Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 36, File 2003-36.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Defining and Using Strings in A Program

� TOC \o "1-3" �
1. Sample Program	
�

GOTOBUTTON
_Toc368122995

�

PAGEREF
_Toc368122995

�
1
�
�

2. Creating Character String Constants	
�

GOTOBUTTON
_Toc368122996

�

PAGEREF
_Toc368122996

�
3
�
�

3. Initialization of Character String Arrays	
�

GOTOBUTTON
_Toc368122997

�

PAGEREF
_Toc368122997

�
5
�
�

4. Initializing Character Arrays and Initializing String Pointers: the Difference	
�

GOTOBUTTON
_Toc368122998

�

PAGEREF
_Toc368122998

�
5
�
�

5. Explicit Specification of Storage for a String	
�

GOTOBUTTON
_Toc368122999

�

PAGEREF
_Toc368122999

�
6
�
�

6.
Arrays of Pointers to Strings (Ragged Arrays)	
�

GOTOBUTTON
_Toc368123000

�

PAGEREF
_Toc368123000

�
6
�
�

7. Using Pointers with Strings	
�

GOTOBUTTON
_Toc368123001

�

PAGEREF
_Toc368123001

�
7
�
�

8. String Input	
�

GOTOBUTTON
_Toc368123002

�

PAGEREF
_Toc368123002

�
7
�
�

�

A C/C++ string is a series of char values terminated by the null character. (The null character is a byte with a value of zero and can be specified as ‘\0’. A string can be stored in a character array, but a character array is not necessarily a string.

Sample Program

The following program illustrates several ways to define a string.

//==========Begin program grocery.cpp

// Illustrate ways to define strings

#include <iostream.h>

#include <conio.h>

//symbolic string constant or manifest constant

#define Message "What is on your grocery list."

#define LIM 5 //used to define array size

#define LINLEN 81 //maximum string length + 1

//Initialize a character array. Note no * required to

// initialize a single string array.

char Str1[] = "Enter them all on one line.";

//Initialize a character pointer

char *Str2 = "If you don't need anything, enter none.";

void main()

{

 char name[LINLEN]; //declare an array

 static char UrList[LINLEN]; //declare a static array

 int i;

 //int count = 0;

 //Initialize a pointer

 char *Str3 = "\nHi! -- what's your name?";

 //Initialize an array of string pointers. Note the * before MyList[LIM]

 // required to initialize an array of string arrays.

 static char *MyList[LIM] = {

 " One can of applesauce.",

 " Four cans of peaches.",

 " A loaf of bread.",

 " A bunch of green onions.",

 " Three apples." };

 clrscr();

 cout << "Time to go to the grocery.\n"

 "Let's see what is on my list.\n";

 cout << "Where did I put that list? Ah, here it is..." << endl;

 //print the array of strings

 for(i = 0; i < LIM; i++) cout << MyList[i] << endl;

 cout << Str3 << endl; //print using the pointer-to-char

 cin.getline(name,LINLEN-1); //input string into array name

 cout << "Well, " << name << " " << Message

 << endl; //print messages to user

 cout << Str1 << endl << Str2 << endl; //more messages to user

 cin.getline(UrList,LINLEN-1);//input string into array UrList

 //print a string literal

 cout << "Let's see if I've got it right:" << endl;

 cout << UrList << endl; //print array contents

 cout << "Thanks, " << name << endl;

}

The output from this program is shown below with the user input in bold italics.

Time to go to the grocery.

Let's see what is on my list.

Where did I put that list? Ah, here it is...

 One can of applesauce.

 Four cans of peaches.

 A loaf of bread.

 A bunch of green onions.

 Three apples.

Hi! -- what's your name?

Dick

Well, Dick What is on your grocery list.

Enter them all on one line.

If you don't need anything, enter none.

peas, beans, and carrots

Let's see if I've got it right:

peas, beans, and carrots

Thanks, Dick

Creating Character String Constants

Anything enclosed in quotation marks is treated as a string constant by the compiler The characters plus a termination null character are stored in sequential memory locations.

The compiler also determines and allocates the required amount of memory.

String constants are placed in static storage class, meaning that the string is stored just once and lasts for the duration of the program, even if the function is called several times.

The entire phrase in quotation marks acts as a pointer to the first character in the string. This is illustrated in the following example program.

// Illustrate strings as pointers

#include <iostream.h>

void main()

{

 char *ptr = "Freddy"; //create a pointer to a string

 cout << "We" << ", "

 << (unsigned)"Us" << ", "

 << *"You" << endl;

 cout << ptr[2];

 cout << *(ptr+2);

 cout << "Michael"[2] << endl;

 cout << *(2+ptr);

 cout << 2[ptr];

 cout << 2["Michael"] << endl;

} //_____End main()

This program produces the following output:

We, 99, Y

eec

eec

Consider the first line of output which is produced by the statement:

cout << "We" << ", "

 << (unsigned)"Us" << ", "

 << *"You" << endl;

The first string which is the right operand of the insertion operator is printed as a the string We.

The (unsigned) cast causes the contents of the pointer defined by “Us” to be printed. This displays the least significant portion of the memory address where the string is stored. (The entire memory address would most likely be a much larger number.)

Another way to display the contents of a pointer is to cast the pointer as (*void). Without the cast, the contents of the location pointed to by the pointer would be printed by default. The address may differ from one run to the next.

The Y is printed by printing the contents of the address pointed to by the pointer “You”.

The next three statements:

 cout << ptr[2];

 cout << *(ptr+2);

 cout << "Michael"[2] << endl;

each cause the third element (or character) in the pointed-to string to be printed. In the first two cases, that element or character was the lower-case e in Freddy. In the third statement, it was the lower-case c in “Michael”.

In the first case, the pointer ptr was treated similarly to an array name and de-referenced by the index [2] which specifies the third element in the array.

In the second case, the de-referencing operator (*) caused the contents of the address pointed to by the (pointer plus 2) to be printed.

In the third case, the string "Michael" was treated similarly to an array name and de-referenced by the index [2].

Finally, the last three statements:

 cout << *(2+ptr);

 cout << 2[ptr];

 cout << 2["Michael"] << endl;

represent an obscure usage of pointers. In each case, the third element (or character) in the pointed-to string was caused to be printed. Again, in the first two cases, that element or character was a lower-case e in Freddy. In the third case, it was a lower-case c in Michael.

Initialization of Character String Arrays

One way to define a character string array is to initialize a char array with a string constant as shown below:

	char Str1[] = "This is a string.";

In this case, the compiler determines the amount of memory required and allocates it automatically.

The array name Str1 is a synonym for the address of the first element of the array. That is, the following statements are true:

	Str1 == &Str1[0]

	*Str1 == 'T'

	*(Str1+1) == Str1[1] == 'h'

Strings can also be defined using pointer notation as follows:

	char *Str3 = "\nAnother string";

This is similar to but different from the statement:

	char Str3[] = "\nAnother string";

Both cases indicate that Str3 is a pointer to the indicated string, and in both cases, the string itself determines the amount of storage space set aside for the string. However, the forms are not identical, as discussed below.

Initializing Character Arrays and Initializing String Pointers: the Difference

The array form

	char Str3[] = "\nAnother string";

sets aside sufficient space for the string and the terminating null character. Thereafter, the compiler will recognize the name Str3 as a synonym for the address of the first element in the array, &Str3[0]. In this form, Str3 is a pointer constant. You can use operations like Str3+1 to identify the next element in an array, but expressions like ++Str3 are not allowed.

The pointer form

	char *Str3 = "\nAnother string";

causes the same amount of space to be set aside to hold the string and the null character, and also sets aside an additional storage location for the pointer variable itself which contains the address of the first element in the string.

Initially, this variable contains the address of the first character in the string, but the value can be changed during program execution. (If you change it, you should save its value first unless you are content to lose track of the whereabouts of the string.)

The primary difference between the array form and the pointer form is that with the array form, the name of the array is simply a synonym used by the compiler during compilation of the program whereas with the pointer form, an actual storage location is established which contains the address of the first element of the string and which can be manipulated during the execution of the program.

The various ways that pointers can be manipulated during execution was discussed in an earlier set of lecture notes.

Explicit Specification of Storage for a String

You can also establish storage for a string explicitly as in:

	char Str1[44] = "This is a string.";

In this case, you must make certain that the size of the specified array is at least one greater than the size of the string.

Arrays of Pointers to Strings (Ragged Arrays)

It is often convenient to use an array of pointers to strings as follows. (Note the requirement to include the de-referencing operator (*) ahead of the array name in the declaration of the array.)

char *MyList[5] = {

 "One can of applesauce.",

 "Four cans of peaches.",

 "A loaf of bread.",

 "A bunch of green onions.",

 "Three apples." };

Using an array of pointers to strings allows us to access the strings using subscripts. In this case, we can say that MyList[] is an array containing five pointers-to-char. The element MyList[0] points to the first string which is located somewhere else in memory.

The following relationships hold showing that each element in the array of pointers points to the first character of its respective string. Again, note the use of the de-referencing operator.

	*MyList[0] == 'O'

	*MyList[1] == 'F'

	*MyList[2] == 'A'

The form shown above is shorthand notation for the form used in the following box. In both cases, the use of the de-referencing operator (*) in the declaration is required to establish an array of pointers. The code following the declaration statement establishes the strings in memory, and also establishes the values of the pointers in each element of the array which point to those strings in memory.

char *MyList[5];

MyList[0] = "One can of applesauce.";

MyList[1] = "Four cans of peaches.";

MyList[2] = "A loaf of bread.";

MyList[3] = "A bunch of green onions.";

MyList[4] = "Three apples.";

This structure is sometimes referred to as a “ragged array.”

Using Pointers with Strings

Most C and C++ functions and operators designed to be used with string actually work with pointers to strings.

The following program demonstrates that making a copy of a pointer to a string doesn't make another copy of the string. The result is simply to have two or more pointers pointing to the same string.

//Pointers and strings

#include<iostream.h>

void main()

{

 char *msg = "I am a string.";

 char *copy;

 copy = msg;

 cout.setf(ios::hex | ios::showbase | ios::uppercase);

 cout << copy << endl;

 cout << "msg = " << msg

 << "; StringAdr = " << (unsigned)msg

 << "; MsgPointerAdr = " << &msg

 << endl;

 cout << "copy = " << copy

 << "; StringAdr = " << (unsigned)copy

 << "; copyPointerAdr = " << ©

 << endl;

}

The program produces the following output:

I am a string.

msg = I am a string.; StringAdr = 0X56; MsgPointerAdr = 0X1B10

copy = I am a string.; StringAdr = 0X56; copyPointerAdr = 0X1B0E

String Input

We also need to consider reading strings into the program.

Reading a string into a program involves two steps:

Setting aside space to store the string.

Using an input function or operator to fetch the string and store it in the allocated space.

First we must make space available for the string. We need to allocate sufficient space to hold the longest string that we expect to read plus the terminating null character. Until you learn to do dynamic memory allocation, you must allocate sufficient space at compile time.

The easy way to set aside space is to declare a char array of sufficient size to contain the largest string that you expect to receive plus the null character.

After setting aside the space for the string, you can read it in using the extraction operator any of several different input functions. We have previously discussed the use of the getline() function as well as a version of the get() function which can be used for this purpose.

-end-

Introduction to C++ and C Programming, Lecture Notes # 36, Defining and Using Strings in a Program,

Copyright 1996, R.G.Baldwin, Page � PAGE �
7
�

