Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #20, File 2003-20.DOC. Revised 8/29/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Logical Operators

� TOC \o "1-4" �1. Sample Program using One Form of Logical Statement	� GOTOBUTTON _Toc366920077 � PAGEREF _Toc366920077 �1��

2. Sample Program using Another Form of Logical Statement	� GOTOBUTTON _Toc366920078 � PAGEREF _Toc366920078 �2��

3. Order of Evaluation	� GOTOBUTTON _Toc366920079 � PAGEREF _Toc366920079 �3��

�

Sometimes it is useful to combine two or more relational expressions into a logical statement. For example, you might want to test for persons who are female and who have annual incomes in excess of $100,000, and who earned a grade of A in their first C++ course.

The logical operators &&, ||, and ! respectively have the meanings and, or, and not and can be used to perform logical tests among expressions.

Caution: The & operator and the | operator have a totally different meaning (but will sometimes work properly in this context, by accident). Don’t forget to use the doublets for the type of logic discussed here.

Sample Program using One Form of Logical Statement

The following program uses logical operators to count only non-whitespace characters in a sentence.

//==========Begin program logical1.cpp

// Illustrates logical operators

#include <iostream.h>

#define PERIOD '.'

#define SPACE ' '

#define NEWLINE '\n'

#define TAB '\t'

void main()

{

 char ch;

 int charcount=0;

 cout << "Type a sentence.\n";

 cin >> ch;

 while (ch != PERIOD)

 {

 if(ch != SPACE && ch != NEWLINE && ch != TAB) charcount++;

 cin >> ch;

 }//end while

 cout << "There are " << charcount << " non-whitespace characters.\n";

} //==========End program

This program checks to confirm each input character is not a space and is not a newline and is not a tab character. If it is not one of the three, then the character counter is incremented. This is accomplished using the logical "and" operator, && in the following statement:

		if(ch != SPACE && ch != NEWLINE && ch != TAB) charcount++;

With the "and" operator, every expression must be true in order for the entire expression to be true.

Sample Program using Another Form of Logical Statement

Note that most logical operations can be written in a variety of ways. The following program performs exactly like the previous one, but the logical operation is written differently.

//==========Begin program Logical2.cpp

// Illustrates logical operators using a different syntax

#include <iostream.h>

#define PERIOD '.'

#define SPACE ' '

#define NEWLINE '\n'

#define TAB '\t'

void main()

{

 char ch;

 int charcount=0;

 cout << "Type a sentence.\n";

 cin >> ch;

 while (ch != PERIOD)

 {

 if(!((ch == SPACE) || (ch == NEWLINE) || (ch == TAB)))

 charcount++;

 cin >> ch;

 }//end while

 cout << "There are " << charcount << " non-whitespace characters.\n";

} //==========End program

This formulation, using the following logical expression

		if(!((ch == SPACE) || (ch == NEWLINE) || (ch == TAB)))

			charcount++;

implements the verbal statement "If the character is not “space or newline or tab” then increment the counter."

The methodology for converting from one form to the other is often referred to as DeMorgan’s theorem.

As always, you should become familiar with the precedence rules for logical operators. Also remember that you can always modify the precedence through use of parenthesis.

Order of Evaluation

C++ guarantees that logical expressions are evaluated from left to right. Furthermore, C++ guarantees that as soon as an element is found that invalidates the expression as a whole, the evaluation stops. Sometimes you can use this second guarantee to advantage by structuring large logical expressions which must be evaluated many times so that most of the time, the evaluation will terminate quickly. This can cause a program to execute faster.

Another useful result of these rules is with a statement such as the following:

	if (number != 0 && 16/number == 2) ...

The left-to-right and early termination of this evaluation will prevent the program from attempting to divide by zero.

-end-

Introduction to C++ and C Programming, Lecture Notes # 20, Logical Operators,

Copyright 1996, R.G.Baldwin, Page � PAGE �3�

