Richard G Baldwin
,

(512) 223-4758
, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures,
 File 2204-02S.DOC, Revised 7/21
/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.
 Copyright 1996, R.G.Baldwin.

Binary Search

� TOC \o "1-4" �
1. Linear Search	
�

GOTOBUTTON
_Toc362613154

�

PAGEREF
_Toc362613154

�
1
�
�

2. Binary Search	
�

GOTOBUTTON
_Toc362613155

�

PAGEREF
_Toc362613155

�
1
�
�

3. Sample Program	
�

GOTOBUTTON
_Toc362613156

�

PAGEREF
_Toc362613156

�
1
�
�

�
Linear Search
The most obvious way to search a list is to start at the beginning and compare every value with a specified value until either a match is found, or the list is exhausted. This approach will work for either ordered or unordered data.

For ordered data, however, this is not a very efficient way to search, particularly if the list is large.

Binary Search
A binary search algorithm will work only for a list containing ordered data. For lists containing a large number of data elements, this is a very efficient way to search a list.

One author compares a binary search algorithm with looking up someone’s name in the telephone book. Very few people will start on page one and examine every page until they find the page containing the desired name. Rather, they will do something like turn to the middle of the book first. Unless they are lucky, the name won’t appear on that page. Then they will move forward or backward in the book, cutting that half of the book approximately in half again. Using a process something like this, they will find the desired page fairly quickly without undue effort.

Sample Program
The following program illustrates the use of both a linear search algorithm and a binary search algorithm to find some values in a large array of ordered values.

A class containing an array and two search procedures is used by the main program to instantiate an object. One of the procedures in the class performs a binary search on the data in the array. The other performs a linear search.

Both algorithms return true or false indicating whether or not the value was found. If found, they report back the index where the value was found and the number of comparison operations required to reach resolution via reference parameters.

//PROGRAM BinSrch1;
/*This program illustrates and compares a linear search algorithm
with a binary search algorithm. The class named ListType contains
a function named LinearSearch which searches an array for a
given value and a function named BinarySearch which searches
the same array. Both functions return true if the value is found
and false if the value is not found.

If the value is found, two useful pieces of information are
returned via the argument list. One piece of information is
the array index where the value was found. The other piece of
information is the number of COMPARE operations required to
either find the value or determine that the value is not in
the array.

Note that the binary search algorithm will work only for ordered
data while the linear search algorithm will work for both
ordered and unordered data.*/

/**/

#include <iostream.h>
#define MAX 1000

class ListType
{
 int Data[MAX]; //Actual data is stored here
 int HiIndex; //Largest index value in array containing data
public:
 int BinarySearch(int Value, int &Location, int &NumberCompares);
 int LinearSearch(int Value, int &Location, int &NumberCompares);
 void Put(int data,int index){Data[index] = data;}
 void SetHiIndex(int length){HiIndex = length;}
 int GetHiIndex(){return HiIndex;}
};

int ListType::BinarySearch(int Value, int &Location,
 int &NumberCompares)
/*This function performs a binary search of an array containing
ordered integer data, returning 0 if the item is not found,
returning 1 and reporting back the location of the data as an
array index and the number of compares required to find the item
if the item is found.*/
{
 int Found = 0, //has value been found yet?
		MidPoint, //index of search area's midpoint
		First = 0, //first index in current search area
		Last = HiIndex;//last index in current search area
		NumberCompares = 0;
 //Search until element is found or there are no more.
 //Current search area = Data[First] .. Data[Last].
 while ((First <= Last) && !Found)
 {
	 //Find middle element in the current search area.
	 MidPoint = (First + Last)/2;
	 //Increment the Compare counter and compare Value to
	 //middle element in search area.
	 NumberCompares++;
	 if (Value == Data[MidPoint])
		Found = 1;//will terminate the loop and return true
	 else
		//search new area half as large
		if (Value < Data[MidPoint]) Last = MidPoint -1;
		else First = MidPoint + 1;
 }//end while
 if (Found)
 {//Report back location containing match and return true
	 Location = MidPoint;
	 return 1;
 }//end if Found
 else //return false if item not found
	 return 0;
}//End Binary Search

/**/
int ListType :: LinearSearch(int Value, int &Location,
 int &NumberCompares)
/*This function performs a linear search of an array containing
ordered integer data, returning 0 if the item is not found,
returning 1 and reporting back the location of the data as an
array index and the number of compares required to find the item
if the item is found.*/
{
 int Found = 0, //Has value been found yet?
		Index = 0;
 NumberCompares = 0;
 //Search until element found or there are no more.
 while ((Index <= HiIndex) && !Found)
 {
	 //Increment the Compare counter and compare Value to
	 //current element in the data array.
	 NumberCompares++;
	 if (Value == Data[Index])
		Found = 1; //will terminate the loop and return true
	 else Index++;
 }// end while
 if (Found)
 {//Report back location containing match and return true
	 Location = Index;
	 return 1;
 }//end if Found
 else //return false if item not found
	 return 0;
}//end LinearSearch()

/***/
void main()
{
 int Index, SearchValue,Location,Comp;
 ListType MyList;
 //Create some ordered data for the search but don't
 //necessarily fill the array.
 for(Index = 0; Index < MAX-100; Index++)
	 MyList.Put(2*Index,Index);
 //Set HiIndex
 MyList.SetHiIndex(Index-1);

 cout << "Number data values = "
	 << MyList.GetHiIndex()+1 << endl;
 cout << "Search for two values using a BINARY search\n";
 SearchValue = 1000;
 if (MyList.BinarySearch(SearchValue,Location,Comp) != 0)
	 cout << SearchValue << " found at location "
		<< Location << endl;
 else cout << SearchValue << " not found\n";
 cout << "Number of compares required was "
	 << Comp << endl;

 SearchValue = 1001;
 if (MyList.BinarySearch(SearchValue,Location,Comp) != 0)
	 cout << SearchValue << " found at location "
		<< Location << endl;
 else cout << SearchValue << " not found\n";
 cout << "Number of compares required was "
	 << Comp << endl;

 cout << "\nSearch for two values using a LINEAR search\n";
 SearchValue = 1000;
 if (MyList.LinearSearch(SearchValue,Location,Comp) != 0)
	 cout << SearchValue << " found at location "
		<< Location << endl;
 else cout << SearchValue << " not found\n";
 cout << "Number of compares required was "
	 << Comp << endl;

 SearchValue = 1001;
 if (MyList.LinearSearch(SearchValue,Location,Comp) != 0)
	 cout << SearchValue << " found at location "
		<< Location << endl;
 else cout << SearchValue << " not found\n";
 cout << "Number of compares required was "
	 << Comp << endl;

 cout << "Terminating Program";

}//end main

The output from running this program is shown below. As you can see, the linear search required significantly more comparison operations to reach resolution than did the binary search.

Number data values = 900
Search for two values using a BINARY search
1000 found at location 500
Number of compares required was 10
1001 not found
Number of compares required was 10

Search for two values using a LINEAR search
1000 found at location 500
Number of compares required was 501
1001 not found
Number of compares required was 900
Terminating Program

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #2S,
Binary Search, Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

