Richard G Baldwin, NRG Room 4238, (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS2204 Intermediate C++ Programming and Data Structures, File 2204-14S.DOC, Revised 8/25/96. These lecture notes are intended to supplement the material in the textbook, Teach Yourself C++ Second Edition by Herbert Schildt.

Exception Handling

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc365862726 � PAGEREF _Toc365862726 �
1
��
2. Detailed Description of C++ Exception Handling	� GOTOBUTTON _Toc365862727 � PAGEREF _Toc365862727 �
2
��
2.1 Throwing an Exception	� GOTOBUTTON _Toc365862728 � PAGEREF _Toc365862728 �
3
��
2.2 Examples of throw Statements	� GOTOBUTTON _Toc365862729 � PAGEREF _Toc365862729 �
3
��
2.2.1 The terminate Function	� GOTOBUTTON _Toc365862730 � PAGEREF _Toc365862730 �
4
��
2.2.2 The unexpected Function	� GOTOBUTTON _Toc365862731 � PAGEREF _Toc365862731 �
4
��
2.3 Handling an Exception	� GOTOBUTTON _Toc365862732 � PAGEREF _Toc365862732 �
4
��
2.4 Exception Specifications	� GOTOBUTTON _Toc365862733 � PAGEREF _Toc365862733 �
5
��
2.5 Constructors and Destructors in Exception Handling	� GOTOBUTTON _Toc365862734 � PAGEREF _Toc365862734 �
5
��
2.6 Unhandled Exceptions	� GOTOBUTTON _Toc365862735 � PAGEREF _Toc365862735 �
5
��
3. Throwing Exception Objects	� GOTOBUTTON _Toc365862736 � PAGEREF _Toc365862736 �
5
��
4. Catching An Exception by Reference	� GOTOBUTTON _Toc365862737 � PAGEREF _Toc365862737 �
10
��
5. Throwing an Exception by Type Only with Multiple catch Blocks	� GOTOBUTTON _Toc365862738 � PAGEREF _Toc365862738 �
14
��
6. Throwing an Exception with a Parameter	� GOTOBUTTON _Toc365862739 � PAGEREF _Toc365862739 �
16
��
7. Exception Specifications and Unexpected Exceptions	� GOTOBUTTON _Toc365862740 � PAGEREF _Toc365862740 �
18
��
8. Modifying Behavior of the unexpected Function	� GOTOBUTTON _Toc365862741 � PAGEREF _Toc365862741 �
19
��
9. Uncaught Exceptions and the terminate Function	� GOTOBUTTON _Toc365862742 � PAGEREF _Toc365862742 �
21
��
10. Catch-All Exception Handlers	� GOTOBUTTON _Toc365862743 � PAGEREF _Toc365862743 �
23
��
11. Nested try Blocks, Throwing Exceptions from Exception Handlers	� GOTOBUTTON _Toc365862744 � PAGEREF _Toc365862744 �
25
��
12. When the new Operator Fails to Allocate Memory	� GOTOBUTTON _Toc365862745 � PAGEREF _Toc365862745 �
27
��
12.1 Using set_new_handler Function	� GOTOBUTTON _Toc365862746 � PAGEREF _Toc365862746 �
27
��
12.2 Using xalloc Exception Class	� GOTOBUTTON _Toc365862747 � PAGEREF _Toc365862747 �
28
��
�

Introduction
Stated in simple terms, the exception-handling capability of C++ makes it possible for you to monitor for exceptional conditions within your program, and to transfer control to special exception-handling code which you design. This is accomplished using three keywords: try, throw, and catch.

You try to execute the statements contained within a block surrounded by braces. If you detect an exceptional condition within that block, you throw an exception of a specific type. You then catch and process the exception using code that you have designed.

There are also some situations where an exceptional condition automatically transfers control to special exception-handling code which you design. In this case, you are responsible only for the catch code.

This process is illustrated in the following simple program which throws an exception of type integer.

 //File Excep01.cpp
 //This program provides a simple illustration
 // of the exception handling mechanism.

 #include <iostream.h>
 main()
 {
 try //block used to monitor for an exception
 {
 //throw an integer exception as though a problem
 // was detected
 throw(1);
 //the following statement will never execute
 cout << "This statement will never execute\n";
 }

 //statement to "catch" an integer exception
 catch(int)
 {
 cout << "Caught an exception\n";
 }
 cout << "Statement following the catch\n";
 return 0;
 }

The output from running this program follows:

Caught an exception
Statement following the catch

It is important to note that the statement throw(1) does not make a function call to catch(int). In particular, control does not return to the statements inside the try block. Rather, in this case, control is transferred to catch(int). Therefore, the statement inside the try block which reads

 cout << "This statement will never execute\n";

will never be reached.

Detailed Description of C++ Exception Handling
Much of the following information is based on material contained in the on-line help system for Borland C++ Version 5.0 which claims to be consistent with the proposed ANSI specification for C++.

The following topics are of general interest and will be discussed in the sections which follow.

Throwing an Exception
Handling an Exception
Exception Specifications
Constructors and Destructors in Exception Handling
Unhandled Exceptions

The C++ language defines a standard for exception handling which insures that object-oriented design is supported throughout your program. This approach provides for the availability of virtual functions and the use of objects to define exceptions.

According to the Borland interpretation of the ANSI/ISO working paper specification, when an abnormal situation arises at runtime, the program should terminate. Throwing an exception allows you to gather information at the throw point that could be useful in diagnosing the causes which led to failure. You can also specify in the exception handler the actions to be taken before the program terminates.

Only synchronous exceptions are handled, meaning that the cause of failure is generated from within the program. An event such as Control-C (which is generated from outside the program) is not considered to be an exception.

When the program encounters an abnormal situation, you may transfer control to some other part of the program designed to deal with the problem by throwing an exception.

As mentioned earlier, the exception-handling mechanism requires the use of three keywords: try, catch, and throw.

The try-block must be followed immediately by the handler specified by catch. If an exception is thrown in the try-block, program control is transferred to the appropriate exception handler. Failure to catch an exception could result in abnormal termination of program.

It is useful (but not necessary) to define exceptions as objects. The exception object is treated the same way any object would be treated. An exception object carries information from the point where the exception is thrown to the point where the exception is caught.

Throwing an Exception
A block of code in which an exception can occur must be prefixed by the keyword try and must be enclosed by braces. If an exception is thrown, the following sequence of steps is taken:

The program searches for a matching handler
If a handler is found, the stack is unwound to that point
Program control is transferred to the handler

If no handler is found, the program will call the terminate function.

If no exceptions are thrown within the try block, the program executes in the normal fashion (exception handlers are ignored).

The throw expression initializes a temporary object of the type T (to match the type of argument arg) used in a statement of the form

throw(T arg);

Since additional copies of the object can be generated as required by the compiler, you will probably want to provide a copy constructor for your exception object if a copy constructor is generally required for that object type.

Examples of throw Statements
Some examples of throw statements are given below:

The following example statement specifies that throw_object is to be passed to a handler.

throw throw_object;

The following example specifies that the last exception thrown is to be thrown again. An exception must currently exist. Otherwise, terminate is called.

throw;

When you declare a function, you can specify the types of exceptions that the function is allowed to throw.

The following example specifies a list of exceptions that my_func1 can throw. No other exceptions will propagate out of my_func1. If an exception other than A or B is generated within my_func1, it is considered to be an unexpected exception and program control will be transferred to the unexpected() function.

void my_func1() throw (A, B)
{
 // Body of function.
}

A function with no exception specification can throw any type of exception.

The example shown below specifies that my_func2 will throw no exceptions. If any function in the body of my_func2 throws an exception, such an exception will not exist beyond the body of my_func2.

void my_func2() throw ()
{
 // Body of this function.
}

The terminate Function
The terminate function can be called by the unexpected function or by the program when a handler for an exception cannot be found. The default action by terminate is to call abort which causes immediate program termination.

You can modify the default action of the terminate function by defining a function to be called. Such a function (called a terminate_function) will be called by terminate if it is registered by calling the set_terminate function.

You should see your compiler documentation for a complete description and usage instructions for the set_terminate function.

The unexpected Function
The unexpected function is called when a function throws an exception not listed in its exception specification. The program calls unexpected, which by default calls any user-defined function previously registered by calling the set_unexpected function. If no function is registered, the unexpected function calls terminate.

You should see your compiler documentation for a complete description and usage instructions for the set_unexpected function.

Handling an Exception
The exception handler is indicated by the catch keyword, and must appear immediately after the try-block (or immediately after another catch). Each handler will only process an exception that matches (or can be converted to) the type specified in its argument list.

If the program fails to provide an exception handler for a thrown exception, the program will call the terminate function.

Exception handlers are evaluated in the order that they are encountered. An exception is caught when its type matches the type in the catch statement. Once a type match is made, program control is transferred to the handler. The stack will have been modified upon entering the handler to accommodate the fact that control does not return to the try block.

After the handler has executed, the program can continue at the point after the last handler for the current try-block. No other handlers are evaluated for the current exception.

Exception Specifications
As mentioned earlier, the C++ language makes it possible for you to specify any exceptions that a function can throw. See your compiler documentation for more information on how to use this feature.

If an exception is thrown which is not listed in the exception specification, the unexpected() function will be called. You can modify the behavior of the unexpected() function using the set_unexpected() function.

Constructors and Destructors in Exception Handling
When an exception is thrown, the copy constructor is called to initialize a temporary object at the throw point. Other copies may be generated by the program as well. If you have not provided a specific copy constructor, the default copy constructor is used to produce a bitwise copy of the object.

When program flow is interrupted by an exception, destructors are called for all automatic objects which were constructed since the beginning of the try-block was entered.

If the exception was thrown during construction of some object, destructors will be called only for those objects which were fully constructed. For example, if an array of objects was under construction when an exception was thrown, destructors will be called only for the array elements which were already fully constructed.

Unhandled Exceptions
If an exception is thrown and no matching handler is found, the program will call the terminate() function described earlier. The behavior of the terminate() function can be modified by using the set_terminate() function.

Throwing Exception Objects
The following program is designed to illustrate a number of features of the C++ exception-handling mechanism when throwing user-defined objects rather than simple built-in types.

//File Excep02.cpp, Copyright 1996, R.G.Baldwin
//This program provides a complex illustration of the exception
// handling mechanism using exception objects with information
// stored in the dynamic memory pointed to by the data member of
// the exception object. Nested functions in the try block are
// also implemented with the innermost function throwing an
// exception object.

#include <new.h>
#include <stdlib.h>
#include <stdio.h>

//The following class is used to instantiate "ordinary" objects
// both within and outside the try block. These are not
// exception objects.
class MyClass{
 int MyData;
public:
 MyClass(int InData) {
 printf("Constructing obj of MyClass, setting MyData to %d\n",
 InData);
 MyData = InData;}

 ~MyClass() {
 printf("Destructing obj of MyClass with MyData value of %d\n",
 MyData);}
};//end class definition

//The following class is used to instantiate an exception object
// containing a data member which is a pointer to dynamic memory.
// Information is stored in the dynamic memory pointed to by the
// data member of the object.
class ExceptionClass{
 int * DataPtr;
public:
 ExceptionClass(int x){ //ordinary parameterized constructor
 //Get a pointer to dynamic memory for storage of incoming data.
 DataPtr = new int; //set_new_handler(0) has been called.
 if(!DataPtr){printf("Allocation error"); exit(1);}
 *DataPtr = x; //store incoming parameter into dynamic memory
 printf("In ordinary constructor for exception object with "
 "data\n value of %d and new pointer address of %p\n",
 *DataPtr,DataPtr);
 }//end ordinary constructor

 ExceptionClass(const ExceptionClass &Obj){ //copy constructor
 //Get pointer to dynamic memory for storage of copy of object.
 DataPtr = new int; //set_new_handler(0) has been called.
 if(!DataPtr){printf("Allocation error"); exit(1);}
 *DataPtr = *(Obj.DataPtr); //copy incoming data into new mem
 printf("In copy constructor for exception object with\n"
 " new pointer address of %p\n",DataPtr);
 }//end copy constuctor

 ~ExceptionClass(){ //destructor
 printf("In destructor for exception object. Data value is %d\n",
 *DataPtr);
 printf(" Deleting address %p\n",DataPtr);
 delete DataPtr;
 }

 int GetData() {
 printf("In getdata, returning data from address %p\n",DataPtr);
 return *DataPtr;}
};//end class definition

//The following three ordinary functions are nested. The innermost
// function throws an exception object, thus causing control to
// transfer directly to the matching catch block without returning
// back through the nested thread.
void FunctionC()
{ //innermost nested function
 printf("This is the function which throws the exception "
 "object.\n");
 printf("Throw an exception object as though a problem was "
 "detected\n");
 throw ExceptionClass(8);
 printf("Ending FunctionC\n"); //This statement will never execute
}//end FunctionC

void FunctionB()
{
 printf("Call the function which throws the exception.\n");
 FunctionC();
 printf("Ending FunctionB\n");//This statement will never execute
}//end FunctionB

void FunctionA()
{
 printf("Call the function which leads to an exception.\n");
 FunctionB();
 printf("Ending FunctionA\n");//This statement will never execute
}//end FunctionA

main()
{
 set_new_handler(0); //get null pointer on failure to allocate
 printf("Instantiate object outside try block\n");
 MyClass MyObj1(90); //instantiate normal obj outside try block
 try //block used to monitor for an exception
 {
 printf("Instantiate object inside try block\n");
 MyClass MyObj(99); //instantiate normal obj inside try block
 printf("Call a function which eventually leads to an "
 "exception.\n");
 FunctionA();
 printf("Ending try block\n"); //statement will not execute
 }

 //Statement to "catch" an exception object
 catch(ExceptionClass MyObj)
 {
 printf("Entering catch block. Get data value from thrown "
 "object.\n");
 int Temp = MyObj.GetData();
 printf("Data value in thrown object is %d\n", Temp);
 }
 printf("This termination statement follows the catch block.\n");
 return 0;
}//end program

The output from running this program follows. The output will be presented once in consolidated format, and will be presented again broken into parts which attempt to explain how the exception-handling mechanism works.

Instantiate object outside try block
Constructing obj of MyClass, setting MyData to 90
Instantiate object inside try block
Constructing obj of MyClass, setting MyData to 99
Call a function which eventually leads to an exception.
Call the function which leads to an exception.
Call the function which throws the exception.
This is the function which throws the exception object.
Throw an exception object as though a problem was detected
In ordinary constructor for exception object with data
 value of 8 and new pointer address of 1E10:0004
In copy constructor for exception object with
 new pointer address of 1E16:0004
In destructor for exception object. Data value is 8
 Deleting address 1E10:0004
Destructing obj of MyClass with MyData value of 99
In copy constructor for exception object with
 new pointer address of 1E10:0004
Entering catch block. Get data value from thrown object.
In getdata, returning data from address 1E10:0004
Data value in thrown object is 8
In destructor for exception object. Data value is 8
 Deleting address 1E16:0004
In destructor for exception object. Data value is 8
 Deleting address 1E10:0004
This termination statement follows the catch block.
Destructing obj of MyClass with MyData value of 90

Two objects of an “ordinary” user-defined type are instantiated. The first is instantiated outside the try block in which the exception occurs. We will see that it persists until the program terminates.

Instantiate object outside try block
Constructing obj of MyClass, setting MyData to 90

The second “ordinary” object is instantiated inside the try block in which the exception occurs. We will see that it is destroyed after the exception is thrown but before the code in the catch block begins execution. It is a feature of the exception-handling mechanism that destructors are called for all automatic objects that were fully constructed in a try block before an exception is thrown. This is sometimes referred to as stack unwinding.

Instantiate object inside try block
Constructing obj of MyClass, setting MyData to 99

Another feature of the exception-handling mechanism is that exceptions are thrown within a try block or by any function called directly or indirectly from the try block. In the case of this example, the exception is actually thrown by a function which is several levels down in a set of nested functions.

Call a function which eventually leads to an exception.
Call the function which leads to an exception.
Call the function which throws the exception.
This is the function which throws the exception object.
Throw an exception object as though a problem was detected

According to C++ How to Program by Deitel and Deitel:

“As part of throwing an exception, a temporary copy of the throw operand is created and initialized. This temporary object then initializes the parameter in the exception handler. The temporary object is destroyed when the exception handler completes execution and exits.”

This example indicates that an additional level of temporary instantiation occurs than might be concluded from the above quotation. First the ordinary constructor for the exception object executes producing the following output (note the memory address where the data is stored).

In ordinary constructor for exception object with data
 value of 8 and new pointer address of 1E10:0004

Immediately following this, the copy constructor executes producing the following output. The new copy of the data is stored in the address pointed to by the data member in the new copy of the object. Again, note the address where the data is stored.

In copy constructor for exception object with
 new pointer address of 1E16:0004

After the copy is made by the copy constructor, the original object is destroyed as indicated in the following output which identifies the address of the original object.

In destructor for exception object. Data value is 8
 Deleting address 1E10:0004

We know that the code in the catch block has not yet begun execution, because the next action is to destroy the “ordinary” object which was fully instantiated inside the try block before the exception was thrown. This is indicated by the following output.

Destructing obj of MyClass with MyData value of 99

Next, we see another invocation of the copy constructor to produce the copy of the object which will actually be used by the code in the catch block. Note that this copy of the object (in this particular run) re-uses the memory originally used by the original object which was previously destroyed.

In copy constructor for exception object with
 new pointer address of 1E10:0004

Next we see some output produced from the first executable statement in the catch block.

Entering catch block. Get data value from thrown object.

Then the code in the catch block calls the getdata method of the “working” exception object which announces that it has been invoked and identifies itself by displaying the address stored in the pointer member of the object. Note that this is the object which was created by the most recent invocation of the copy constructor. Note also that the object which was passed as an argument to the copy constructor has not yet been destroyed.

In getdata, returning data from address 1E10:0004

Back in the catch block, the data value returned by the getdata method is displayed.

Data value in thrown object is 8

When the catch block terminates, there are still two objects in existence, and they are both destroyed as shown in the following output.

In destructor for exception object. Data value is 8
 Deleting address 1E16:0004
In destructor for exception object. Data value is 8
 Deleting address 1E10:0004

Finally, we see the program termination statement which follows the catch block, after which the remaining “ordinary” object is destroyed as shown below.

This termination statement follows the catch block.
Destructing obj of MyClass with MyData value of 90

Catching An Exception by Reference
An interesting variation on the previous program results from writing the catch block so as to catch the exception object by reference as shown highlighted using boldface in the following program.

//File Excep03.cpp, Copyright 1996, R.G.Baldwin
//This program is identical to the previous program named
// Excep02.cpp // with the exception that the catch block in this
// program receives // the thrown object by reference.

//This program provides a complex illustration of the exception
// handling mechanism using exception objects with information
// stored // in the dynamic memory pointed to by the data member
// of the // exception object. Nested functions in the try block
// are also // implemented with the innermost function throwing
// an exception object.

#include <new.h>
#include <stdlib.h>
#include <stdio.h>

//The following class is used to instantiate "ordinary" objects
// both within and outside the try block. These are not
// exception objects.
class MyClass{
 int MyData;
public:
 MyClass(int InData) {
 printf("Constructing obj of MyClass, setting MyData to %d\n",
 InData);
 MyData = InData;}

 ~MyClass() {
 printf("Destructing obj of MyClass with MyData value of %d\n",
 MyData);}
};//end class definition

//The following class is used to instantiate an exception object
// containing a data member which is a pointer to dynamic memory.
// Information is stored in the dynamic memory pointed to by the
// data member of the object.
class ExceptionClass{
 int * DataPtr;
public:
 ExceptionClass(int x){ //ordinary parameterized constructor
 //Get a pointer to dynamic mem for storage of incoming data.
 DataPtr = new int; //Note that set_new_handler(0) was called.
 if(!DataPtr){printf("Allocation error"); exit(1);}
 *DataPtr = x; //store incoming parameter into dynamic memory
 printf("In ordinary constructor for exception object with "
 "data\n value of %d and new pointer address of %p\n",
 *DataPtr,DataPtr);
 }//end ordinary constructor

 ExceptionClass(const ExceptionClass &Obj){ //copy constructor
 //Get a pointer to dynamic mem for storage of copy of object.
 DataPtr = new int; //Note that set_new_handler(0) was called.
 if(!DataPtr){printf("Allocation error"); exit(1);}
 *DataPtr = *(Obj.DataPtr); //copy incoming data into new mem
 printf("In copy constructor for exception object with\n"
 " new pointer address of %p\n",DataPtr);
 }//end copy constuctor

 ~ExceptionClass(){ //destructor
 printf("In destructor for exception object. Data value "
 "is %d\n",*DataPtr);
 printf(" Deleting address %p\n",DataPtr);
 delete DataPtr;
 }

 int GetData() {
 printf("In getdata, returning data from address "
 "%p\n",DataPtr);
 return *DataPtr;}
};//end class definition

//The following three ordinary functions are nested.The innermost
// function throws an exception object, thus causing control to
// transfer directly to the matching catch block without
// returning back through the nested thread.
void FunctionC()
{ //innermost nested function
 printf("This is the function which throws the exception "
 "object.\n");
 printf("Throw an exception object as though a problem was "
 "detected\n");
 throw ExceptionClass(8);
 printf("Ending FunctionC\n"); //This statement will never execute
}//end FunctionC

void FunctionB()
{
 printf("Call the function which throws the exception.\n");
 FunctionC();
 printf("Ending FunctionB\n");//This statement will never execute
}//end FunctionB

void FunctionA()
{
 printf("Call the function which leads to an exception.\n");
 FunctionB();
 printf("Ending FunctionA\n");//This statement will never execute
}//end FunctionA

main()
{
 set_new_handler(0); //get null pointer on failure to allocate
 printf("Instantiate object outside try block\n");
 MyClass MyObj1(90); //instantiate a normal initialized obj
 // outside try block
 try //block used to monitor for an exception
 {
 printf("Instantiate object inside try block\n");
 MyClass MyObj(99); //instantiate a normal initialized obj
 // inside try block
 printf("Call a function which eventually leads to an "
 "exception.\n");
 FunctionA();
 printf("Ending try block\n"); //Statement will never execute
 }

 //Statement to "catch" an exception object. Note that it
 // receives a reference to the thrown object rather than
 // receiving a copy of the object.
 catch(ExceptionClass &MyObj)
 {
 printf("Entering catch block. Get data value from thrown "
 "object.\n");
 int Temp = MyObj.GetData();
 printf("Data value in thrown object is %d\n", Temp);
 }
 printf("This termination statement follows the catch block.\n");
 return 0;
}//end program

The output from running this program is shown below. That portion of the output shown in italics is essentially the same as with the previous program which caught the exception object by value.

Instantiate object outside try block
Constructing obj of MyClass, setting MyData to 90
Instantiate object inside try block
Constructing obj of MyClass, setting MyData to 99
Call a function which eventually leads to an exception.
Call the function which leads to an exception.
Call the function which throws the exception.
This is the function which throws the exception object.
Throw an exception object as though a problem was detected
In ordinary constructor for exception object with data
 value of 8 and new pointer address of 1E12:0004
In copy constructor for exception object with
 new pointer address of 1E18:0004
In destructor for exception object. Data value is 8
 Deleting address 1E12:0004
Destructing obj of MyClass with MyData value of 99
Entering catch block. Get data value from thrown object.
In getdata, returning data from address 1E18:0004
Data value in thrown object is 8
In destructor for exception object. Data value is 8
 Deleting address 1E18:0004
This termination statement follows the catch block.
Destructing obj of MyClass with MyData value of 90

Even though this version of the program passes the exception object by reference, there is still a call to the copy constructor and two different copies of the object exist at different time in the life of the program (three copies came into existence in the previous version of the program).

Note that the thrown object which was instantiated by the copy constructor in the deepest level of the nested functions (pointer address value of 1E18:0004) was not destroyed until the catch block terminated.

According to teach yourself C++ by Al Stevens,

“The automatic ... object in the ... function is allowed to go out of scope. The temporary ... object is not destroyed until the catch handler completes processing.”

Note also that the object instantiated by the ordinary constructor in the same deepest level of the nested functions (pointer address value of 1E12:0004) was reproduced by the copy constructor immediately and then destroyed.

The three previous examples touch on both ends of the complexity spectrum. The first example was extremely simple, while the other two were fairly complex. The next few examples will fall in between these two extremes and illustrate some of the other aspects of the exception-handling mechanism.

Recall that the exception can be thrown either from within the try block, or from functions called either directly or indirectly from within the try block. To maintain simplicity, the following examples will throw exceptions from within the try block and avoid the use of nested functions.

Throwing an Exception by Type Only with Multiple catch Blocks
Sometimes all the necessary information about an exceptional condition can be passed to the catch block based simply on the type of exception thrown. The following example program can throw two types of exceptions, TypeA and TypeB, with the choice made on the basis of user input. Catch blocks are provided to catch exceptions of either type.

//File Excep04.cpp, Copyright 1996, R.G.Baldwin
//Illustrates throwing an exception by type. This program
// uses operator input to determine which of two types of
// exceptions to throw. Catch blocks are provided for both
// types.

#include <stdlib.h>
#include <iostream.h>

//The following class is used to instantiate an exception object
// of type TypeA.
class TypeA{
public:
 TypeA(){cout << "In Constructor for TypeA object.\n";}

 TypeA(const TypeA & obj){//A do-nothing copy constructor
 cout << "In Copy Constructor for TypeA object.\n";}

 ~TypeA(){ //destructor
 cout << "In destructor for TypeA object.\n";}
};//end class definition

//The following class is used to instantiate an exception object
// of type Typeb.
class TypeB{
public:
 TypeB(){cout << "In Constructor for TypeB object.\n";}

 TypeB(const TypeB & obj){//A do-nothing copy constructor
 cout << "In Copy Constructor for TypeB object.\n";}

 ~TypeB(){ //destructor
 cout << "In destructor for TypeB object.\n";}
};//end class definition

main()
{
 cout << "Execute code outside try block.\n";

 try //block used to monitor for an exception
 {
 cout << "Entering try block.\n";
 cout << "PLEASE ENTER A POSITIVE OR NEGATIVE INTEGER: ";
 int Input; //declare an input variable
 cin >> Input;
 cout << "Throw an exception object by type.\n";

 if(Input >= 0) throw TypeA();
 else throw TypeB();

 cout << "Ending try block\n"; //Statement will never execute
 }

 //Note the use of multiple catch blocks.
 catch(TypeA)
 {cout << "Catch block for TypeA object.\n";}

 catch(TypeB)
 {cout << "Catch block for TypeB object.\n";}

 cout << "This termination statement follows the catch block.\n";

 /*Note that the following statement which uses the variable
 Input which was declared inside the aborted try block
 will not compile. (Error: Undefined symbol 'Input')*/
//cout << "Your input was " << Input << endl;

 cout << "Execute a statement following catch block.\n";
 return 0;
}//end program

The output from this program for a user input of 1 is shown below. The output for a user input of -1 is the same except that each occurrence of TypeA is replaced by TypeB.

Execute code outside try block.
Entering try block.
PLEASE ENTER A POSITIVE OR NEGATIVE INTEGER: 1
Throw an exception object by type.
In Constructor for TypeA object.
In Copy Constructor for TypeA object.
In destructor for TypeA object.
In Copy Constructor for TypeA object.
Catch block for TypeA object.
In destructor for TypeA object.
In destructor for TypeA object.
This termination statement follows the catch block.
Execute a statement following catch block.

Note that even in this simple example where no information is stored inside the object, the ordinary constructor is called once and the copy constructor is called twice. All three objects which are instantiated by the constructor calls are later destroyed. The object instantiated by the ordinary constructor is destroyed before the execution of code in the catch block.

Another interesting aspect of this program is illustrated in the following comments.

 /*Note that the following statement which uses the variable
 Input which was declared inside the aborted try block
 will not compile. (Undefined symbol 'Input')*/
//cout << "Your input was " << Input << endl;

This is because all automatic variables and objects which are fully constructed within the try block are destroyed before control is transferred to the catch block.

Throwing an Exception with a Parameter
Sometimes it is useful to employ a single exception type to identify a whole family of exceptions, and then to unravel the specifics of the exception in the catch block. This approach is illustrated in the following example program.

//File Excep05.cpp, Copyright 1996, R.G.Baldwin
//Illustrates using an exception of a single type to identify
// a family of exceptional conditions, and encoding the specific
// exceptional condition in the data member of the exception
// object. This program uses the default copy constructor. This
// program also executes methods of the exception object in the
// catch block.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>

//The following class is used to instantiate an exception object
// of type TypeA with the specific exceptional condition being
// encoded as a string in the data member of the object.
class TypeA{
 char Str[81];
public:
 TypeA(char * InStr){ //ordinary constructor
 strcpy(Str,InStr);}//end ordinary constructor

/* Note that the following copy constructor is disabled. Even
 so, three exception objects are instantiated and then
 destroyed.
 TypeA(const TypeA & obj){//copy constructor
 strcpy(Str,obj.Str);}//end copy constructor
*/

 ~TypeA(){ //destructor
 cout << "In destructor with data value of " << Str << endl;}

 char* GetData(){return Str;}//return pointer to the data member
};//end class definition

main()
{
 cout << "Execute code outside try block.\n";

 try //block used to monitor for an exception
 {
 cout << "Entering try block.\n";
 cout << "ENTER AN INTEGER, POSITIVE, NEGATIVE, OR ZERO: ";
 int Input; //declare an input variable
 cin >> Input;
 cout << "Throw an exception object with encoded data.\n";

 if(Input == 0) throw TypeA("zero");
 if(Input > 0) throw TypeA("positive");
 else throw TypeA("negative");

 cout << "Ending try block\n"; //Statement will never execute
 }

 catch(TypeA Obj)
 {
 cout << "In catch block with ";
 if(!strcmp("zero",Obj.GetData())) cout
 << "Error type zero\n";
 if(!strcmp("positive",Obj.GetData())) cout
 << "Error type positive\n";
 if(!strcmp("negative",Obj.GetData())) cout
 << "Error type negative\n";
 }//end catch block

 cout << "This termination statement follows the catch block.\n";
 return 0;
}//end program

The output from this program with an operator input of -5 follows. For an operator input of 0, the output is the same except that each occurrence of negative is replaced by zero. Likewise an operator input which is a positive integer produces an output announcing that the value of the data member of the object is positive.

Execute code outside try block.
Entering try block.
ENTER AN INTEGER, POSITIVE, NEGATIVE, OR ZERO: -5
Throw an exception object with encoded data.
In destructor with data value of negative
In catch block with Error type negative
In destructor with data value of negative
In destructor with data value of negative
This termination statement follows the catch block.

It is interesting to note that although the programmer-defined copy constructor was disabled in this program, three objects were still instantiated. One was destroyed before the code in the catch block was executed, and the other two were destroyed at the end of the catch block. Thus, the default copy constructor which simply creates a bitwise copy was automatically invoked.

Exception Specifications and Unexpected Exceptions
it is possible to specify the exceptions that a function is allowed to throw, and if the function attempts to throw any other exceptions, a call to the unexpected function is automatically made. By default, the unexpected function calls the terminate function. However, the set_unexpected function can be used to modify the system behavior in the event of an unexpected exception.

The following program contains a function named GoThrow() which is allowed to throw only exceptions of type int. (See the function header.) When it attempts to throw an exception of type TypeA, the program terminates with an Abnormal program termination message. Note, however, that the termination does not take place until after one object is destroyed, indicating that two objects have been instantiated, one by the ordinary constructor, and one by the copy constructor (based on the behavior of earlier examples).

//File Excep06.cpp, Copyright 1996, R.G.Baldwin
//Illustrates execption specifications and unexpected exceptions.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>

//The following class is used to instantiate an exception object
// of type TypeA with the specific exceptional condition being
// encoded as a string in the data member of the object.
class TypeA{
 char Str[81];
public:
 TypeA(char * InStr){ //ordinary constructor
 strcpy(Str,InStr);}//end ordinary constructor

/* Note that the following copy constructor is disabled. Even
 so, three exception objects are instantiated and then
 destroyed.
 TypeA(const TypeA & obj){//copy constructor
 strcpy(Str,obj.Str);}//end copy constructor
*/

 ~TypeA(){ //destructor
 cout << "In destructor with data value of " << Str << endl;}

 char* GetData(){return Str;}//return pointer to the data member
};//end class definition

//Function used to throw an exception, but limited to the
// types of exceptions shown in the header.
void GoThrow() throw(int)
{
 cout << "ENTER AN INTEGER, POSITIVE, NEGATIVE, OR ZERO: ";
 int Input; //declare an input variable
 cin >> Input;
 cout << "Throw an exception object with encoded data.\n";

 if(Input == 0) throw TypeA("zero");
 if(Input > 0) throw TypeA("positive");
 else throw TypeA("negative");
}//end function GoThrow

main()
{
 cout << "Execute code outside try block.\n";

 try //block used to monitor for an exception
 {
 cout << "Entering try block. Call GoThrow function.\n";
 GoThrow();
 cout << "Ending try block\n"; //Statement will never execute
 }

 catch(TypeA Obj)
 {
 cout << "In catch block with ";
 if(!strcmp("zero",Obj.GetData())) cout
 << "Error type zero\n";
 if(!strcmp("positive",Obj.GetData())) cout
 << "Error type positive\n";
 if(!strcmp("negative",Obj.GetData())) cout
 << "Error type negative\n";
 }//end catch block

 cout << "This termination statement follows the catch block.\n";
 return 0;
}//end program

The output from this program follows. Note that the program does not modify the behavior of the unexpected function, allowing it to call terminate() by default. The terminate() function then calls abort() by default resulting in Abnormal program termination.

Execute code outside try block.
Entering try block. Call GoThrow function.
ENTER AN INTEGER, POSITIVE, NEGATIVE, OR ZERO: 0
Throw an exception object with encoded data.
In destructor with data value of zero
Abnormal program termination

Modifying Behavior of the unexpected Function
The following program is similar to the previous program in that the function named GoThrow() throws an exception of a type which was not included in its exception specification list. However, in this program, a new function named HandleUnexpected() is defined to provide an orderly shutdown of the program rather than allowing Abnormal program termination.

The name of the new function is passed as a parameter to the system function named set_unexpected(). This causes the unexpected() function which is called when GoThrow() throws an unexpected exception type to call the new HandleUnexpected() instead of the default function named terminate().

//File Excep07.cpp, Copyright 1996, R.G.Baldwin
//Illustrates execption specifications, unexpected exceptions,
// and modifying behavior of unexpected() function through use
// of the set_unexpected() function.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <except.h>

//The following class is used to instantiate an exception object
// of type TypeA with the specific exceptional condition being
// encoded as a string in the data member of the object.
class TypeA{
 char Str[81];
public:
 TypeA(char * InStr){ //ordinary constructor
 strcpy(Str,InStr);}//end ordinary constructor

 TypeA(const TypeA & obj){//copy constructor
 strcpy(Str,obj.Str);}//end copy constructor

 ~TypeA(){ //destructor
 cout << "In destructor with data value of " << Str << endl;}

 char* GetData(){return Str;}//return pointer to the data member
};//end class definition

//Function used to throw an exception, but limited to the
// types of exceptions shown in the header.
void GoThrow() throw(int)
{
 cout << "ENTER AN INTEGER, POSITIVE, NEGATIVE, OR ZERO: ";
 int Input; //declare an input variable
 cin >> Input;
 cout << "Throw an exception object with encoded data.\n";

 if(Input == 0) throw TypeA("zero");
 if(Input > 0) throw TypeA("positive");
 else throw TypeA("negative");
}//end function GoThrow

//Function to be called from unexpected() function.
void HandleUnexpected()
{
 cout << "An unexpected exception type was thrown.\n";
 cout << "Terminating program.\n";
 exit(1);
}//end HandleUnexpected()

main()
{
 //Prepare to handle unexpected exception types
 set_unexpected(HandleUnexpected);

 cout << "Execute code outside try block.\n";

 try //block used to monitor for an exception
 {
 cout << "Entering try block. Call GoThrow function.\n";
 GoThrow();
 cout << "Ending try block\n"; //Statement will never execute
 }

 catch(TypeA Obj)
 {
 cout << "In catch block with ";
 if(!strcmp("zero",Obj.GetData())) cout
 << "Error type zero\n";
 if(!strcmp("positive",Obj.GetData())) cout
 << "Error type positive\n";
 if(!strcmp("negative",Obj.GetData())) cout
 << "Error type negative\n";
 }//end catch block

 cout << "This termination statement follows the catch block.\n";
 return 0;
}//end program

The output from this program is shown below.

Execute code outside try block.
Entering try block. Call GoThrow function.
ENTER AN INTEGER, POSITIVE, NEGATIVE, OR ZERO: 0
Throw an exception object with encoded data.
In destructor with data value of zero
An unexpected exception type was thrown.
Terminating program.

Uncaught Exceptions and the terminate Function
If an exception is thrown for which a matching catch block has not been provided, the terminate() function will be called by default. By default, the terminate() function calls the abort() function which results in Abnormal program termination.

The behavior of the terminate() function can be modified by using the system function named set_terminate() to register a programmer-defined function which will be called instead of abort(). This is illustrated in the following example program which throws an exception type for which there is no matching catch block. However, rather than to allow Abnormal program termination, the set_terminate() function is used to register HandleTerminate() as the function that should be called in place of abort().

The HandleTerminate()function provides diagnostic information and then terminates the program.

//File Excep08.cpp, Copyright 1996, R.G.Baldwin
//Illustrates uncaught exceptions, and modifying behavior of
// terminate() function through use of the set_terminate()
// function.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <except.h>

//The following class is used to instantiate an exception object
// of type TypeA with the specific exceptional condition being
// encoded as a string in the data member of the object.
class TypeA{
 char Str[81];
public:
 TypeA(char * InStr){ //ordinary constructor
 cout << "In ordinary constructor for TypeA.\n";
 strcpy(Str,InStr);}//end ordinary constructor

 TypeA(const TypeA & obj){//copy constructor
 cout << "In copy constructor for TypeA.\n";
 strcpy(Str,obj.Str);}//end copy constructor

 ~TypeA(){ //destructor
 cout << "In destructor for TypeA with data value of "
 << Str << endl;}

 char* GetData(){return Str;}//return pointer to the data member
};//end class definition

//Function to be called from terminate() function.
void HandleTerminate()
{
 cout << "In HandleTerminate() function.\n";
 cout << "An exception was thrown with no matching catch block.\n";
 cout << "Terminating program.\n";
 exit(1);
}//end HandleTerminate()

main()
{
 //Prepare to handle uncaught exception types
 set_terminate(HandleTerminate);

 cout << "Execute code outside try block.\n";

 try //block used to monitor for an exception
 {
 cout << "Entering try block. Throw an exception.\n";
 throw TypeA("zero"); //throw type TypeA exception
 cout << "Ending try block\n"; //Statement will never execute
 }

 //Note that the following char* catch block does not match
 // the TypeA exception thrown above. Since there is no catch
 // block which matches, the terminate() function will be
 // called. The set_terminate() function was used above to
 // cause terminate() to call HandleTerminate() instead of the
 // default abort(). When abort() is called, it produces an
 // Abnormal program termination.
 catch(char* Obj)
 {
 cout << "In catch block with ";
 if(!strcmp("zero",Obj)) cout
 << "Error type zero\n";
 if(!strcmp("positive",Obj)) cout
 << "Error type positive\n";
 if(!strcmp("negative",Obj)) cout
 << "Error type negative\n";
 }//end catch block

 cout << "This termination statement follows the catch block.\n";
 return 0;
}//end program

The output from this program, including the specific output produced by HandleTerminate(), is shown below. Note that as before, two objects are instantiated, one by the ordinary constructor and one by the copy constructor. One of them is destroyed before the terminate() function is called. The destructor for the second of the two objects is not called.

Execute code outside try block.
Entering try block. Throw an exception.
In ordinary constructor for TypeA.
In copy constructor for TypeA.
In destructor for TypeA with data value of zero
In HandleTerminate() function.
An exception was thrown with no matching catch block.
Terminating program.

Catch-All Exception Handlers
A catch block with an ellipses (...) for an argument list catches all exceptions. Normally, however, it doesn’t know what to do with them. (The catch-all exception handler should normally be last handler in a series of exception handlers. Otherwise, it will catch exceptions before other handlers specifically designed to catch those exceptions have an opportunity to do so.)

The following sample program is similar to the previous program where there is no matching exception handler for the type of exception that is thrown. However, in this case, a catch-all exception handler is also provided which does catch and process the exception. Because the catch-all handler is provided, the special code to deal with the terminate() function was removed from the program.

//File Excep09.cpp, Copyright 1996, R.G.Baldwin
//Illustrates use of catch-all (...) exception handler.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>

//The following class is used to instantiate an exception object
// of type TypeA with the specific exceptional condition being
// encoded as a string in the data member of the object.
class TypeA{
 char Str[81];
public:
 TypeA(char * InStr){ //ordinary constructor
 cout << "In ordinary constructor for TypeA.\n";
 strcpy(Str,InStr);}//end ordinary constructor

 TypeA(const TypeA & obj){//copy constructor
 cout << "In copy constructor for TypeA.\n";
 strcpy(Str,obj.Str);}//end copy constructor

 ~TypeA(){ //destructor
 cout << "In destructor for TypeA with data value of "
 << Str << endl;}

 char* GetData(){return Str;}//return pointer to the data member
};//end class definition

main()
{
 cout << "Execute code outside try block.\n";

 try //block used to monitor for an exception
 {
 cout << "Entering try block. Throw an exception.\n";
 throw TypeA("zero"); //throw type TypeA exception
 cout << "Ending try block\n"; //Statement will never execute
 }

 //Note that the following char* catch block does not match
 // the TypeA exception thrown above. However, a catch-all
 // exception handler is provided to catch exceptions which
 // do not match the exception handlers which are provided.
 catch(char* Obj)
 {
 cout << "In catch block with ";
 if(!strcmp("zero",Obj)) cout
 << "Error type zero\n";
 if(!strcmp("positive",Obj)) cout
 << "Error type positive\n";
 if(!strcmp("negative",Obj)) cout
 << "Error type negative\n";
 }//end catch block

 catch(...) //catch-all exception handler
 {
 cout << "Caught an exception with the catch-all exception\n"
 " handler but don't know what to do with it.\n";
 }//end catch block

 cout << "This termination statement follows the catch block.\n";
 return 0;
}//end program

The output from this program follows:

Execute code outside try block.
Entering try block. Throw an exception.
In ordinary constructor for TypeA.
In copy constructor for TypeA.
In destructor for TypeA with data value of zero
Caught an exception with the catch-all exception
 handler but don't know what to do with it.
In destructor for TypeA with data value of zero
This termination statement follows the catch block.

Nested try Blocks, Throwing Exceptions from Exception Handlers
Note that try/catch blocks can be nested. If an exception handler inside a nested try/catch block throws an exception, it can be caught by an exception handler in the next-outer try/catch block. An especially interesting case is where the exception of a given type is re-thrown by using the keyword throw without a type specification. An exception must be in effect for this to work.

This is illustrated in the following program. Note that when the exception is re-thrown, new copies of the exception object are created and the existing copies are destroyed. The new copies are then destroyed after the exception object is processed in the outer exception handler.

//File Excep10.cpp, Copyright 1996, R.G.Baldwin
//Illustrates nested try/catch blocks and rethrowing an
// exception from within an exception handler.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>

//The following class is used to instantiate an exception object
// of type TypeA with the specific exceptional condition being
// encoded as a string in the data member of the object.
class TypeA{
 char Str[81];
public:
 TypeA(char * InStr){ //ordinary constructor
 cout << "In ordinary constructor for TypeA.\n";
 strcpy(Str,InStr);}//end ordinary constructor

 TypeA(const TypeA & obj){//copy constructor
 cout << "In copy constructor for TypeA.\n";
 strcpy(Str,obj.Str);}//end copy constructor

 ~TypeA(){ //destructor
 cout << "In destructor for TypeA with data value of "
 << Str << endl;}

 char* GetData(){return Str;}//return pointer to the data member
};//end class definition

main()
{
 cout << "Execute code outside outer try/catch block.\n";

 try //outer try block
 {
 cout << "Execute code outside inner try/catch block.\n";
 try //inner try block used to monitor for an exception
 {
 cout << "Entering inner try block. Throw an exception.\n";
 throw TypeA("zero"); //throw type TypeA exception
 cout << "Ending inner try block\n"; //Will never execute
 }
 catch(TypeA Obj) //exception handler for inner try block
 {
 cout << "Caught TypeA exception in inner try/catch block.\n"
 " Will re-throw it.\n";
 throw; //note that no type is specified to re-throw
 }//end catch block

 }//end outer try block

 catch(TypeA Obj) //exception handler for outer try block
 {
 cout << "In outer catch block with ";
 if(!strcmp("zero",Obj.GetData()))
 cout << "Error type zero\n";
 if(!strcmp("positive",Obj.GetData()))
 cout << "Error type positive\n";
 if(!strcmp("negative",Obj.GetData()))
 cout << "Error type negative\n";
 }//end catch block

 cout << "This termination statement follows the outer"
 " try/catch block.\n";
 return 0;
}//end program

The output from this program follows. Note the proliferation of calls to the copy constructor and the corresponding calls to the destructor.

Execute code outside outer try/catch block.
Execute code outside inner try/catch block.
Entering inner try block. Throw an exception.
In ordinary constructor for TypeA.
In copy constructor for TypeA.
In destructor for TypeA with data value of zero
In copy constructor for TypeA.
Caught TypeA exception in inner try/catch block.
 Will re-throw it.
In copy constructor for TypeA.
In destructor for TypeA with data value of zero
In destructor for TypeA with data value of zero
In copy constructor for TypeA.
In outer catch block with Error type zero
In destructor for TypeA with data value of zero
In destructor for TypeA with data value of zero
This termination statement follows the outer try/catch block.

When the new Operator Fails to Allocate Memory
The new operator is used to allocate dynamic memory. The following quotation was taken directly from the on-line help for Borland C++, version 5.0.

“If successful, new returns a pointer to the allocated memory. By default, an allocation failure (such as insufficient or fragmented heap memory) results in the predefined exception xalloc being thrown. Your program should always be prepared to catch the xalloc exception before trying to access the new object (unless you use a new-handler).”

In this section, we will discuss both approaches to dealing with the failure of the new operator to successfully allocate the requested memory.

Using set_new_handler Function
The set_new�_handler() function can be used in either of two ways. If called with a zero in the actual parameter list, it will cause the new operator to return a null pointer upon failure to allocate. This supports essentially the same error handling as is commonly used in C programs with the malloc() function.

If set_new_handler() is passed a pointer to another function in the actual parameter list, that function will be called on failure to allocate memory. This makes it possible for you to place the error-handling code in that function. That is the approach used in the following program.

To test the feature, the program goes into a loop requesting a very large block of dynamic memory during each iteration. Eventually, the memory on the heap is exhausted, causing the new operator to fail to allocate the requested memory. At that point, the special function named AllocationFailure() which was written to handle this situation is called.

//File Excep12.cpp, Copyright 1996, R.G.Baldwin
//Illustrates use of set_new_handler function to handle
// a failure to allocate memory.

#include <iostream.h>
#include <new.h>
#include <stdlib.h>

void AllocationFailure() {
 cout << "\nIn function called on failure to allocate memory.\n"
 "Can't allocate more memory.";
 exit(1);
}//end AllocationFailure()

void main ()
{
 set_new_handler(AllocationFailure);

 char *ptr = new char[100];
 cout << "\nAllocation number 1"
 << " ptr = " << (void*)ptr;
 for(int cnt = 0; cnt < 100; cnt++)
 {
 ptr = new char[64000];
 cout << "\nAllocation number "
 << cnt+2
 << " ptr = " << (void*)ptr;
 }//end for loop
}//end main

The output from this program is shown below. On one particular machine, allocation failed on the tenth attempt to allocate memory. This caused the error-handling function to be called which in turn displayed the message highlighted below.

Allocation number 1 ptr = 0x20e50004
Allocation number 2 ptr = 0x20ec0004
Allocation number 3 ptr = 0x308d0004
Allocation number 4 ptr = 0x402e0004
Allocation number 5 ptr = 0x4fcf0004
Allocation number 6 ptr = 0x5f700004
Allocation number 7 ptr = 0x6f110004
Allocation number 8 ptr = 0x7eb20004
Allocation number 9 ptr = 0x8e530004
In function called on failure to allocate memory.
Can't allocate more memory.

Using xalloc Exception Class
The xalloc class is a predefined system class which has two methods, raise and requested as defined below (Borland C++ 5.0 help system).

void raise() throw(xalloc);
Description
Calling raise causes an xalloc to be thrown. In particular, it throws *this.

size_t requested() const;
Description
Returns the number of bytes that were requested for allocation.

(As of this writing on August 28, 1996, this instructor hasn’t attempted to use the first method listed above, and has been unsuccessful in attempting to use the second method with Borland C++ 5.0 for Windows. The method named requested seems to return a value of zero regardless of the number of bytes actually requested for allocation.)

The following program illustrates catching an xalloc exception object when the new operator fails to allocate the requested memory. No attempt is made in this example program to use the methods of the exception object.

//File Excep13.cpp, Copyright 1996, R.G.Baldwin
//Illustrates catching an xalloc exception object to handle
// a failure of the new operator to allocate memory.

#include <iostream.h>
#include <new.h>
#include <stdlib.h>
#include <except.h>

void main ()
{
 char *ptr; //declare variable for memory pointer
 try //monitor for failure to allocate
 {
 for(int cnt = 0; cnt < 100; cnt++)
 {
 ptr = new char[65000];
 cout << "\nAllocation number "
 << cnt+1
 << " ptr = " << (void*)ptr;
 }//end for loop
 }//end try block

 catch (xalloc) //exception handler for failure to allocate mem
 {
 cout << "\nIn handler called on failure to allocate memory.\n"
 "Can't allocate additional memory.";
 exit(1);
 }//end catch block
}//end main

The output from this program is shown below.

Allocation number 1 ptr = 0x20f80004
Allocation number 2 ptr = 0x30d70004
Allocation number 3 ptr = 0x40b60004
Allocation number 4 ptr = 0x50950004
Allocation number 5 ptr = 0x60740004
Allocation number 6 ptr = 0x70530004
Allocation number 7 ptr = 0x80320004
Allocation number 8 ptr = 0x90110004
In handler called on failure to allocate memory.
Can't allocate additional memory.
-end-.

CIS2204, Intermediate C++ Programming and Data Structures, Lecture Notes #14S,
Exception Handling, Copyright 1996, R.G.Baldwin, Page � PAGE �1�

