Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 06, File 2003-06.DOC. Revised 8/1/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Declaring Variables, Representing Constants, etc.

� TOC \o "1-4" �1. The int Type	� GOTOBUTTON _Toc363889315 � PAGEREF _Toc363889315 �
1
��

1.1 Declaring an int Variable	� GOTOBUTTON _Toc363889316 � PAGEREF _Toc363889316 �
1
��

1.2 Initializing a Variable	� GOTOBUTTON _Toc363889317 � PAGEREF _Toc363889317 �
2
��

1.3 Type int Constants	� GOTOBUTTON _Toc363889318 � PAGEREF _Toc363889318 �
2
��

1.4 Other Integer Types	� GOTOBUTTON _Toc363889319 � PAGEREF _Toc363889319 �
2
��

1.5 Type long Constants	� GOTOBUTTON _Toc363889320 � PAGEREF _Toc363889320 �
2
��

1.6 Type char	� GOTOBUTTON _Toc363889321 � PAGEREF _Toc363889321 �
2
��

1.6.1 Declaring and Initializing Type char Variables	� GOTOBUTTON _Toc363889322 � PAGEREF _Toc363889322 �
2
��

1.6.2 Signed or Unsigned?	� GOTOBUTTON _Toc363889323 � PAGEREF _Toc363889323 �
2
��

1.6.3 Character Variables and Initialization	� GOTOBUTTON _Toc363889324 � PAGEREF _Toc363889324 �
3
��

1.6.4 Non-printing Characters	� GOTOBUTTON _Toc363889325 � PAGEREF _Toc363889325 �
3
��

1.6.5 Special Printing Characters	� GOTOBUTTON _Toc363889326 � PAGEREF _Toc363889326 �
3
��

2. The float and double Types	� GOTOBUTTON _Toc363889327 � PAGEREF _Toc363889327 �
4
��

2.1 Declaring Floating-Point Variables	� GOTOBUTTON _Toc363889328 � PAGEREF _Toc363889328 �
4
��

2.2 Floating-Point Constants	� GOTOBUTTON _Toc363889329 � PAGEREF _Toc363889329 �
4
��

2.3 Floating-Point Overflow and Underflow	� GOTOBUTTON _Toc363889330 � PAGEREF _Toc363889330 �
4
��

3. Other Types	� GOTOBUTTON _Toc363889331 � PAGEREF _Toc363889331 �
4
��

4. Storage of Variables, sizeof()	� GOTOBUTTON _Toc363889332 � PAGEREF _Toc363889332 �
4
��

�

This set of lecture notes describes how to declare a variable, how to represent a constant, and what a typical use for each might be.

	The int Type

C++ offers several integer data types. They differ in the range of values supported and in whether or not negative numbers can be used.

The int type is a signed integer, meaning that it must be a whole number and can be positive or negative. The range depends on the specific computer system.

	Declaring an int Variable

You can declare one or more int values as follows:

	int pigs, calves, chickens;

	int lambs;

These two lines of code instruct the compiler to set aside memory space for four int variables and to name those storage locations as indicated. Declarations that create storage for the variable are termed definitions of the variable.

	Initializing a Variable

To initialize a variable means to assign it an initial value in the declaration statement as follows:

	int pigs = 5, calves = 6, chickens = 7;

	int lambs = 3;

A declaration creates and labels the storage. The initialization process places a value in that storage.

Type int Constants

C++ recognizes a number without a decimal point and without an exponent as an integer.

By default, C++ assumes you are writing integers as decimal integers. You can also create octal or hexadecimal integers by using an appropriate prefix. A 0 (zero) prefix means that you are specifying an octal number. A 0x or 0X means you are writing in hexadecimal

It is important to note than whether you specify a value in decimal, octal, or hexadecimal, the same absolute value is always stored the same way internal to the computer.

	Other Integer Types

C++ offers the following adjective keywords to modify the basic integer type: unsigned, long, short, unsigned long int, or unsigned long, and unsigned short int, or unsigned short.

	Type long Constants

If you need to store a small number as a type long integer, you can add an l (lower case L) or preferably an L as a suffix.

	Type char

The char type is an integer type because it actually stores integers and not characters.

Certain integers are used to represent certain characters. A commonly used code is the ASCII code given in the appendices of many textbooks.

Using the ASCII code, the integer 65 is actually stored to represent the character 'A'.

	Declaring and Initializing Type char Variables

char variables are declared the same way as other variables. Here are some examples:

	char MyResponse;

	char MyTable, JonJones;

These two lines of code create three char variables: MyResponse, MyTable, and JonJones.

	Signed or Unsigned?

Whether a char type is signed or unsigned depends on the specific implementation. You should be able to find the answer in the manuals received with your implementation or in your on-line help.

	Character Variables and Initialization

To initialize a character variable to the letter A, you could use either of the following statements.

	char MyGrade = 65;

	char UrGrade = 'A';

A single character contained between single quotation marks is a C++ character constant.

The compiler converts the 'A' to the proper code value.

The single quotation marks are essential. If you leave them off, the compiler thinks the character is the name of a variable. If you use double quotation marks, the compiler thinks you are using a "string."

Briefly, a string is a sequence of one or more characters terminated by a special null character and treated as a unit.

	Non-printing Characters

If you look at an ASCII table, you will see that some on the characters are non-printing (the beep character for example). There are at least three ways to specify non-printing characters:

	char beep = 7;			//simply use the ASCII code

	char beep = '\007';		//use the octal value of the ASCII code

	char newline = '\n';		//use the escape sequence

Note the difference between numbers and number characters. For example, the character 4 is represented by ASCII code value 52. This code represents the symbol "4" and not the numerical value 4.

Note that the escape characters can be used by themselves surrounded by single quotation marks, or can be embedded into a string following cout << which is surrounded by double quotation marks.

Special Printing Characters

There are three escape sequences (\\, \', and \") which do not represent non-printing characters. Rather, these escape sequences are used to allow you to display the characters

	\ ' "

which taken by themselves in a string have a special meaning.

For example, if you want to display the line:

	My friend said, "a \ is called a backslash."

including the quotation marks and the backslash, you would use the following statement:

	cout << "My friend said, \"a \\ is called a backslash.\"\n";

	The float and double Types

Often, 32 bits are used to store a floating-point number (float). Eight bits are used to give the exponent its value and sign, and 24 bits are used to represent the non-exponent portion. This produces a precision of six or seven decimal digits and a range from 10^-37 up to 10^+37 where the ^ indicates exponentiation using signed exponents. (However, the manner in which float variables are represented may vary from one implementation to the next.)

C++ also provides double (for double precision) floating-point type. A double type usually provides greater precision, greater range, or both than a float. C++ also allows for a long double, which is intended to increase the precision and range even more.

	Declaring Floating-Point Variables

Floating-point variables are declared and initialized in the same manner as their integer counterparts, for example:

	float Jack, Jill;

	double Dipper;

	float AFamousConstant = 6.63e-34;

	long double MySalary;

	Floating-Point Constants

There are many ways to write floating-point constants, and it is also possible to force a floating-point constant to be stored as a float, double, or long double by appending a suffix to the constant. You should locate the methods for accomplishing this either in your textbook or in the help system for your compiler software and have that information readily available.

	Floating-Point Overflow and Underflow

While floating-point arithmetic is designed to alleviate overflow and underflow problems associated with integer arithmetic, it is not without its problems. You should find explanations regarding underflow and overflow in both integer and floating-point arithmetic in your textbook or other reference material and study them carefully.

Other Types

Other types (including arrays, pointers, structures, unions and classes), derived from the intrinsic types will be discussed later. For the time being, you need to know that a pointer type is a variable or constant that "points to" the location of a variable or other data object.

Storage of Variables, sizeof()

The following program can determine how your computer treats the storage of various data types.

Note the use of the sizeof() operator. This operator has different applications. As used in this program (with an argument enclosed in parenthesis), it determines the size in bytes used by the computer to store a particular type of data.

#include <iostream.h>

void main()

{

 cout << "The sizeof int measured in bytes is: " << sizeof(int) << " \n";

 cout << "The sizeof long measured in bytes is: " << sizeof(long) << " \n";

 cout << "The sizeof short measured in bytes is: " << sizeof(short) << " \n";

 cout << "\n";

 cout << "The sizeof unsigned int measured in bytes is: " << sizeof(unsigned int) << " \n";

 cout << "The sizeof unsigned long measured in bytes is: " << sizeof(unsigned long) << " \n";

 cout << "The sizeof unsigned short measured in bytes is: " << sizeof(unsigned short) << " \n";

 cout << "\n";

 cout << "The sizeof char measured in bytes is: " << sizeof(char) << " \n";

 cout << "The sizeof unsigned char measured in bytes is: " << sizeof(unsigned char) << " \n";

 cout << "\n";

 cout << "The sizeof float measured in bytes is: " << sizeof(float) << " \n";

 cout << "The sizeof double measured in bytes is: " << sizeof(double) << " \n";

 cout << "The sizeof long double measured in bytes is: " << sizeof(long double) << " \n";

}

The output from this program, for one particular implementation of C++, is:

The sizeof int measured in bytes is: 2

The sizeof long measured in bytes is: 4

The sizeof short measured in bytes is: 2

The sizeof unsigned int measured in bytes is: 2

The sizeof unsigned long measured in bytes is: 4

The sizeof unsigned short measured in bytes is: 2

The sizeof char measured in bytes is: 1

The sizeof unsigned char measured in bytes is: 1

The sizeof float measured in bytes is: 4

The sizeof double measured in bytes is: 8

The sizeof long double measured in bytes is: 10

Note that for this particular implementation, the size in bytes of a short integer is the same as the size in bytes of an int.

	

-end-

Introduction to C++ and C Programming, Lecture Notes # 06, Declaring Variables, Representing Constants, etc.

Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

