Richard G Baldwin
,
(512) 223-4758
,

baldwin@austin.cc.tx.us,

www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures
, File 2204-9S.DOC, Revised 7/21
/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.
 Copyright 1996, R.G.Baldwin

Linked Lists, Stacks, and Queues for Generic Types

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc362094227 � PAGEREF _Toc362094227 �
1
��
2. Template Function and Template Class Syntax	� GOTOBUTTON _Toc362094228 � PAGEREF _Toc362094228 �
1
��
3. The Generic ListNode Class	� GOTOBUTTON _Toc362094229 � PAGEREF _Toc362094229 �
4
��
4. The ListNode Constructor	� GOTOBUTTON _Toc362094230 � PAGEREF _Toc362094230 �
4
��
5. The getData Member Function	� GOTOBUTTON _Toc362094231 � PAGEREF _Toc362094231 �
5
��
6. The const Keyword	� GOTOBUTTON _Toc362094232 � PAGEREF _Toc362094232 �
6
��
7. The List Class	� GOTOBUTTON _Toc362094233 � PAGEREF _Toc362094233 �
7
��
8. InsertAtFront and InsertAtBack Member Functions	� GOTOBUTTON _Toc362094234 � PAGEREF _Toc362094234 �
8
��
9. RemoveFromFront and RemoveFromBack Member Functions	� GOTOBUTTON _Toc362094235 � PAGEREF _Toc362094235 �
9
��
10. Utility Member Functions	� GOTOBUTTON _Toc362094236 � PAGEREF _Toc362094236 �
10
��
11. Summary	� GOTOBUTTON _Toc362094237 � PAGEREF _Toc362094237 �
10
��
�

Introduction
This is the third in a series of lecture notes which explore the development of a set of classes providing the capability to instantiate objects which maintain and process linked lists, stacks, and queues.

The first program, which was presented in a previous set of lecture notes under the name DATSTR02.CPP was intended to establish the class hierarchy and the algorithms involved while avoiding undue complexity. Thus, the first program was constrained to process only integer data, and provided a subset of the interface functions normally associated with a linked list data structure.

The second program named DATSTR03.CPP expanded the capability of the first program to handle user-defined types, and also added the capability to maintain the linked list as a sorted alphanumeric data structure. Conversion of the program to handle user-defined types in alphanumeric order illustrated the design requirements for the complex class, including the requirement to overload the insertion operator and several relational operators for that class.

The third program, presented in this set of lecture notes, converts portions of the second program to a generic class architecture, thus providing the capability to use the class to handle any type of data. This set of lecture notes contains excerpts from the program with the syntax conversions necessary to accommodate generic data types.

Template Function and Template Class Syntax
Before launching into excerpts from the modified program, it may be useful to provide a very brief review of the syntax for defining template functions and template classes. This review is based heavily on material from Problem Solving with C++ by Walter Savitch.

Consider first the syntax for a template function.

Function Template Syntax

The function definition and the function prototype for a function template are each prefaced with the following:

	template<class Type_Parameter>

The prototype and definition are then the same as any ordinary function prototype and definition, except that the Type_Parameter can be used in place of a type.

For example, the following is a prototype for a function template:

	template<class T> void show_stuff(int stuff1, T stuff2, T stuff3);

The definition for this function might be:

	template<class T> void show_stuff(int stuff1, T stuff2, T stuff3)
	{
	 cout << stuff1 << endl
		<< stuff2 << endl
		<< stuff3 << endl;
	}

The function template given in this example is equivalent to having one function prototype and one function definition for every possible type name. (Of course if a user-defined type is used for which the programmer has not provided an appropriate overloaded insertion operator function, the program won’t work.)

The type name is substituted for the type parameter (which is T in the example above). For instance, consider the function call:

	show_stuff(2, ‘a’, ‘b’);

When this function call is executed, the system uses the function definition obtained by replacing T with the type name char.

Now consider the syntax for a template class.

Class Template Syntax

The class definition and the definitions of the member functions are prefaced with the following:

	template<class Type_Parameter>

The class and member function definitions are then the same as for any ordinary class, except that the Type_Parameter can be used in place of a type.

For example, the following is the beginning of a class template definition:

	template<class T> class Pair
	{
	public:
	 Pair();
	 Pair(T first_value, T second_value);
	 ...

Member functions and overloaded operators are then defined as function templates. For example, the definition of the two-argument constructor for the above sample class template would begin as follows:

	template<class T> Pair<T>::Pair(T first_value, T second_value)
	{
	 ...

In trying to understand this syntax, it is useful to think of the boldface italicized word class in the following statement

	template<class T> class Pair

to be a synonym for the word type. In other words, this could be paraphrased as

	template class <for the type of T> named Pair

The Generic ListNode Class
The first excerpt shows the syntax for defining a generic ListNode class.

/*File DATSTR01.CPP
This program is patterned after a program by Deitel,
C++ How to Program, page 691.
*/

#include <iostream.h>
#include <assert.h>
#include <iomanip.h>

//===
//Begin declaration and definition of the class used to create a node
//NODETYPE is a generic type in the following
template<class NODETYPE>class ListNode{
 friend class List<NODETYPE>; //make List a friend
public:
 ListNode(const NODETYPE &); //constructor
 NODETYPE getData() const; //return the data in the node
private:
 NODETYPE data; //data
 ListNode *nextPtr; //pointer to next node in the list
};//end class declaration for class ListNode

Contrast this with the non-generic version from an earlier set of lecture notes and note the correspondence between NODETYPE above and int below. The previous version of the program was designed to work only with data of type int. The current version is designed to work for any type which may be substituted for NODETYPE. Of course if a user-defined type is substituted for NODETYPE it will be necessary to provide some overloaded operator functions (such as an overloaded insertion operator and overloaded relational operators) which apply to that user-defined type.

class ListNode{
 friend class List; //make List a friend
public:
 ListNode(int &); //constructor
 int getData() ; //return the data in the node
private:
 int data; //data
 ListNode *nextPtr; //pointer to next node in the list
};//end class declaration for class ListNode

The ListNode Constructor
A listing of the constructor function follows. Note that all member functions of a template class must be defined as template functions. Note also that the template statement

template<class NODETYPE>

can appear on the same line as the function heading or on a prior line. However, no other statements may occur between the template statement and the start of the generic function definition.

//Now define member functions for class ListNode
//constructor
template<class NODETYPE>
ListNode<NODETYPE>::ListNode(const NODETYPE &info)
{
 data = info;
 nextPtr = 0; //initialize to null pointer
}//end constructor definition

Again, contrast this with the constructor for the earlier non-generic version and note the correspondence between NODETYPE above and int below.

ListNode::ListNode(int &info)
{
 data = info;
 nextPtr = 0; //initialize to null pointer
}//end constructor definition

The getData Member Function
The getData() member function of the ListNode class simply returns a copy of the data member of the object named data.

//Member function to return a copy of data in the node
template<class NODETYPE>
NODETYPE ListNode<NODETYPE>::getData() const {return data;}

//End declaration and definition of the class used to create a node

The const Keyword
You may have noticed extensive use of the const keyword in this version of the program. The following information regarding the use of the const keyword was extracted from the on-line help system for Borland Turbo C++, V4.5. While it does seem to have some typographical errors, it at least provides some clues as to the reasons for using the const keyword.

const

Syntax

const <variable name> [= <value>] ;
<function name> (const <type>*<variable name> ;)
<function name> const;

Description

Use the const modifier to make a variable value unmodifiable. Use the const modifier to assign an initial value to a variable that cannot be changed by the program. Any future assignments to a const result in a compiler error.

Using the const Keyword in C++ Programs

C++ extends const to include classes and member functions. In a C++ class definition, use the const modifier following a member function declaration. The member function is prevented from modifying any data in the class. A class object defined with the const keyword can only member functions that are also defined with const. If you attempt to call a member function that is not defined as constant, the call results in non-constant function class-name::member-function-name(). Using the const keyword in this manner is a safety feature of C++; it is not automatically supported by the compiler.

Warning:	A pointer can indirectly modify a const variable, as in the following:

*(int *)&my_age = 35;

If you use the const modifier with a pointer parameter in a function's parameter list, the function cannot modify the variable that the pointer points to. For example,

int printf (const char *format, ...);

printf is prevented from modifying the format string.

The fact that this version of the program makes extensive use of the keyword const has nothing to do with the fact that this is a generic version. Rather, it simply means that the author of this version is a more careful programmer than the author of the previous two versions.

The List Class
The following code provides the declaration of the List class.

//===
//Begin declaration and definition of the class used
//to maintain a list
template<class NODETYPE>class List{
public:
 List(); //constructor
 ~List(); //destructor
 void insertAtFront(const NODETYPE &);
 void insertAtBack(const NODETYPE &);
 int removeFromFront(NODETYPE &);
 int removeFromBack(NODETYPE &);
 int isEmpty() const;
 void print() const;
private:
 ListNode<NODETYPE> *firstPtr; //pointer to first node
 ListNode<NODETYPE> *lastPtr; //pointer to last node
 ListNode<NODETYPE> *getNewNode(const NODETYPE &); //utility
};//end declaration of class List

Once again, contrast this with the non-generic version designed to process data of type int.

class List{
public:
 List(); //constructor
 ~List(); //destructor
 void insertAtFront(int &);
 void insertAtBack(int &);
 int removeFromFront(int &);
 int removeFromBack(int &);
 int isEmpty() ;
 void print() ;
private:
 ListNode *firstPtr; //pointer to first node
 ListNode *lastPtr; //pointer to last node
 ListNode *getNewNode(int &); //utility to get new node
};//end declaration of class List

As shown by the following code fragment, the constructor for the List class simply initializes the pointers to the first and last nodes to zero, the null pointer. This is the indication of an empty list which contains no nodes.

//Now define member functions for class List
//Default constructor
template<class NODETYPE>
List<NODETYPE>::List(){firstPtr = lastPtr = 0;}//set ptrs to null

A listing of the destructor member function follows.

//Destructor
template<class NODETYPE>
List<NODETYPE>::~List()
{
 if(!isEmpty()) {//List is not empty, traverse and destroy nodes
 cout << "Destroying nodes ... " << endl;
 //declare two local pointers and initialize one of them
 ListNode<NODETYPE> *currentPtr = firstPtr, *tempPtr;
 while(currentPtr != 0) {//delete remaining nodes
 tempPtr = currentPtr;
 cout << tempPtr->data << endl;
 currentPtr = currentPtr->nextPtr;
 delete tempPtr;
 }
 }
 cout << "All nodes destroyed" << endl << endl;
}

InsertAtFront and InsertAtBack Member Functions
The insertAtFront() member function is used to insert a new node at the front of the list. A listing of the function follows.

//Insert a node at the front of the list
template<class NODETYPE>
void List<NODETYPE>::insertAtFront(const NODETYPE &value)
{
 //declare and initialize a local pointer
 ListNode<NODETYPE> *newPtr = getNewNode(value);

 if(isEmpty()) //List is empty
 firstPtr = lastPtr = newPtr;
 else{ //List is not empty
 newPtr->nextPtr = firstPtr;
 firstPtr = newPtr;
 }
}

The insertAtBack() function causes a new node to be inserted at the back of the list. A listing of this function follows.

//Insert a node at the back of the list
template<class NODETYPE>
void List<NODETYPE>::insertAtBack(const NODETYPE &value)
{
 //declare and initialize a local pointer
 ListNode<NODETYPE> *newPtr = getNewNode(value);

 if(isEmpty()) //List is empty
 firstPtr = lastPtr = newPtr;
 else { //List is not empty
 lastPtr->nextPtr = newPtr;
 lastPtr = newPtr;
 }
}

RemoveFromFront and RemoveFromBack Member Functions
The following function is used to remove a node from the front of the list

//Delete a node from the front of the list
template<class NODETYPE>
int List<NODETYPE>::removeFromFront(NODETYPE &value)
{
 if(isEmpty()) //List is empty
 return 0; //delete is unsuccessful
 else { //List is not empty
 //declare and initialize a local pointer
 ListNode<NODETYPE> *tempPtr = firstPtr;

 if(firstPtr == lastPtr)
 firstPtr = lastPtr = 0; //set both to null
 else
 firstPtr = firstPtr->nextPtr;

 value = tempPtr->data; //data being removed
 delete tempPtr; //return memory to system
 return 1; //delete successful
 }
}

Likewise, the following code is used to remove a node from the back of the list.

//Delete a node from the back of the list
template<class NODETYPE>
int List<NODETYPE>::removeFromBack(NODETYPE &value)
{
 if(isEmpty()) //List is empty
 return 0; //delete unsuccessful
 else { //List is not empty
 //declare and initialize a local pointer
 ListNode<NODETYPE> *tempPtr = lastPtr;

 if(firstPtr == lastPtr)
 firstPtr = lastPtr = 0; //set both to null
 else {
 //declare and initialize another local pointer
 ListNode<NODETYPE> *currentPtr = firstPtr;

 while(currentPtr->nextPtr != lastPtr)
 currentPtr = currentPtr->nextPtr;

 lastPtr = currentPtr;
 currentPtr->nextPtr = 0; //set to null
 }

 value = tempPtr ->data;
 delete tempPtr;
 return 1; //successful delete
 }
}

Utility Member Functions

//Function to determine if the List is empty
template<class NODETYPE>
int List<NODETYPE>::isEmpty() const {return firstPtr == 0;}

//Function to allocate memory and return a pointer for
//a new node.
template<class NODETYPE>
ListNode<NODETYPE> *List<NODETYPE>::getNewNode(const NODETYPE &value)
{
 //get pointer to new memory
 ListNode<NODETYPE> *ptr = new ListNode<NODETYPE>(value);
 assert(ptr != 0); //quick and dirty test for success
 return ptr;
}

//Function to display the contents of the list
template<class NODETYPE>
void List<NODETYPE>::print() const
{
 if(isEmpty()){
 cout << "The list is empty" << endl;
 return;
 }

 //declare and initialize a local pointer
 ListNode<NODETYPE> *currentPtr = firstPtr;
 cout << "The list is: ";

 while(currentPtr != 0){ //traverse the list and display data
 cout << currentPtr->data << ' ';
 currentPtr = currentPtr->nextPtr;
 }

 cout << endl;
}

Summary
Although the syntax of this program looks pretty complex, it isn’t too difficult to produce by first creating the program as a non-generic program and then following several rules in converting that program to a generic program. Comparison of the non-generic modules above with their corresponding generic counterparts, and relating the differences to the syntax rules presented at the beginning of this set of lecture notes can be of considerable help in determining how to produce generic containers.

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #9S,
Linked Lists, Stacks and Queues for Generic Types, Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

