Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 34, File 2003-34.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Pointers to Arrays

Pointers offer an efficient way to access the elements in arrays. According to some authors, the overhead required to access an array element using indexing is much greater than that required to access an array element using pointers. As a result, programs which access arrays using pointers may run faster than programs which access arrays using conventional indexing.

By definition, an array name is a pointer to the first element in an array. For example, the following program prints the word equal because &data[0] is equal to data.

//File arayname.cpp

#include<iostream.h>

void main()

{

 int data[3];

 if (data == &data[0])

 cout << "Equal\n";

 else

 cout << "Not equal\n";

 cout << "Terminating";

}

This confirms that if data is the identifier for an array, then

	data == &data[0]

Both represent the memory address of the first element and both are pointer constants. They cannot be changed.

A pointer variable can only be a pointer to a specific type of data. Therefore, whenever you declare a pointer, you must declare the type of data that it points to.

Certain types of arithmetic are possible with pointer variables. For example, if you increment a pointer variable, the actual value changes by the number of bytes required to store one object of the type of data to which it points.

This is illustrated by the following program.

//Illustrates pointer addition

#include<iostream.h>

#include <iomanip.h>

#define SIZE 4

void main()

{

 int MyIntData[SIZE], index;

 int *pti; //declare pointer to type integer

 float MyFloatData[SIZE], *ptf; //declare pointer to type float

 pti = MyIntData; //assign address of int array to pointer

 ptf = MyFloatData; //assign address of float array to pointer

 for (index = 0; index < SIZE; index++)

 cout << "Pointers + " << index << ": " << setw(10)

 << (unsigned)(pti+index) << " " << (unsigned)(ptf+index) << endl;

 cout << "Terminating";

}//end program

This program will print out the addresses assigned to the two arrays, and the addresses may be different from one run to the next. On one occasion, this program printed the following values for the integer array:

	7350, 7352, 7354, 7356

and the following addresses for the floating-point array:

	7326, 7330, 7334, 7338

This program shows that incrementing a pointer to an int causes the actual value of the pointer to increase by two (the number of bytes in an int variable for the particular machine in use). Also, the program shows that incrementing a pointer to a float causes the actual value to increase by four (the number of bytes in a float variable for the particular machine in use).

Stated differently, the program shows that adding an integer value to a pointer causes the pointer to increase by that number of storage units. Except for char data, this usually means that the actual value of the pointer increases by a larger amount than the value added. Typically, char type requires only one byte per data element.

The program also illustrates the assignment of pointer constants (array names in this case) to the variables pti and ptf. Since array names are already addresses, the & operator was not required for these assignments.

Finally, the program illustrates the declaration of the two pointer variables using the indirection operator in the following format:

	int MyIntData[SIZE], *pti;

	float MyFloatData[SIZE], *ptf;

Pointer addition is an example of operator overloading. That is, the behavior of the + operator depends on the type of its operands. C++ carries operator overloading even further by letting the user define new context-dependent meanings for operators. However, that topic is reserved for the second-semester course.

Note the following equalities where MyIntData is the name of an array:

	MyIntData + 2 == &MyIntData[2]		//same address

	*(MyIntData + 2) == MyIntData[2]		//same value

The following program illustrates the accessing of array data using both indices and pointers.

//File pt_idx1.cpp

//Illustrates array access using indices and pointers

#include <iostream.h>

void main()

{

 int C, data[5], *ptr;

 //Store data in the array using the index method

 for(C = 0; C < 5; C++) data[C] = C;

 //Read data from the array using the pointer method

 for(C = 0,ptr = data; C < 5; C++, ptr++) cout << *ptr << " ";

}//end main()

This program writes data into an array using the index method and reads it back out for display using the pointer method. The output from the program is as follows:

0 1 2 3 4

-end-

Introduction to C++ and C Programming, Lecture Notes # 34, Pointers to Arrays,

Copyright 1996, R.G.Baldwin, Page � PAGE �3�

