Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #49, File 2003-49.DOC. Revised 9/23/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Dynamic Memory Allocation

In C programming, you use malloc() and some other similar functions to allocate memory dynamically. You release that memory by using free(). These functions are also available in C++. However, another way to allocate and free memory in C++ is to use the new and delete operators.

Before using the new operator to request the allocation of dynamic memory, you should first make a call to the function set_new_handler() with an argument of zero.

Upon receiving an allocation request, new returns a pointer of the proper type to the allocated memory area. If there is insufficient available memory to fill an allocation request and if you have made the call to set_new_handler() described above, new returns a NULL pointer.

Using new, dynamically allocated objects may be given initial values. Also, dynamically allocated arrays can be created.

The general syntax for using these operators is:

	ptr = new type;

	delete ptr;

where type is the type specifier of the object for which you want to allocate memory, and ptr is a pointer to that type.

Assuming that a constructor exists for the type, you can give a dynamically allocated object an initial value using the following form:

	ptr = new type(initial value);

(Your instructor will need to provide a brief discussion of constructors.)

Use the following form to dynamically allocate a one-dimensional array:

	ptr = new type[size];

The pointer which is returned will point to the beginning of an array of size elements of the type specified. It is not possible to initialize an array that is dynamically allocated.

Use the following form to delete a dynamically allocated array:

	delete [] ptr;

This syntax causes the compiler to call the destructor once for each element in the array. (Your instructor will need to provide a brief discussion of destructors.)

The use of the new and delete operators is illustrated in the following program. This program also uses a destructor function.

/*File NEW01.CPP

Create a class named FOLKS which contains two private data members

of type char named GOOD and BAD.

The public function named display() is used to display the two data

members.

The second public member function is a destructor which displays

the message "Object Destroyed."

The third public member function is a function named PUT() which

is used to assign values to GOOD and BAD.

Provide a main() function which uses the keyword new to

dynamically allocate a 3-element array of objects, of type FOLKS.

Confirm that the space for the array is successfully

allocated, and terminate with an error message if the space is

not successfully allocated.

Cause the values of GOOD and BAD in each of the

array elements to contain the following character values:

A B

C D

E F

Write a loop in main() which displays the contents of each of

the two data members of the three objects in the array in a format

similar to that shown above.

Use the keyword delete to return the allocated memory to the

system before the program terminates.

*/

#include<iostream.h>

class FOLKS {

 char GOOD, BAD;

public:

 void display() {cout << GOOD << " " << BAD;}

 ~FOLKS() {cout << "Object Destroyed." << '\n';}

 void PUT(char j, char k) {GOOD = j; BAD = k;}

};

main()

{

 int cnt;

 FOLKS *ptr, *ptr_save; //create two pointers to FOLKS

 ptr = new FOLKS[3]; //allocate memory for the array

 if(!ptr) { //exit on failure to successfully allocate

 cout << "Allocation error \n";

 return 1;

 }//end if

 ptr_save = ptr; //save ptr to allocated memory

 for (cnt = 0; cnt < 3; cnt++,ptr++) //put data in array

 {

 ptr->PUT('A' + cnt*2, 'A' + cnt*2 + 1);

 }//end for loop on cnt

 ptr = ptr_save; //get saved ptr

 cout << "Displaying the data in the array of objects.\n";

 for (cnt = 0; cnt < 3; cnt++) //processing loop

 {

 (ptr + cnt)->display(); //call display() for each object

 cout << '\n';

 }//end for loop on cnt

 delete [] ptr; //free the memory

 cout << "Terminating following object destruction, "

 "Dick Baldwin\n";

 return 0;

}//end main()

The output from this program follows:

Displaying the data in the array of objects.

A B

C D

E F

Object Destroyed.

Object Destroyed.

Object Destroyed.

Terminating following object destruction, Dick Baldwin

-end-

Introduction to C++ and C Programming, Lecture Notes # 49, Dynamic Memory Allocation,

Copyright 1996, R.G.Baldwin, Page � PAGE �3�

