Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 09, File 2003-09.DOC. Revised 8/1/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Operators

� TOC \o "1-4" �1. Operands	� GOTOBUTTON _Toc363889563 � PAGEREF _Toc363889563 �
1
��
2. Assignment Operator: =	� GOTOBUTTON _Toc363889564 � PAGEREF _Toc363889564 �
1
��
3. Arithmetic Operators	� GOTOBUTTON _Toc363889565 � PAGEREF _Toc363889565 �
2
��
3.1 Addition Operator: +	� GOTOBUTTON _Toc363889566 � PAGEREF _Toc363889566 �
2
��
3.2 Subtraction Operator: -	� GOTOBUTTON _Toc363889567 � PAGEREF _Toc363889567 �
2
��
3.3 Multiplication Operator: *	� GOTOBUTTON _Toc363889568 � PAGEREF _Toc363889568 �
2
��
3.4 Division Operator: /	� GOTOBUTTON _Toc363889569 � PAGEREF _Toc363889569 �
2
��
4. Operator Precedence	� GOTOBUTTON _Toc363889570 � PAGEREF _Toc363889570 �
2
��
5. The sizeof Operator	� GOTOBUTTON _Toc363889571 � PAGEREF _Toc363889571 �
3
��
6. Modulus Operator: %	� GOTOBUTTON _Toc363889572 � PAGEREF _Toc363889572 �
3
��
7. The Incrementing and Decrementing Operators	� GOTOBUTTON _Toc363889573 � PAGEREF _Toc363889573 �
3
��
7.1 The Increment Operator: ++	� GOTOBUTTON _Toc363889574 � PAGEREF _Toc363889574 �
3
��
7.2 The Decrementing Operator: --	� GOTOBUTTON _Toc363889575 � PAGEREF _Toc363889575 �
5
��
7.3 Precedence	� GOTOBUTTON _Toc363889576 � PAGEREF _Toc363889576 �
6
��
7.4 Caution	� GOTOBUTTON _Toc363889577 � PAGEREF _Toc363889577 �
6
��
8. More Assignment Operators	� GOTOBUTTON _Toc363889578 � PAGEREF _Toc363889578 �
6
��
9. The Comma Operator	� GOTOBUTTON _Toc363889579 � PAGEREF _Toc363889579 �
6
��
10. Using Relational Operators and Expressions	� GOTOBUTTON _Toc363889580 � PAGEREF _Toc363889580 �
7
��
10.1 What Represents True?	� GOTOBUTTON _Toc363889581 � PAGEREF _Toc363889581 �
7
��
10.2 Precedence of Relational Operators	� GOTOBUTTON _Toc363889582 � PAGEREF _Toc363889582 �
7
��
�

Operands
Operators operate on operands. There are binary operators and unary operators. Binary operators have two operands (one on each side). Unary operators have only one operand, usually (but not always) on the right-hand side. (A binary operator is sometimes called a dyadic operator.)

Assignment Operator: =
In C++, the = symbol is a value-assigning operator and is called the assignment operator.

An assignment operator causes a value to be placed in that area of memory associated with a variable or an object. It is a binary operator. The left operand is the name of the object, and the right operand is an expression or constant representing the value to be stored there.

A statement such as

	MyVar = 10;

means that the right operand is assigned to the left operand.

Execution of the assignment operation proceeds from right to left. Thus, the following is a valid assignment statement in C++:

	MyVar = UrVar = HerVar = 45;

However, the following declaration is not allowed.

	int MyVar = UrVar = HerVar = 45;

Arithmetic Operators
C++ uses the following basic arithmetic operators.

	+ - * /

C++ does not have an exponentiation operator as do some programming languages.

Addition Operator: +
The addition operator (+) is a binary operator which causes the operands to be added together. The operands can be either variables or constants.

The symbol + is also used as a unary operator when placed to the left of a single operand but it has no effect.

Subtraction Operator: -
The binary subtraction operator (-) causes the right operand to be subtracted from the left operand.

The - symbol is also used as a unary sign-changing operator when placed to the left of a single operand.

Multiplication Operator: *
The binary multiplication operator (*) causes the two operands to be multiplied.

Division Operator: /
The binary division operator (/) causes the left operand to be divided by the right operand.

Floating-point division gives a floating-point answer.

Integer division yields an integer answer. Any fraction resulting from integer division is discarded.

When a calculation mixes integer and floating-point types, the integer is converted to floating-point before division.

Operator Precedence
Consider the following statement:

	MyVar = 16.0 + 31.6 * n / UrVar;

This statement includes addition, multiplication, and division. The final answer depends on the order in which the operations take place.

Each operator is assigned a precedence level. Precedence levels are used to determine the order in which the operations take place.

Multiplication and division have a higher precedence than addition and subtraction, so they are performed first. If operators of equal precedence share an operand, they are (generally) executed from left to right. (The assignment operator is an exception.)

The order of operations can be modified by enclosing certain terms in parenthesis. C++ performs all the operations within parenthesis first, using the defined operator precedence. Then the operations move to that part of the expression which is not enclosed in parenthesis.

The sizeof Operator
The sizeof operator returns the size, in bytes, of its single operand. The operand can be a specific data object, or it can be a type. If the operand is a type, it must be enclosed in parenthesis.

Modulus Operator: %
The modulus operator (%) provides the remainder that results when the integer left operand is divided by the integer right operand. This operator cannot be used with floating-point numbers.

The Incrementing and Decrementing Operators
The Increment Operator: ++
The increment operator (++) increases the value of its operand by one. The ++ may be placed before or after the operand. These two options are known as the prefix and postfix modes. The two modes differ with regard to the precise point in the execution of the program that the addition takes place.

If the incrementing operator appears to the left of the variable, the variable is incremented before it is “used.” If it is to the right of the variable, the variable is incremented after it is “used.”

The following program illustrates a common use of the incrementing operator in the conditional clause of a loop. Although this program contains a while loop which we haven’t discussed yet, you are already familiar with loops from your Pascal classes so you should have no difficulty understanding this.

The program also includes output formatting which we haven’t covered yet. Briefly, the inclusion of the term setw(5) causes the output field width to be set to a minimum of five characters. The inclusion of setprecision(4) causes the system to display four digits to the right of the decimal point. We will discuss output formatting later.

//==========Begin program Incrmnt1.cpp
#include <iostream.h>
#include <iomanip.h>
#define OFFSET 3.52
#define FACTOR 0.654
main()
{
 float Result;
 int Count;
 cout <<"Count Result \n"; //display column headers
 Count = 2.0;		//initialize the counter

 while (++Count < 19)		//start the while loop
	{
		Result = FACTOR*Count+OFFSET;
		cout << setw(5) << Count << ' '
		 << setw(7) << setprecision(4) << Result << " units\n";
	}//end while

 cout <<"Have a good day.\n";
 return 0;
}
//==========End program

The output from this program is shown below. Note that the first value shown for Count is 3. Note also that the first value for Result indicates that a Count value of 3 was used in the calculation. Thus, Count was incremented from 2 to 3 before it was “used” in the calculation.

Count Result
 3 5.482 units
 4 6.136 units
 5 6.79 units
 6 7.444 units
 7 8.098 units
 8 8.752 units
 9 9.406 units
 10 10.06 units
 11 10.714 units
 12 11.368 units
 13 12.022 units
 14 12.676 units
 15 13.33 units
 16 13.984 units
 17 14.638 units
 18 15.292 units
Have a good day.

Note the statement which reads:

 while (++Count < 19)		//start the while loop

Including an increment operator inside the conditional statement in a loop is a common practice in C++. Since the incrementing operator is in prefix mode in this operation, the variable is incremented before the test is made.

Programmers have always had to be careful with regard to the first and last values of the control variables in loops. This compact, and somewhat cryptic form makes this issue even more critical.

The following program illustrates the difference between the prefix and postfix modes of operation.

//==========Begin program AutoInc1.cpp
// Program to illustrate postfix and prefix operations
#include <iostream.h>
#include <iomanip.h>
main()
{
	int Avar = 1;
	int Bvar = 1;
	int AvarInc, IncBvar;
	cout << "Avar AvarInc Bvar IncBvar \n"; //print titles

	AvarInc = Avar++;	//postfix: Avar changed after its value is used
 //AvarInc is now 1, Avar is now 2
	IncBvar = ++Bvar;	//prefix: Bvar changed before its value is used
 //IncBvar is now 2, Bvar is now 2

	cout << setw(4) << Avar << setw(8) << AvarInc
		<< setw(5) << Bvar << setw(8) << IncBvar;
	return 0;
}
//==========End program

The output from this program follows:

Avar AvarInc Bvar IncBvar
 2 1 2 2

In this program, the two variables Avar and Bvar are initially set to 1. Then the values of Avar and Bvar are assigned to the variables AvarInc and IncBvar. An incrementing operator is incorporated in this assignment so that after each assignment statement is executed, the values of Avar and Bvar are 2.

The question is, what are the values of AvarInc and IncBvar following the execution of the two assignment statements?

Since a postfix operation is used in the assignment of Avar to AvarInc, meaning that Avar is changed after it is used in the assignment, the value of AvarInc should be 1.

Likewise, since a prefix operation is used in the assignment of Bvar to IncBvar, meaning that Bvar is changed before it is used in the assignment, the value of IncBvar should be 2.

The output confirms our analysis.

When an increment operator is used by itself, it doesn't matter whether you use the prefix or postfix modes. However, when the operator and its operand are part of a larger expression (such as the assignment statements illustrated above), it matters very much. You must give thought to the result that you want in deciding whether to use prefix or postfix.

The Decrementing Operator: --
For each increment operator, there is a corresponding decrement operator (--). As with the increment operator, there is a prefix and a postfix mode for the decrement operator.

Precedence
The increment and decrement operators have a high precedence. Only parentheses are ranked higher.

Don't confuse the precedence with the order of evaluation (as it relates to prefix or postfix mode).

Caution
You can get in trouble if you attempt to do too much with the increment or decrement operators. Follow these two rules to avoid trouble:

 Don't use increment or decrement operators on a variable that is part of more than one argument of a function, such as:

	printf("%d %d\n", num, num*num++);

Don't use increment or decrement operators on a variable that appears more than once in an expression such as:

	ans = num/2 + 5*(1 + num++);

More Assignment Operators
There are several other shorthand operators available in C++:

	+= -= *= /= %=

Briefly, the expression

	scores += 20

is the same as

	scores = scores + 20

The usage of each of these operators follows this same pattern.

The Comma Operator
The comma operator allows you to include more than one initialization or update in a for loop specification. Use of the comma operator for this purpose will be discussed later.

The comma operator is not restricted to for loops, but that is where it is most often used. When used to separate two expressions, the operator guarantees that the expressions it separates will be evaluated in a left-to-right order.

Using Relational Operators and Expressions
A table of C++ relational operators follows:

	Operator	Meaning
		<	is less than
		<=	is less than or equal to
		==	is equal to
		>=	is greater than or equal to
		>	is greater than
		!=	is not equal to

Note in particular the (!=) operator which is often expressed as (<>) in other programming languages.

Also note that you cannot use (=) in place of (==) which is a common programming error. These operators are often used in the test condition of a control statement.

You can use these relational operators to compare numeric data or character data. When used with character data, they test the numeric equivalent values associated with the characters

You cannot use these relational operators to compare strings. C++ has standard functions available for that purpose.

If you use the relational operators to compare floating-point numbers, you should avoid testing for equality. Floating-point numbers are often "practically" equal, but are not "exactly" equal due to round-off errors, etc.

What Represents True?
In C++, false is a value of zero and true is any other value

Precedence of Relational Operators
See the textbook, or the on-line help.

-end-

Introduction to C++ and C Programming, Lecture Notes # 09, Operators,
Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

