Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #27, File 2003-27.DOC. Revised 9/9/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

References

� TOC \o "1-4" �
1. Passing Parameters by Reference	
�

GOTOBUTTON
_Toc366921256

�

PAGEREF
_Toc366921256

�
1
�
�

2. Returning References	
�

GOTOBUTTON
_Toc366921257

�

PAGEREF
_Toc366921257

�
2
�
�

2.1 Returning a Reference to a Global Variable	
�

GOTOBUTTON
_Toc366921258

�

PAGEREF
_Toc366921258

�
2
�
�

2.2 Returning a Reference to a Static Variable	
�

GOTOBUTTON
_Toc366921259

�

PAGEREF
_Toc366921259

�
3
�
�

�

C++ provides a feature called a reference. A reference is an implicit pointer that acts like another name for a variable. There are three ways that a reference can be used.

A reference can be passed to a function (where it behaves much like a VAR parameter in Pascal).

A reference can be returned by a function.

An independent reference can be created. This third capability is not frequently used by C++ programmers and is not discussed herein.

You cannot change the location to which a reference points.

Passing Parameters by Reference

To prepare a function to receive a reference parameter, follow the name of the type with an & in the formal argument list of the function prototype and the function definition.

You don’t do anything to indicate that the parameter is a reference parameter in the actual call to the function.

Once a parameter has been declared as a reference parameter, the function refers to it just as though it were a local variable. When the function modifies the value of the parameter, the value of the original parameter in the calling function is modified.

The following program is a rewrite of a program which was discussed in a previous set of lecture notes on pointers. The previous version accomplished its purpose by passing pointers to the function. This version passes the parameters to the function by reference. If you compare this version with the previous version, you will probably conclude that the syntax is less complex when parameters are passed by reference.

//==========Begin program swap_ref.cpp

//Illustrates passing parameters by reference

#include <iostream.h>

void main()

{

 void SwapMyVar(int&,int&); //function prototype

 int x=5, y=10;

 cout << "Originally, x = " << x << " and y = " << y << endl;

 SwapMyVar(x,y); //send addresses to the function

 cout << "Now x = " << x << " and y = " << y << endl;

} //=====End main()

//=====Begin function SwapMyVar()

void SwapMyVar(int& u,int& v)//definition with inplicit pointer declaration

{

 int temp;

 temp=u;

 u = v;

 v = temp;

} //=====End function SwapMyVar()

Note that the fact that a parameter is being passed as a reference is declared in the prototype and definition of the function and is not apparent in the function call itself as shown below.

SwapMyVar(x,y); //send addresses to the function

Returning References

A function can return a reference to an object. You should return a reference to an object whenever you want to use that return value on the left-hand side of an assignment operator and only when the object is guaranteed to persist after the function returns.

While this topic is beyond the scope of this course, returning a reference to an object is useful when overloading certain types of operators. It can also be used to allow a function to be used on the left side of an assignment statement.

You cannot successfully return a reference to anything that is temporary. The following examples return a reference to something that persists after the function returns.

The process of returning references to objects is used extensively in certain stream I/O operations. However, those applications are too complex to use as teaching aids. The following examples may or may not be useful, but they do illustrate the process of returning a reference from a function.

Returning a Reference to a Global Variable

To return a reference from a function, follow the return type in the function prototype and function definition with an &.

The following example illustrates returning a reference to a global variable. It also illustrates calling a function with the function on the left-hand side of an assignment statement.

This program declares a global variable, initializes it to a value of 4, and displays the value. It then calls a function named modify() with the function call on the left-hand side of an assignment statement. This has the effect of assigning a value of 100 to the global variable because the function returns a reference to the global variable. Thus the value of 100 is assigned to the object identified by the reference. The program then displays the value of the global variable again.

Note that for purposes of illustration, this (rather contrived) function does nothing but establish a reference to the global variable. In other words, the expression modify() on the left-hand side of the assignment operator evaluates down to a reference to the global variable. Then a value of 100 is assigned to that reference, which is in effect, the same as assigning the value of 100 directly to the global variable.

//File retref01.cpp

//Illustrates returning a reference from a function with the

// function call on the left-hand side of an assignment statement.

#include<iostream.h>

int glo; //declare a global variable

main()

{

 int& modify(); //p-type function which returns reference

 glo = 4;			 //put data in global variable

 cout << glo << '\n'; //display global variable

 modify() = 100; //modify the global variable

 cout << glo << '\n'; //display global variable again

 cout << "Baldwin Terminating\n";

 return 0;

} //end of main()

//===

int& modify()//This function returns a reference to a global variable

{

	return glo; //return a reference to the global variable

}//end modify()

The output from this program is shown below.

4

100

Baldwin Terminating

Returning a Reference to a Static Variable

The previous sample program is of little use in real life, particularly since it requires the use of a global variable which is strongly discouraged in C++ programming. Recall, however, that to be of use, the process of returning a reference to an object must be applied only in those situations where the object is guaranteed to persist after the function returns. A global variable is such an object. Another object which persists after the function terminates is a static variable. The next example returns a reference to a static variable containing certain information about elapsed time.

This program makes a call to a function named years() as an expression in a cout statement. The function returns a reference to a static variable within the function causing the cout statement to print the value of that static variable.

Within the function, a call is made to the system clock which returns the number of seconds since Jan 1, 1970. This value is converted to years as a double-precision floating value and stored in the static variable named yrs. The function then returns a reference to yrs as a double, so it is the value of yrs which is displayed.

Note that it is the function definition, and not the makeup of the return statement which causes the function to return a reference. If you didn’t have access to the header for the function, you would think that the function is returning the value of yrs instead of a reference to yrs. Recall that the same situation is true when passing a reference to a function. It is the function definition which causes a reference to be passed. The actual call to the function looks like the values of objects are being passed instead of references to those objects.

//File retref02.cpp

//Illustrates returning a reference from a function to allow access

// to a static variable in the function.

#include<iostream.h>

#include<time.h>

main()

{

 double& years(); //p-type function which returns reference

 //Call function to compute years since Jan 1, 1970,

 // store the years in a static variable, and return a reference

 // to the static variable so that it can be accessed and

 // displayed.

 cout << "Years since Jan 1, 1970: "<< years() << '\n';

 cout << "Baldwin Terminating\n";

 return 0;

} //end of main()

//===

//This function returns a reference to a static variable

// which contains number of years since Jan 1, 1970

double& years()

{

 static double yrs; //declare static variable

 time_t t; //declare variable of type time_t

 t = time(NULL); //call system, get seconds since Jan 1, 1970

 yrs = (float) t/60/60/24/365; //convert seconds to years

 return yrs; //return a reference to the static variable

}//end years()

The output from this program follows:

Years since Jan 1, 1970: 25.346468

Baldwin Terminating

-end-

Introduction to C++ and C Programming, Lecture Notes # 27, References,

Copyright 1996, R.G.Baldwin, Page � PAGE �
4
�

