Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #22, File 2003-22.DOC. Revised 9/4/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Programming for Multiple Choices: Using switch and break

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc366920341 � PAGEREF _Toc366920341 �1��

2. Using the switch Statement	� GOTOBUTTON _Toc366920342 � PAGEREF _Toc366920342 �2��

3. Using Multiple Labels	� GOTOBUTTON _Toc366920343 � PAGEREF _Toc366920343 �2��

4. Comparing switch and if else	� GOTOBUTTON _Toc366920344 � PAGEREF _Toc366920344 �3��

�

Introduction

As discussed in an earlier set of lecture notes, we can use if else if to select among several alternatives. We also have another construct which allows us to select among several alternatives: the switch statement. If the test condition is based on integer data, a switch statement with a break statement may be more convenient than if else if.

The general form of the switch statement is

	switch (integer expression)

	{

	case constant1:

		statements; (optional)

	case constant2:

		statements; (optional)

		...

	default: (optional)

		statements; (optional)

	}

During execution, an attempt is made to match the value of the integer expression to one of the case constants. If a match is made, all the statements following that constant, down to and including a break statement are executed. Note that it is not necessary to place braces around a series of statements which are to be executed following a match. Note also that if you want to execute only those statements associated with a specific match, you must use break to avoid executing statements which follow. Although similar to a Pascal case statement, there are significant operational differences.

If no match is found and the optional default section is included, the statements in that section are executed. If default is not used and no match is found, then the entire switch statement is effectively skipped.

Using the switch Statement

The following program is the same as the earlier multiple choice program, but this time, it is implemented using a switch statement with embedded break statements. Note that this rewrite is possible only because the test condition is based on integer data (recall that a character is a form of integer data). The switch statement also requires an "implied equality" test. Thus, the if else if formulation is much more general.

//==========Begin program switch1.cpp Illustrate switch

#include <iostream.h>

main()

{

	char ch;

	cout << "A famous female computer pioneer was:\n";

	cout << "(A) Grace Hopper, (B) Grass Hopper, (C) Grace Kelly\n";

	cout << "\nEnter a letter choice below.\n";

	cin >> ch;

	switch (ch)

 {

		case 'A':	cout << "Correct answer\n";

 		break;

		case 'B':	cout << "Not Grass Hopper";

 		break;

		case 'C':	cout << "Not Grace Kelly";

				break;

		default:	cout << "You didn't enter an allowable letter.";

				}

		return 0;

}	//==========End program

Using Multiple Labels

Since statements following the case constant are optional, a special implementation of the switch statement allows for an "or" type of operation. For example, the following program fragment would allow the value of ch to match either 'a' or 'A'.

	switch (ch)

	{

		case 'a':

		case 'A':	count++;

				break;

	. . .

	}

The following program uses this implementation to count the vowels in some text without regard to whether the characters are upper case or lower case. The idea for this C++ program is based on a C program published by Michael Waite and Stephen Prata in their excellent book: C: Step-by-Step.

//vowels.cpp -- illustrates use of multiple labels |

#include<iostream.h>

#include<iomanip.h>

void main()

{

 char ch;

 int act, ect, ict, oct, uct;

 act = ect = ict = oct = uct = 0;

 cout << "Enter some text; enter ctrl-z to quit.\n";

 while(cin.operator>>(ch)) //returns false on EOF

{

 switch (ch)

 {

 case 'a' :

 case 'A' : act++; break;

 case 'e' :

 case 'E' : ect++; break;

 case 'i' :

 case 'I' : ict++; break;

 case 'o' :

 case 'O' : oct++; break;

 case 'u' :

 case 'U' : uct++; break;

 default : break;

 } //end of switch

 } //end of while loop

 cout << endl;

 cout << "Number of vowels: A E I O U\n";

 cout << " ";

 cout << setw(4) << act << setw(4) << ect << setw(4) << ict

 << setw(4) << oct << setw(4) << uct << endl;

} //end main

Comparing switch and if else

If you can use a switch, your program will probably run faster, be easier to understand, and require less code. Thus, if you can use a switch, use it.

However, you cannot use a switch if your choice is based on evaluating a float variable or expression. You probably cannot conveniently use a switch if a variable must fall into a certain range.

-end-

Introduction to C++ and C Programming, Lecture Notes # 22, Programming for Multiple Choices: Using switch and break,

Copyright 1996, R.G.Baldwin, Page � PAGE �3�

