Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 28, File 2003-28.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Character Functions and More on the I/O System

� TOC \o "1-4" �1. ctype.h Character Functions	� GOTOBUTTON _Toc368119884 � PAGEREF _Toc368119884 �1��

2. Background Material	� GOTOBUTTON _Toc368119885 � PAGEREF _Toc368119885 �3��

3. iostream Class Library Structure	� GOTOBUTTON _Toc368119886 � PAGEREF _Toc368119886 �3��

4. More About Streams	� GOTOBUTTON _Toc368119887 � PAGEREF _Toc368119887 �4��

5. iostream Library Header Files	� GOTOBUTTON _Toc368119888 � PAGEREF _Toc368119888 �4��

6. Stream Input/Output Classes and Objects	� GOTOBUTTON _Toc368119889 � PAGEREF _Toc368119889 �5��

7. Stream Output	� GOTOBUTTON _Toc368119890 � PAGEREF _Toc368119890 �6��

8. Stream Insertion Operator	� GOTOBUTTON _Toc368119891 � PAGEREF _Toc368119891 �7��

9. Stream Input	� GOTOBUTTON _Toc368119892 � PAGEREF _Toc368119892 �7��

10. I/O Stream Error Data	� GOTOBUTTON _Toc368119893 � PAGEREF _Toc368119893 �8��

11. get() and getline() Functions	� GOTOBUTTON _Toc368119894 � PAGEREF _Toc368119894 �9��

12. Other istream Member Functions (peek, putback, and ignore)	� GOTOBUTTON _Toc368119895 � PAGEREF _Toc368119895 �12��

13. Unformatted I/O with read, gcount, write, and flush()	� GOTOBUTTON _Toc368119896 � PAGEREF _Toc368119896 �13��

14. Buffered Output, Flushing the Buffer	� GOTOBUTTON _Toc368119897 � PAGEREF _Toc368119897 �14��

15. Testing for I/O Errors, Stream Error States	� GOTOBUTTON _Toc368119898 � PAGEREF _Toc368119898 �14��

�

ctype.h Character Functions

C and C++ provide several character-related functions that are declared in the ctype.h header file. Some of these functions analyze the nature of a character, returning true if the character belongs to a particular class and false otherwise. A partial list of character functions follows:

	NAME			TRUE IF ARGUMENT IS

	isalnum()	Alphanumeric

	isalpha()	Alphabetic

	iscntrl()	A control character, e.g., Control-B

	isdigit()	A digit

	isgraph()	Any printing character other than a space

	islower()	A lowercase character

	isprint()	A printing character

	ispunct()	A punctuating character (any printing character other than

			a space or an alphanumeric character).

	isspace()	A whitespace character (space, newline, form feed, carriage

			return, vertical tab, horizontal tab, and possibly other

			implementation-defined characters

	isupper()	An uppercase character

	isxdigit()	A hexadecimal-digit character		

	CHARACTER-MAPPING FUNCTIONS

	toupper()	Maps lowercase characters to uppercase

	tolower()	Maps uppercase characters to lowercase

The following example program makes use of several of these functions:

//File charfunc.cpp

/*Write a program that reads input up to EOF and reports the number of

words, the number of uppercase letters, the number of lowercase letters,

the number of punctuation characters, and the number of digits. Use

the ctype.h family of functions.

*/

#include <iostream.h>

#include <ctype.h>

void main()

{

 int nwords = 0; //counter for number of words

 int nupper = 0; //number of upper case letters

 int nlower = 0; //number of lower case letters

 int npunct = 0; //number of punctuation characters

 int ndigit = 0; //number of digits

 char ch;

 cout << "Enter some text. Terminate with return/cntl-z.\n";

 while ((ch = cin.get()) != EOF)

 {

 if(ch == ' ' || ch == '\t' || ch == '\n') nwords++;

 if(isupper(ch)) nupper++;

 if(islower(ch)) nlower++;

 if(ispunct(ch)) npunct++;

 if(isdigit(ch)) ndigit++;

 }

 cout << endl;

 cout << "Number words: " << nwords << endl;

 cout << "Number upper case characters: " << nupper << endl;

 cout << "Number lower case characters: " << nlower << endl;

 cout << "Number punctuation characters: " << npunct << endl;

 cout << "Number digits: " << ndigit << endl;

} //_____End main()

The C++ I/O system makes extensive use of advanced concepts and capabilities of the C++ language. Students in a first-semester C++ course generally don’t have the background information to understand these concepts and capabilities.

You will note that this program uses an input function not previously discussed: get(). When all the different functions contained in the iostream class library are considered in all their different overloaded versions, there are literally dozens of different I/O functions available. It is very difficult to know where to draw the line in discussing these functions in a first-semester C++ course. After about 12 weeks into the second semester, students finally have the background knowledge to be able to obtain and understand information about this multitude of functions from reference books or on-line help systems.

The C++ I/O system is an extremely complex thing. Much of the I/O material in the remainder of this set of lecture notes is beyond the understanding of first-semester students in C++. However, even first-semester students need to know how to use the I/O system. Therefore, you will simply have to wade through the material understanding what you can and remembering where to find that which you don’t understand.

The remaining material in this set of lecture notes is a slightly-modified version of a set of lecture notes used in course number CIS2204 entitled “Intermediate C++ Programming and Data Structures.” You will find references to “previously-discussed” materials in these notes, and probably realize that some of those materials have not been previously discussed in this beginning C++ programming course. As mentioned above, don’t let that bother you. Simply understand what you can, and remember where to find usage examples of those things that you don’t understand.

Background Material

The C++ I/O system operates through streams. A stream is a logical device that either produces or consumes data. A stream is linked to a physical device by the C++ I/O system. A stream is an instantiation of a class within the iostream class library which is designed to support I/O.

When a C++ program begins, four streams are automatically opened (four objects are automatically instantiated, three of type ostream and one of type istream):

Stream			Meaning			Default Device

cin			Standard input			Keyboard

cout			Standard output			Screen

cerr			Standard error			Screen

clog			Buffered version of cerr	Screen

The first three of these correspond roughly to C’s stdin, stdout, and stderr.

It is important to understand that creating an input or output stream consists of nothing more complex than declaring an object of the correct class. Except for the four streams listed above, before you can make use of a stream, you must link it to a physical input or output device. This requires use of an open statement which will be discussed further in conjunction with file I/O.

iostream Class Library Structure

Most of the support for the C++ I/O system is contained in the file iostream.h, although we will learn that in certain situations, there are other header files which must be included as well. Class hierarchies are defined in the iostream class library which support I/O operations.

There are two I/O class hierarchies. One is derived from the low-level I/O class called streambuf. This class supplies the underlying support for the entire system, and is probably different from one platform to the next. We will learn how to access streambuf directly when appropriate.

The second is a higher-level class hierarchy derived from a class named ios and is (hopefully) nearly the same from one platform to the next. Most of our discussion will concentrate on this class hierarchy.

The ios class provides formatting, error-checking, and status information for stream I/O and is used as a base class for several derived classes including istream, ostream, and iostream. These classes can be used to create streams for input, output, and input/output respectively. Previous lecture notes have discussed the use of those elements of the class library shown in the following schematic diagram.

 ios

 / \

 istream iostream

 \ /

 iostream

This, and later sets of lecture notes will expand the discussion to include the additional classes shown below (this is not an exact representation) In addition, we will discuss the istrstream, ostrstream, and strstream classes which are not shown below, but which are also apparently derived from istream, ostream, and iostream.

 ios ----> streambuf

 / \

 istream ostream

 / \ / \

 ifstream iostream ofstream

 |

 fstream

The ios class provides many member functions and data members that are used to control or monitor the fundamental operation of a stream. Information regarding those data members and member functions can be obtained by examining the header file named iostream.h and some other header files which support the iostream class library.

Each of the classes shown in the diagram includes several member functions and each of the member functions is usually overloaded for several different versions. Consequently, there are literally dozens, and perhaps hundreds of different capabilities available in the iostream class library which are accessed by calling member functions with appropriate argument lists.

C++ uses what is frequently called type safe I/O. This means that each I/O operation is automatically performed in a manner sensitive to the data type. If an I/O function has been properly defined to handle a particular data type, then that function is automatically called to handle that data type. If no match between the type of the actual data (after automatic conversions are performed) and a function for handling that data type can be identified, a compiler error occurs.

More About Streams

C++ I/O occurs in streams of bytes. During input, bytes flow from a device to main memory. During output, bytes flow from main memory to a device. (We will also learn how to use I/O functions to cause data to flow between pre-specified memory buffers.)

The application program and the I/O system have divided responsibilities:

It is the responsibility of the application program to associate meaning with bytes. For example, bytes may represent ASCII characters, internal format numeric data, bit patterns in graphic images, etc.

It is the responsibility of the I/O system to move bytes from devices to memory and from memory to devices in a consistent and reliable manner without particular regard to the meaning of the bytes.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-level operations usually simply specify that some number of bytes should be transferred from a source to a destination. High-level operations usually involve having the bytes grouped into meaningful units such as integers, floating-point numbers, characters, strings, and user-defined types.

iostream Library Header Files

The interface to the iostream library is contained in several different header files.

The iostream.h header file contains basic information required for all stream-I/O operations. This includes cin, cout, cerr, and clog objects which correspond to the standard input stream, standard output stream, the unbuffered standard error stream, and the buffered standard error stream.

The iomanip.h file contains information required for use of the standard parameterized stream manipulators.

The fstream.h header file contains information used in file processing operations.

The strstream.h file contains information used for performing in-memory formatting (similar to sprintf() in C). This resembles file processing, but the bytes are moved to and from arrays in memory rather than actual files.

The stdiostream.h file contains information important for programs that mix the C and C++ styles of I/O.

Other “system specific” header files may also be available in your implementation of C++.

Stream Input/Output Classes and Objects

The istream class supports input operations while the ostream class supports output operations. The iostream class supports both input and output operations. Both istream and ostream are derived through single inheritance from the ios base class. The iostream class is derived through multiple inheritance from istream and ostream as shown in the earlier schematic diagram.

The insertion operator (<<) is used to cause bytes to be inserted into an output stream. The extraction operator (>>) is used to extract bytes from an input stream.

cin is a pre-defined object of the istream class and is linked to the standard input device, normally the keyboard (but it can be redirected in operating systems which support I/O redirection). The following typical statement causes bytes to be extracted from the standard input device and deposited in the variable named stuff:

cin >> stuff;

The system determines the type of data required by the variable and performs the format translation appropriate to that type.

cout is an object of the ostream class and is linked to the standard output device, normally the screen (but it can also be redirected). The following typical statement causes bytes which make up the variable stuff to be inserted into the output stream for display on the screen (or redirected standard output device):

cout << stuff;

Unless other formatting provisions have been made, the data will be displayed on the screen in the default format appropriate for the type of data involved.

At least two approaches are available to provide custom formatting. One approach uses member functions of the ios class to modify formatting bits and flags maintained as ios data members. The other approach uses manipulators as discussed in an earlier set of lecture notes.

cerr is an object of the ostream class and is linked to the standard error device. Bytes inserted into cerr appear on the screen immediately since no buffering is provided. clog provides a similar function, but it is buffered. Bytes inserted into the clog object remain in a buffer until the buffer fills or is flushed.

In C++, file I/O uses the ifstream class to perform file input operations, the ofstream class to perform file output operations, and fstream to perform operations requiring both file input and file output.

As can be seen from the earlier schematic diagram, ifstream inherits from istream, ofstream inherits from ostream, and fstream inherits from iostream. This inheritance relationship means that all the capabilities of the parent class are available to the derived class. In addition, new capabilities may be provided by the derived class.

There are other classes in the full iostream class library in most implementations. However, the classes shown above provide most of the capabilities needed for many normal day-to-day programming activities. You should refer to the documentation for your implementation for information on other available classes.

Stream Output

The iostream class library provides the ability to perform both formatted and unformatted output. Capabilities include but are not limited to:

Output of standard data types using the stream insertion operator.

Output of characters using the put() member function.

Unformatted output using the write() member function.

Output of integers in decimal, octal, and hexadecimal format.

Output of float values with various precision, with forced decimal points, in scientific notation and fixed notation.

Output of data justified in fields of designated field widths.

Output of data in fields padded with specified characters.

Output of uppercase letters in scientific notation and hexadecimal notation.

All of these capabilities except put() and write() have been discussed in earlier lecture notes on console I/O. The following simple program illustrates the use of one form of put() and write().

/*File PUT01.CPP

Illustrates use of the put() and write() I/O functions.

*/

#include <iostream.h>

main()

{

 char data[] = "Display this data with put().";//create array data

 int cnt = 0;

 //Display array data using put() in a loop

 while (data[cnt] != '\0') cout.put(data[cnt++]);

 cout << "\n\n";

 //Display array data using write().\n

 cout.write(data,23);//display part of the data

 cout << "write().\n"

 "Terminating";//concatenate the word write() on the end

 return 0;

}//end main

The output from the program follows:

Display this data with put().

Display this data with write().

Terminating

Stream Insertion Operator

The stream insertion operator is overloaded to output data items of built-in types, strings, and pointer values. Previous lecture notes have discussed the output of built-in types and strings, but have not discussed the output of pointer values.

The I/O system is overloaded to recognize a pointer to char and to display the data to which the pointer points (as if it were in “string” format). If you also need to display the value of the pointer, cast it as a void* in the output statement as shown in the following program.

/*File PUT01.CPP

Illustrates that to display the address of a pointer

you should cast it as a pointer in the output statement.

*/

#include <iostream.h>

main()

{

	//create array data

	char data[] = "This string is stored at address: ";

	cout << data << (void*) data << "\nTerminating";

	return 0;

}//end main

The output from this program is shown below:

This string is stored at address: 0x255affd2

Terminating

Previous lecture notes have also discussed the formatting of output using the format flags and formatting functions of ios, creation of your own custom inserters to output user-defined types, use of stream manipulators of the standard variety (both with and without parameters) and creation of your own stream manipulators (both with and without parameters).

Stream Input

Stream input is performed using the stream extraction operator (>>). This operator normally skips whitespace characters in the beginning of the input stream. This can be changed using either a manipulator or an ios formatting function. The extraction operator returns false when end-of-file is encountered. Thus, it can be used as the conditional statement in a while loop to extract a series of data values from the input.

The following program provides a very interesting twist on the use of the overloaded extraction operator to bring in characters one at a time, skip white space, and terminate input when an EOF is detected. The output follows the program listing with the operator input shown in bold italics.

/*File EXTRACT2.CPP

Illustrates use of the overloaded extraction operator

*/

#include <iostream.h>

main()

{

 char data[50];

 int cnt = 0;

 cout << "Enter a string of characters terminated by ctrl-z\n";

 while(cin.operator>>(data[cnt])) cnt++;

 data[cnt] = '\0';

 cout << endl << data << endl << "Terminating\n";

 return 0;

}//end main

Enter a string of characters terminated by ctrl-z

Now is the time, etc.

Nowisthetime,etc.

Terminating

This program uses the fact that the overloaded extraction operator returns false on EOF to use it in the conditional part of a while loop.

Otherwise, the extraction operator returns a reference to the object on its left (the object which originated the call to the operator function). This allows the concatenation of a series of input operations involving extraction operators.

I/O Stream Error Data

Each stream object which is declared contains a set of state bits as data members of ios which are used to control the state of the stream (formatting, setting error states, etc.). Stream extraction causes the stream’s failbit to be set if data of the wrong type is input, and causes the stream’s badbit to be set if the operation fails. We will see how to test these bits following an I/O operation later.

get() and getline() Functions

The get() member function with no arguments inputs one character from the designated stream (even if it is whitespace) and returns the character as the value of the function call. This version of get() returns EOF when end-of-file on the stream is encountered. The following program extracts bytes from the keyboard buffer, including space characters, one at a time, until the user generates an EOF signal by entering ctrl-z (or ctrl-d on a UNIX system).

/*File GET01.CPP

Illustrates use of one form of the get() function along

with EOF to bring in bytes one at a time.

*/

#include <iostream.h>

main()

{

 char data;

 cout << "Enter some characters, one per line\n"

 "terminated by ctrl-z, and I will echo them.\n";

 while ((data = cin.get()) != EOF) cout.put(data);

 cout << "Terminating\n";

}//end main

A second version of the get() function is called with an argument which is a variable. This version extracts the next character from the keyboard buffer (even if it is whitespace) and stores it in the variable passed as an argument. This version returns false on end-of-file. Otherwise, it returns a reference to the istream object for which the function is being invoked. This form of the function is illustrated in the following program.

/*File GET02.CPP

Illustrates use of the form of the get() function which

requires an argument along with EOF to bring in bytes

one at a time.

*/

#include <iostream.h>

main()

{

 char data;

 cout << "Enter some characters, terminated by cntl-z,\n"

 "and I will echo them.\n";

 while (cin.get(data)) cout.put(data);//loop until EOF

 cout << "Terminating\n";

}//end main

The fact that the function returns a reference to its left-hand object makes it possible to use the syntax of concatenating calls to the get() function using the dot operator as shown in the following program. The concatenated calls are highlighted in boldface in this presentation.

/*File GET03.CPP

Illustrates use of the form of the get() function which

requires an argument to bring in bytes one at a time.

Also illustrates concatenation of a series of calls to

get() using the dot operator.

*/

#include <iostream.h>

main()

{

 char data1, data2, data3;

 cout << "Enter three characters and I will echo them.\n";

 cin.get(data1).get(data2).get(data3);

 cout << data1 << " " << data2 << " " << data3 << endl;

 cout << "Terminating\n";

}//end main

A third version of the get() member function takes three arguments: a pointer to an array, a size limit, and a delimiter (with a default value of ‘\n’). This version reads characters from the input stream, up to one less than the specified maximum number of characters and terminates. Or, it terminates as soon as the delimiter is read. A null character is inserted to terminate the string in the array. The delimiter is not placed in the array, but does remain in the input stream (where it can cause problems later). This form of the get() function is illustrated in the following program.

/*File GET04.CPP

Illustrates use of the form of the get() function which

requires three arguments to bring in bytes one at a time

and store them in an array. Argument definitions are

given in comments.

*/

#include <iostream.h>

main()

{

 char data[50];

 cout << "Enter some characters terminated by # and I will \n"

 "echo them.\n";

 //Arguments in following call are:

 //pointer to data array,

 //number of characters to accept, and

 //delimiter character which defaults to newline.

 cin.get(data, 20, '#');

 cout << data << endl;

 cout << "Terminating\n";

}//end main

The output from this program with two different operator inputs are shown below. The operator inputs are shown in boldface italic. The first run terminates input when the # is encountered because it was specified as the delimiter in the function call.

Enter some characters terminated by # and I will

echo them.

I would like a #3 bag of apples.

I would like a

Terminating

The second input terminates when 19 characters are entered because that was specified in the function call.

Enter some characters terminated by # and I will

echo them.

I would like a very large bag of apples.

I would like a very

Terminating

The getline() member function operates in a manner very similar to the third version of get(). However, there is a very subtle and important difference. get() stops when it sees the delimiter in the input stream, but it doesn’t extract it from the input stream. Thus, if you did another get() using the same delimiter, it would immediately return with no fetched input. getline() on the other hand, extracts the delimiter from the input stream, but still doesn’t store it in the result buffer. Generally when you are processing a text file one line at a time, you will probably want to use getline().

The following program illustrates three different uses of the getline() function.

/*File GET05.CPP

Illustrates use of the getline() function in three forms which

require three arguments to bring in a single line

of data from the input and store it in an array.

Argument definitions are given in comments.

*/

#include <iostream.h>

main()

{

 char data[100];

 cout << "Enter a line of text terminated by # and I will \n"

 "echo it.\n";

 //Arguments in following call are:

 //pointer to data array,

 //number of characters to accept, and

 //delimiter character which defaults to newline.

 cin.getline(data, 20, '#'); //get the line

 cout << data << endl; //display it

 cin.get();//flush the newline from the buffer

 cout << "Enter a short line of text terminated by the\n"

 "return key and I will echo it.\n";

 cin.getline(data,20);

 cout << data << endl;

 cout << "Enter a long line of text terminated by the\n"

 "return key and I will echo part of it.\n";

 cin.getline(data,10);

 cout << data << endl;

 cout << "Terminating\n";

}//end main

The output from this program is shown below. User input is shown in boldface italics.

Enter a line of text terminated by # and I will

echo it.

Now is the time#

Now is the time

Enter a short line of text terminated by the

return key and I will echo it.

Now is the time

Now is the time

Enter a long line of text terminated by the

return key and I will echo part of it.

Now is the time

Now is th

Terminating

Other istream Member Functions (peek, putback, and ignore)

The ignore() member function skips over a designated number of characters (default is one character) or terminates upon encountering a designated delimiter. The default delimiter is EOF.

The putback() member function places a character back into an active input stream at the head of the line.

The peek() member function returns the next character from an input stream, but does not remove the character from the stream.

The following program illustrates the use of these three functions.

/*File PEEK01.CPP

Illustrates use of peek(), putback(), and ignore()

*/

#include <iostream.h>

main()

{

 char data[100];

 cout << "Enter the following and then press ctrl-z\n\n"

 "This is a text string.\n"

 "\nI will skip to the x in text, tell you what the\n"

 "next character is, force a Z into the buffer,\n"

 "read and display what is in the buffer at that time.\n\n";

 cin.ignore(100,'x');

 char ch = cin.peek();

 cout << "\n\nThe character after the first x is: " << ch << endl;

 cin.putback('Z');

 cin.getline(data,50);

 cout << data << "\nTerminating";

 return 0;

}//end main

The output from this program follows with operator input shown in bold italics:

Enter the following and then press ctrl-z

This is a text string.

I will skip to the x in text, tell you what the

next character is, force a Z into the buffer,

read and display what is in the buffer at that time.

This is a text string.

The character after the first x is: t

Zt string.

Terminating

Unformatted I/O with read, gcount, write, and flush()

Unformatted I/O is performed using the read() and write() member functions. Each of these functions reads or writes a specified number of bytes from or to an array in memory. The bytes are not formatted in any way. They are simply read or written as raw bytes.

The read() member function reads a specified number of bytes. If fewer than the specified number are read, failbit is set. failbit, as well as some other status bits can be tested using methods to be discussed later.

The gcount() member function reports the number of bytes read by the most recent input operation.

The following program illustrates the use of these three functions. The program loops until an EOF is detected, reading input from the keyboard in ten-byte groups and writing the data to the screen as it is received. The final group read may be less than ten bytes, and the gcount() function is used to determine the number of bytes read so that a corresponding number of bytes can be written to the screen.

/*File READ01.CPP

Illustrates use of the read(), write(), and gcount() member

functions.

*/

#include <iostream.h>

main()

{

 char data[11];

 cout << "Enter a string of characters terminated by ctrl-z.\n";

 while (!cin.eof()) {

 cin.read(data,10);//read ten or fewer bytes

 cout << endl;

 cout.write(data,cin.gcount());//display bytes read

 }//end loop

 return 0;

}//end main

The output from this program follows with the user input shown in boldface italics.

Enter a string of characters terminated by ctrl-z.

Now is the time for all good men to come to the aid of their country.

Now is the

 time for

all good m

en to come

 to the ai

d of their

 country.

Buffered Output, Flushing the Buffer

When output is performed, data is not immediately written to the physical device linked to the stream. Instead, data is stored in an internal buffer until the buffer is full, and then written to the device. You can force the data to be physically written before the buffer is full by calling the flush() member function. This function is called using the dot operator as a member function of the stream object with no parameters as in:

MyFile.flush();

Testing for I/O Errors, Stream Error States

A data member (or group of data members) of ios maintains the state of a stream in a manner which may be tested at any time.

The eofbit is set automatically for an input stream when end-of-file is encountered. A program can use the eof() member function to determine if end-of-file has been encountered on a stream The call

	cin.eof()

returns true if end-of-file has been encountered on cin, and false otherwise.

The failbit is set for a stream when a format error occurs on the stream, but characters have not been lost. The fail() member function determines if a stream operation has failed.

The badbit is set for a stream when an error occurs that results in the loss of data. The bad() member function determines if a stream operation has failed. Errors of this type are not normally recoverable.

The goodbit is set for a stream if none of the bits eofbit, failbit, or badbit are set for the stream. The good() member function returns true if the bad(), fail(), and eof() member functions would all return false. I/O operations should only be performed on “good” streams.

The rdstate() member function returns the error state of the stream in a format which can be tested using a switch statement along with ios::eofbit, ios::badbit, ios::failbit, and ios::goodbit.

The clear() member function is normally used to restore a stream’s state to “good” so that I/O may proceed on that stream. The arguments to this function are one or more of the ios::xxxbit enumerated constants listed above. If more than one is involved, they should be OR’d together using the (|) operator.

The stream status bits are declared in the ios class as public enumerated constants. The following is an extract from iostream.h showing the declaration.

// stream status bits

 enum io_state {

 goodbit = 0x00, // no bit set: all is ok

 eofbit = 0x01, // at end of file

 failbit = 0x02, // last I/O operation failed

 badbit = 0x04, // invalid operation attempted

 hardfail = 0x80 // unrecoverable error

The following program illustrates the manner in which this status information may be obtained using the associated member functions.

/*File ERROR01.CPP

Illustrates use of the stream error state bits.

*/

#include <iostream.h>

main()

{

 int x;

 cout << "Before bad input: " << endl

 << "cin.rdstate(): " << cin.rdstate() << endl

 << " cin.eof(); " << cin.eof() << endl

 << " cin.fail(): " << cin.fail() << endl

 << " cin.bad(): " << cin.bad() << endl

 << " cin.good(): " << cin.good() << endl

 << "Expects integer, but enter a ctrl-z instead: ";

 cin >> x;

 cout << endl << "After bad input: " << endl

 << "cin.rdstate(): " << cin.rdstate() << endl

 << " cin.eof(); " << cin.eof() << endl

 << " cin.fail(): " << cin.fail() << endl

 << " cin.bad(): " << cin.bad() << endl

 << " cin.good(): " << cin.good() << endl;

 cin.clear();

 cout << endl << "After cin.clear: " << endl

 << "cin.rdstate(): " << cin.rdstate() << endl

 << " cin.eof(); " << cin.eof() << endl

 << " cin.fail(): " << cin.fail() << endl

 << " cin.bad(): " << cin.bad() << endl

 << " cin.good(): " << cin.good() << endl;

 cout << "Terminating\n";

 return 0;

}//end main

The output from running this program and entering a ctrl-z when the program expected an integer is shown below:

Before bad input:

cin.rdstate(): 0

 cin.eof(); 0

 cin.fail(): 0

 cin.bad(): 0

 cin.good(): 1

Expects integer, but enter a ctrl-z instead:

After bad input:

cin.rdstate(): 3

 cin.eof(); 1

 cin.fail(): 2

 cin.bad(): 0

 cin.good(): 0

After cin.clear:

cin.rdstate(): 0

 cin.eof(); 0

 cin.fail(): 0

 cin.bad(): 0

 cin.good(): 1

Terminating

-end-.

Introduction to C++ and C Programming, Lecture Notes # 28, Character Functions and More on the I/O System,

Copyright 1996, R.G.Baldwin, Page � PAGE �14�

