Richard G Baldwin
,
(512) 223-4758
, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-12S.DOC, Revised 7/
21
/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.
 Copyright 1996, R.G.Baldwin.

Hashing

Hashing is not an exact science.

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc362096649 � PAGEREF _Toc362096649 �
1
��

2. The Ideal Case	� GOTOBUTTON _Toc362096650 � PAGEREF _Toc362096650 �
2
��

3. The Non-Ideal Case	� GOTOBUTTON _Toc362096651 � PAGEREF _Toc362096651 �
2
��

4. Collisions or Hash Clashes	� GOTOBUTTON _Toc362096652 � PAGEREF _Toc362096652 �
2
��

5. Rehashing	� GOTOBUTTON _Toc362096653 � PAGEREF _Toc362096653 �
2
��

6. Linear Probes	� GOTOBUTTON _Toc362096654 � PAGEREF _Toc362096654 �
3
��

6.1 Storage with a Linear Probe	� GOTOBUTTON _Toc362096655 � PAGEREF _Toc362096655 �
4
��

6.2 Retrieval with a Linear Probe	� GOTOBUTTON _Toc362096656 � PAGEREF _Toc362096656 �
4
��

7. Sample Program	� GOTOBUTTON _Toc362096657 � PAGEREF _Toc362096657 �
4
��

7.1 hash Function	� GOTOBUTTON _Toc362096658 � PAGEREF _Toc362096658 �
5
��

7.2 rehash Function	� GOTOBUTTON _Toc362096659 � PAGEREF _Toc362096659 �
5
��

7.3 CheckForID Function	� GOTOBUTTON _Toc362096660 � PAGEREF _Toc362096660 �
6
��

7.4 Insert Function	� GOTOBUTTON _Toc362096661 � PAGEREF _Toc362096661 �
6
��

7.5 display Function	� GOTOBUTTON _Toc362096662 � PAGEREF _Toc362096662 �
7
��

7.6 RetrieveAndDisplay Function	� GOTOBUTTON _Toc362096663 � PAGEREF _Toc362096663 �
7
��

8. Test Program	� GOTOBUTTON _Toc362096664 � PAGEREF _Toc362096664 �
8
��

9. Using Linked Lists to Resolve Hash Clashes	� GOTOBUTTON _Toc362096665 � PAGEREF _Toc362096665 �
10
��

10. Summary	� GOTOBUTTON _Toc362096666 � PAGEREF _Toc362096666 �
11
��

�

Introduction

In an earlier set of lecture notes, we learned how to do linear searches and binary searches. We learned that on average, the number of comparisons required to find an item in an ordered list is approximately half the number of items in the list. Linear searches can be performed on either array-based structures or linked-list structures.

We also learned that we can apply binary searches to array-based ordered lists with the number of comparisons being approximately as shown in the following table. (The number may vary slightly depending on the design of the program.)

Number of Elements		Number of Comparisons

	1					1

	2					2

	4					3

	8					4

	16					5

	32					6

	.					.

	1024					11

	.					.

	32768					16						

We can, in fact, apply binary search algorithms to any index-based storage structure such as arrays, disk files, etc. However, we cannot apply binary search algorithms to linear linked lists.

We have learned that there is a linked structure which under certain conditions provides the advantages of both binary search and linked lists. That structure is a tree structure, and we concentrated our attention on a Binary Search Tree.

But what if these approaches are still too slow? Can we find a way to store ordered data so that we can retrieve a record directly? The answer is, ideally yes, and practically, no.

The Ideal Case

Suppose that we manage a small company with only 300 employees and we are confident that the number of employees will never exceed 1000. In that case, we could assign ID numbers to each employee with the numbers ranging between 0 and 999. Then we could set up an array of records, or other indexed storage of records, and store each employee’s record in the element which corresponds to his or her ID number. In this ideal situation, access would be very rapid. We could consider the ID number to be the key and store each record in the element which corresponds to the key value.

The Non-Ideal Case

However, the real world is rarely so kind. What if, for example the company had already decided to use the employee’s social security number as their ID number. Obviously we couldn’t set aside enough storage to consider the element number for a particular employee to match the social security number. In that case, what we need is a hashing function which translates social security numbers into element indices.

Many books have been written on hashing functions. An ideal hashing function is one which would perform the translation without ever associating two social security numbers with the same index. Unfortunately, the ideal hashing function doesn’t exist in real-world situations.

Collisions or Hash Clashes

To make this material easier to type, let’s forget about social security numbers and assume that each employee has an ID which can range from 0 through 9999 and that we are willing to set aside only 100 elements of storage. Then we will need a hashing function which will translate each four-digit ID into an index value ranging from 0 through 99.

Whenever the hashing function causes two or more ID values to point to the same index, we have what is commonly called a collision, or a hash clash. Hash clashes are a fact of life in large-scale data processing, and many books have been written on what to do about them.

Rehashing

Since our objective is to introduce you to the subject so that you can make informed decisions regarding the use of container class libraries, we won’t dig too deeply into the subject. However, we will take a look at a couple of solutions to the hash clash problem.

One common approach to solving the problem is by using a technique called rehashing. With rehashing, if the hashing function associates an ID with an index that is already in use, a rehashing function is applied to that index to get another index. If that index is already in use, the rehashing function will be applied to that index to get another, and so on.

Finally, if there is any space available in the storage area, the rehashing function may find it. I say may, because some rehashing algorithms may never find an available empty location. For example, if all the even-numbered elements are full but there are plenty of empty odd-numbered elements, a rehashing function which always converts one even-numbered index into another even-numbered index will never find an empty odd-numbered element if the original hashing function produced an even-numbered index that was already in use.

Even beyond such obvious problems which can be solved, people who deal in large-scale data processing where rapid-retrieval is a requirement worry about which rehashing algorithm is likely to find an empty element sooner. Books have been written on the optimization of rehashing algorithms also.

Linear Probes

A very simple rehashing algorithm which will always find an empty element if one exists is to simply add one to the old index value to produce a new index value.

This can be written in functional form as

	NewIndex = (OldIndex + 1) % ArraySize

where % is the modulus operator. That is to say, add 1 to the old index, divide by the ArraySize and keep the remainder as the NewIndex. For example, if the hash function returned a value of 66 for the index value and it was occupied, and the array size is 100, we would add 1 to 66 giving 67, divide that by 100 and keep the remainder of 67. The new index would be 67.

You might say that this sounds like a very complicated way to add 1 to 66 to produce 67. However this is one way to make the indices automatically wrap back to zero at the end of the array. (However, it may not be the most efficient way to accomplish the wrap around. A simple if statement may execute faster.)

Also, this technique has been extended to

	NewIndex = (OldIndex + C) % ArraySize

where C is a constant. Some authorities believe that this provides improved performance. For this case, if the original hash index was 66, the constant was 59, and the array size was 100, the new index would be 125 % 100 or 25. Textbooks caution that if this approach is used for rehashing, the values of the constant and the ArraySize must be relatively prime, meaning that they should have no common factor larger than 1.

For our exploration, we will simply let the constant be 1. In addition, we will use the following formulation for the original hashing function:

	Index = ID % ArraySize

where ID is the employee ID number.

	

Storage with a Linear Probe

Consider first the case of storage with a linear probe. Assume that the first employee has an ID of 4066 and the ArraySize is 10. Application of the hashing function above provides an Index of 6 and his record will be stored in the array element having an Index of 6.

Assume that the next employee has an ID of 6347. The hash Index for this employee is 7 and her record will be stored in the array at the element having an index of 7.

The next employee has an ID of 1006. The hash index for this employee is 6, but that position is occupied. We would then apply the rehash algorithm above with a constant value of 1 giving a NewIndex of 7. That element is also occupied, so we would apply the rehash algorithm again giving a NewIndex of 8. That element is not occupied, so that is where we would store this employee’s record.

Retrieval with a Linear Probe

This discussion assumes that the employee’s ID is one of the data fields stored in his or her record at the proper index. Suppose that we want to retrieve or modify the record for the employee with an ID of 4066. We would apply the hashing function to produce an Index of 6. Then we would examine the ID value stored in the record to confirm that it really is 4066. The test would be positive and we would retrieve or modify that record.

Assume next that we need to modify the record for the employee with an ID of 1006. We would apply the hashing function to the ID to get an index of 6. We would examine the record stored in the element with an Index value of 6 and determine that it is not the correct ID.

Next, we would apply the rehashing algorithm to the initial Index of 6 to produce a NewIndex of 7. We would examine the ID of the employee record stored there and learn that it also is not the correct ID. We would apply the rehashing algorithm to that Index to produce a NewIndex of 8. This time, when we make the comparison, we would find that it is the correct record, so we would make our modification.

Thus, the operations used for retrieval are very similar to those used for storage.

Sample Program

The following program illustrates one of many ways to build a hashing capability. Because of the length and complexity of the program, we will view and discuss it in parts.

//File HASH01.CPP

/*This program illustrates the construction of a hashing

procedure which stores two-digit ID data into a 10-element array.

A modulus-10 hash function is used to associate ID values with

array elements.

A Linear Probe rehash function is used to resolve hash clashes.

*/

#include <iostream.h>

#define empty -1 //used to indicate an empty element

#define deleted -2 //used to indicate a deleted ID

#define max 10 //maximum size of Table

int hash(int); //function prototype

int rehash(int);//function prototype

int CheckForID(int* Table, int ID, int& index);//prototype

void display(int* ptr); //function prototype

void RetrieveAndDisplay(int* ptr,int ID);//function prototype

int Insert(int *ptr, int ID);//function prototype

As you can see, we will use a couple of manifest constants to define an empty location and a location from which data has been deleted. While both of these locations are available for inserting new data, they must be marked differently to prevent a rehashed ID value from becoming lost.

hash Function

The hashing function is pretty simple. The program was designed to operate with a Table size of 10, as specified by the manifest constant max. The program was tested against ID values ranging from 0 to 99. Thus, the hashing function returns output values ranging from 0 to 9.

/*This hash function converts ID values to Table index

values.*/

int hash(int ID)

{

 return ID % max;

}//end hash

rehash Function

The rehashing function is similarly uncomplicated. This function simply adds one to an existing index value to produce another index value, wrapping from an index value of 9 to an index value of 0.

/*This rehash function uses a linear probe to rehash one

Table index into another Table index.*/

int rehash(int index)

{

 return (index + 1) % max;

}//end rehash

CheckForID Function

This function is used to check the Table to determine if it already contains a specified ID value.

/*This function checks the Table to determine if an ID

already exists there. Returns 1 if found and 0 if not found.

The function receives a pointer to the Table and the ID

to look for. Returns the index where the ID is found via

a reference parameter. This function also displays an _ each

time a rehash is performed as a visual indicator of the number

of rehash operations required to locate an ID or confirm that

it is not contained in the Table. A RehashCounter is

used to make certain that the function doesn't go into an

endless loop under certain conditions.*/

int CheckForID(int* ptr, int ID, int& index)

{

 int RehashCounter = 0; //used to prevent endless loop

 index = hash(ID); //hash and rehash if necessary

 while((*(ptr+index) != ID) && (*(ptr+index) != empty)

	 && (RehashCounter++ < max))

 {

	 cout << "_";//Display rehash indicator

	 index = rehash(index);

 }//end while loop on ID match or empty element

 if (*(ptr+index) == ID) return 1;//match

 else return 0;

}//end check for ID

This function is called by several other functions to determine if an ID is already stored in the Table. The comments in the function pretty well describe how it works.

Insert Function

The Insert function attempts to insert a new ID into the table. However, duplicate ID values are not allowed. Thus, the attempt will fail if the ID is already contained in the Table. Note that as written, this function does not protect against attempting to insert into a full Table. The function should not be called if the Table is full.

/*This function attempts to insert an ID into the Table.

Returns true on success and false on failure to insert.

Does not protect against attempt to insert into a full table.

Should not be called if the table is full.*/

int Insert(int *ptr, int ID)

{

 int index;

 if(! CheckForID(ptr,ID,index))//check for duplicate

 { //not a duplicate

	 index = hash(ID);//hash and rehash if necessary

	 while((*(ptr+index)!=empty) && (*(ptr+index)!=deleted))

		index = rehash(index);//terminate loop with valid index

	 *(ptr+index) = ID;//store ID in Table at index

	 return 1;

 }

 else

 {

	 cout << ID << " is a duplicate\n";

	 return 0;

 }

}

display Function

This function is generally self-explanatory.

/*This function displays the contents of the Table array

along with the index of each element.*/

void display(int* ptr)

{

 for(int cnt = 0; cnt < max; cnt++)

	 cout << cnt << " " << *(ptr + cnt) << " ";

 cout << endl;

}

RetrieveAndDisplay Function

When working with hashing designs, it is important to confirm that any legal ID can be stored in the Table (assuming that space is available) and can later be successfully restored. This function is used to demonstrate that latter capability in this program.

/*This function will retrieve and display an ID in the Table,

or will indicate that the ID was not found. If the ID is found,

both the ID value and the index where it is stored are

displayed*/

void RetrieveAndDisplay(int* ptr,int ID)

{

	 int index = hash(ID);//hash and rehash if necessary

	 if(CheckForID(ptr,ID,index))

		cout << *(ptr+index) << " " << index << endl;

	 else cout << ID << " not found\n";

}

As you can see, this function uses the function CheckForID to search for the ID and determine where it is stored.

Test Program

This program was tested using the main() driver listed below.

main()

{

 int IDCount = 0, ID, index;;

 //Create some data for test purposes with some duplicate values

 int IDdata[max+4] ={33,47,65,51,73,65,97,43,84,11,26,92,47,83};

 //Initialize the Table array to empty

 int Table[max] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};

 cout << "Each _ indicates one call to the rehash function\n";

 cout << "Attempt to insert IDdata into the Table\n";

 for(int cnt = 0; cnt < max; cnt++)

 {

	 ID = IDdata[cnt];//get next ID

	 if(IDCount <= max)

	 { //attempt to insert the ID

		if(Insert(Table,ID))//returns true on successful insert

		 IDCount++; //increment storage counter

		else cout << "Failed to insert " << ID << endl;

	 }//end if IDCount

	 else cout << "Table full, failed to insert\n";

 }//end for loop

 cout << "\nDisplay the IDdata in the Table along with "

	 "the index.\n";

 display(Table);

 ID = 65;

 cout << "Now delete " << ID << " from the Table\n";

 if(CheckForID(Table,ID,index))

 { //if it is in the table, delete it

	 IDCount--; //decrement the count of IDs in the table

	 Table[index] = deleted;

 }

 else cout << ID << " not found\n";

 display(Table);

 cout << "Attempt to insert more IDdata in the Table\n";

 for(cnt = max; cnt < max+4; cnt++)

 {

	 ID = IDdata[cnt];//get next ID

	 if(IDCount < max)

	 { //attempt to insert the ID

		if(Insert(Table,ID)) //returns true on insert

		 IDCount++; //increment storage counter

		else cout << "Failed to insert " << ID << endl;

	 }//end if IDCount

	 else cout << "Table full, failed to insert " << ID << endl;

 }//end for loop

 display(Table);

 cout << "Retrieve IDdata from Table.\n";

 //First confirm that all known values can be found

 for(cnt = 0; cnt < max; cnt++)

 {

	 ID = Table[cnt];//get next ID to retrieve

	 if(ID >= 0) RetrieveAndDisplay(Table,ID);

 }//end for loop

 //Now confirm that a nonexistent value will be treated properly

 RetrieveAndDisplay(Table,99);

 return 0;

}//end main

The output from running this program follows.

Each _ indicates one call to the rehash function

Attempt to insert IDdata into the Table

_65 is a duplicate

Failed to insert 65

Display the IDdata in the Table along with the index.

0 -1 1 51 2 11 3 33 4 73 5 65 6 43 7 47 8 97 9 84

Now delete 65 from the Table

0 -1 1 51 2 11 3 33 4 73 5 -2 6 43 7 47 8 97 9 84

Attempt to insert more IDdata in the Table

______________Table full, failed to insert 47

Table full, failed to insert 83

0 26 1 51 2 11 3 33 4 73 5 92 6 43 7 47 8 97 9 84

Retrieve IDdata from Table.

____26 0

51 1

_11 2

33 3

_73 4

___92 5

___43 6

47 7

_97 8

_____84 9

__________99 not found

Although this is not an exhaustive test, a comparison of these results indicates that the program is probably doing what it was designed to do.

An attempt was made to insert the ID value 65 twice. It was rejected as a duplicate ID on the second try.

An attempt was made to insert more ID values than would fit in the Table. Two insertion attempts were rejected after the Table became full.

Note in particular, the result of deleting some data and then inserting some more data. This capability seems to be working properly as evidenced by the highlighted values in Table location 5. Following the first insertion, this location contained an ID value of 65. Following the deletion, this location contained the “deleted” value of -2. When additional data was inserted into the Table, an ID value of 92 was stored in this location.

Note that if the value in the location had been changed to “empty” when the ID value was deleted, this would have interfered with further attempts to locate ID values because the CheckForID function terminates its search when it encounters an empty location. This is a subtle, but very important point in the design of hashing systems.

Finally, note the edited version of the output from the SearchAndDisplay function shown below. The editing, which consisted solely of shifting the material horizontally on the page, was applied to make it easier to understand what is going on.

Retrieve IDdata from Table.

 ____26 0

 51 1

 _11 2

 33 3

 _73 4

 ___92 5

 ___43 6

 47 7

 _97 8

 _____84 9

__________99 not found

The two-digit value in the left-hand column is the ID number. The single-digit value in the right-hand column is the index of the Table location where it is stored. In the ideal case, the right-most digit in the left-hand column would match the index in the right-hand column. Under that circumstance, a program needing to retrieve the data could do so simply by hashing the ID number and then extracting the ID from the index provided by the hashing algorithm.

Our case is far from ideal. Only three of our ten values ended up in the exact location pointed to by the hashing algorithm. (Those ID values are highlighted in boldface.) This situation is probably not unusual in cases where the Table is full or nearly full.

Note that there are no horizontal lines to the left of the three boldface ID values. The horizontal line is an indication of the number of calls to the rehash function that were required to either find the ID value or to conclude that it was not in the Table. The maximum number of calls was required when we attempted to retrieve an ID value of 99 which was not contained in the table. When the Table is full, the algorithm must examine every location before concluding that the ID value cannot be found.

Using Linked Lists to Resolve Hash Clashes

The big issue in the design of hashing systems is the design of the hashing algorithm, and the design of the method used to resolve hash clashes. There are many algorithms and many approaches in use. In this set of lecture notes, we have seen a practical demonstration of only one approach.

Another approach to the resolution of hash clashes which is worthy of note makes use of a combination of indexed storage and linked storage. In particular, each element in the indexed storage is considered to be the first node in a linked list. Whenever the hashing algorithm points more than one key value to the same location, the additional records are attached to the indexed location as additional nodes on a linked list.

Then, at retrieval time, you simply hash the key value, go to the indicated indexed location and check the key of the record stored there. If the key value matches, simply retrieve the record. If the keys don’t match, test the next node in the linked list, etc., until you either find a match or reach the end of the linked list.

Think of this as something like hanging clothes on a clothesline to dry. However, instead of attaching all the socks directly to the clothesline, attach the first sock to the clothesline, and then attach the next sock to the free end of the first sock. Each time you need to hang up another sock, attach it to the free end of the string of socks already attached to the clothesline.

Summary

You are now familiar with the general concept of hashing. From this point on, if you decide to design a hashing system, you will be confronted with a great many possible hashing and rehashing algorithms as well as a variety of structures in which to implement those algorithms. The design of an efficient hashing system represents an extreme case of making design decisions on the basis of tradeoffs. Unfortunately, many of the advantages and disadvantages of the various choices are data dependent, so there is really no “best” design for all cases.

-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #12S,

Hashing, Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

