Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 44, File 2003-44.DOC. Revised 9/21/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Unions in C and C++

Structures allow us to store different types of values as a single unit. Unions allow us to store values of different types in the same location.

We define and use unions in the same way that we define and use structs. To define a new union type, we follow the keyword union with a name for the new type and a set of members contained within a pair of braces terminated by a semicolon. The thing that is special about the union is that all the members share the same physical memory.

Once we have define a new union type, we can declare variables using that type.

We can access a union’s individual fields using the dot operator. We can also access the fields of a union indirectly through a pointer using the pointer operator (->).

Unions are frequently used to assign data to a location using one type specification and then accessing that data according to a different type specification

The following example illustrates the use of a union to contain both int and char data. In this program, a union is declared to contain either a single integer or a two-element array of characters and a variable of that union type is declared.

An integer value is assigned to the integer member of the union variable. This integer is accessed and printed using both decimal and hexadecimal notation. Finally, the contents of the two char fields are accessed and printed.

 //Program to illustrate use of the union.

 //File UNIONS.CPP

 #include <iostream.h>

 #include <iomanip.h>

 void main()

 {

 union thing //define a union which can

 { // accommodate two different

 int integer; // types of data

 char characters[2];

 }; //end union template definition

 thing data; //declare a union variable

 data.integer = 65 + 66*256; //put some data into it

 cout << "Print as decimal integer: " << data.integer << endl;

 cout << "Print integer as hex: "

 << setiosflags(ios::hex) << data.integer << endl;

 cout << "Print as characters "

 << data.characters[0] << " " << data.characters[1] << endl;

 } //end main

The output from this program is:

Print as decimal integer: 16961

Print integer as hex: 4241

Print as characters A B

For purposes of illustration, the integer data was constructed so as to consist of two bytes, each representing a printable character: A and B.

-end-

Introduction to C++ and C Programming, Lecture Notes # 44, Unions in c and C++,

Copyright 1996, R.G.Baldwin, Page � PAGE �2�

