Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077



CIS 2003, C++ Programming, Lecture Notes # 35, File 2003-35.DOC.  Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.





Functions, Arrays, and Pointers





Suppose that we want to write a function that operates on a one-dimensional array as illustrated in the following example program:



//File arayfunc.cpp

//Illustrates uses of functions and pointers with arrays



/*Write and test a function that returns the largest value stored in an

array.*/



#include <iostream.h>

#include <iomanip.h>

#define LIM 5



void main()

{

  float data[LIM] = {1.0,16.9,3.5,8.3,7.6};  //declare array

  float max(float *ptr,int size);      //function prototype

  cout << "Largest value is " << setw(4) << setprecision(2)

    << max(data,LIM) << endl;

}  //=====End main()



//=====Begin max()===========================================

float max(float *ptr,int size)      //function definition

{

  int cnt;        //loop control variable

  float big = 0.0;  //variable used to capture max value

  for(cnt=0;cnt<size;cnt++,ptr++) if(*ptr>big) big = *ptr;

  return big;    //return max value

}



This program contains a function named max() which returns the maximum value in an array.   Several key aspects of this program, as it relates to the use of pointers with functions and arrays, are highlighted in boldface.



First, an array named data[] is declared and initialized.



Next, a function prototype is declared which matches the function definition.  The function prototype statement and the function definition are repeated below for comparison.



 	float max(float*,int);				//function prototype

	float max(float *ptr,int size)		//function definition



The function definition statement contains an implicit declaration for a pointer variable of type float named ptr.  This pointer points to a float-type variable.  The implicit declaration is as follows:



	...(float *ptr, ...)



This is the standard method for declaring pointers, except that this time it is included within the parenthesis of the function definition.



The function definition also declares an integer variable named size which is used as a limit in the processing loop within the function.  We will see that this variable receives a copy of the size of the array from the calling program.



A call is made to the function as the right operand of an insertion operator in the following statement.  The call is shown in italics in this representation.



cout << "Largest value is " << setw(4) << setprecision(2)

    << max(data,LIM) << endl;



The call passes two arguments to the function.  



The first argument, data, is the name of the array.  You will recall that the name of an array is actually a pointer to the first element in the array so that this has the effect of passing the address of the first element to the function.  This address is used to initialize the pointer variable, ptr, which is implicitly declared in the function definition.  (More properly, the variable ptr comes into being when control is passed to the function and that variable is initialized to have a value which is a copy of the address of the array named data.)



The second argument passed is the size of the array.



The logic within the function is to examine each element in the array in such a manner that the local variable big ends up containing the maximum value in the array.  This is accomplished using a simple for loop as follows:



	for(cnt=0; cnt<size; cnt++,ptr++) if(*ptr > big) big = *ptr;



where cnt is the loop control variable and size is the size of the array.  



The following portion of the statement:



	if(*ptr > big) big = *ptr;



can be interpreted as follows:  If the contents of the location pointed to by ptr (if the contents of the location whose address is contained in the pointer variable named ptr) is greater than the current contents of the variable big, then assign to big the contents of the location pointed to by ptr.  Notice the use of the indirection operator (*) which is used to examine the value stored in the address pointed to by ptr.  One tutorial on C uses a memory hook something like: "consider the star to indicate stored in the location."



During each iteration of the loop, the pointer, ptr is incremented within the following section of the for statement:



	for(cnt=0;cnt<size;cnt++,ptr++)



Recall that each time ptr is incremented, the actual value stored in the pointer variable is increased by the number of bytes required to contain one unit of the data type.  In this case, that would be four bytes on a DOS machine since the data type is float.



There are a multitude of ways to handle pointers in control structures and our example shows only one.  However, if you fully understand this example, you should be able to extend this method to produce functions which can perform practically any type of manipulations on one-dimensional arrays.



-end-

Introduction to C++ and C Programming, Lecture Notes # 35, Function, Arrays, and Pointers,

Copyright 1996, R.G.Baldwin, Page � PAGE �3�







