Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #32, File 2003-32.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Arrays

� TOC \o "1-4" �1. Introduction to Arrays	� GOTOBUTTON _Toc368122849 � PAGEREF _Toc368122849 �1��

2. Using a Loop with an Array	� GOTOBUTTON _Toc368122850 � PAGEREF _Toc368122850 �2��

�

Introduction to Arrays

Arrays let you store and retrieve two or more items of related information conveniently.

An array is a series of data objects of the same type stored sequentially in memory. The entire array bears a single name, and the individual data objects, or elements are accessed by using an integer index.

The following declaration

	float MyArray[20];

states that MyArray is an array with 20 elements, all of type float. The first element is called MyArray[0] and the last element is called MyArray[19].

An array can be of any data type, including the most complex types. During your second and third semesters of study in C++ programming, you will learn that it is possible to create arrays of objects which are extremely complex types.

Earlier we discussed the storage of strings in arrays. A char array is one where each data element consists of one eight-bit byte which is an appropriate format for storing character values. A string is a char array in which the null character '\0' is used to mark the end of the data in the array.

The integer values used to identify the array elements are called subscripts or indices. They must begin with 0 (zero). The array elements are stored in contiguous memory locations.

Using a Loop with an Array

The following program reads 5 grades and stores them in an array. The data in the array is then printed and finally it is averaged. (Note the use of the float cast operator near the end of the program.

//==========Begin program grades_i.cpp

//Illustrate arrays and loops

#include <iostream.h>

#include <iomanip.h>

#define SIZE 5

void main()

{

 int index, grade[SIZE];

 int sum = 0;

 float average;

 cout << "Enter " << SIZE << " grades:\n";

 for(index=0; index < SIZE; index++) cin >> grade[index];

 for(index=0; index < SIZE; index++) cout << setw(5) << grade[index];

 cout << endl;

 for(index=0; index < SIZE; index++) sum += grade[index];

 average = (float) sum/SIZE;

 cout << "Sum of grades: " << sum << " average: "

 << setprecision(2) << average;

} //==========End program

For this example, using loops and arrays is much more convenient than using 5 separate cin statements and 5 separate cout statements to read in and verify the 5 grades. (As the number becomes larger, the improved convenience becomes even greater.)

-end-

Introduction to C++ and C Programming, Lecture Notes # 32, Arrays,

Copyright 1
