)(NodeType))

{

 NodeType TempNode;//declare a temporary node object

 for(int cnt = 0; cnt < Obj.GetLength(); cnt++)

 {

	 TempNode = Obj.Get(cnt); //get next node

	 ptr(TempNode); //pass it to the processing function

 }

}//end Iterator function

/*--*/

/*Define a processing function which is called by the iterator

function to display the data in the char field of a node.*/

void DisplayCharField(NodeType TempNode)

{

 cout << TempNode.GetCharData() << " ";

}//end DisplayCharField

/*--*/

/*Define a processing function which is called by the iterator

function to display the data in the char field of a node.*/

void DisplayIntField(NodeType TempNode)

{

 cout << TempNode.GetIntData() << " ";

}//end DisplayIntField

/*--*/

/*Define a processing function which is called by the iterator

function to calculate and display a running sum of the values

in the int field of the nodes.*/

void DisplayIntSum(NodeType TempNode)

{

 static int Sum;

 Sum += TempNode.GetIntData();

 cout << Sum << " ";

}//end DisplayIntSum

/**/

main()

{

 cout << "Program ITER02.CPP\n";

 ListType List; //declare a list object

 MyIterator IteratorObject;//declare an iterator object

 NodeType TempNode;

 cout << "Put some data into the list and purposely overflow "

	 "the array.\n";

 for(int cnt = 0; cnt < 10; cnt++)

 {

	 TempNode.PutCharData(cnt+'A');

	 TempNode.PutIntData(cnt);

	 List.Put(cnt,TempNode);

 }

 cout << "Call the iterator to display character data.\n";

 //Note the use of IteratorObject in the following statement.

 IteratorObject.Iterator(List, DisplayCharField);

 cout << "\nCall the iterator to display integer data.\n";

 IteratorObject.Iterator(List, DisplayIntField);

 cout << "\nCall the iterator to display running sum of "

	 "integer data\n";

 IteratorObject.Iterator(List, DisplayIntSum);

 return 0;

}//end main

/**/

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #11S,

Iterators, Passing Functions to Fu
