Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 33, File 2003-33.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Arrays, Initialization and Storage Classes

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc368122901 � PAGEREF _Toc368122901 �1��

2. Automatic Variables and Arrays	� GOTOBUTTON _Toc368122902 � PAGEREF _Toc368122902 �1��

3. External Variables and Arrays	� GOTOBUTTON _Toc368122903 � PAGEREF _Toc368122903 �2��

4. Static Variables and Arrays	� GOTOBUTTON _Toc368122904 � PAGEREF _Toc368122904 �2��

5. Assigning Array Values	� GOTOBUTTON _Toc368122905 � PAGEREF _Toc368122905 �2��

�

Introduction

The terms external, static, and automatic describe different storage classes that C++ allows. The storage class determines how widely known a data item is to various functions in a program, and for how long it is kept in memory.

We can initialize single-valued variables using declarations like the following:

	int MyVar = 1;

You can initialize arrays in a similar fashion in C++.

Automatic Variables and Arrays

An automatic variable or automatic array is one defined inside a function (including formal arguments). Such a variable or array is known only within that function and exists only for the duration of a function call to that function.

C++ allows us to initialize automatic arrays using a comma-separated list of values enclosed in braces as shown below:

	main()

	{

		int MyArray[3] = { 16, 3, 48};

	...

	}

External Variables and Arrays

An external variable or external array is defined outside a function as shown below:

#include <stdio.h>

int count =0;				//declare and initialize external variable

int YourArray[5] = {6, 5, 9, 8, 6};	//declare and initialize external array

main()

{

	...

}

External variables and arrays differ from automatic variables and arrays in three respects:

They are known to all functions following them in a file.

They persist for as long as the program runs.

They are initialized to zeros by default.

Static Variables and Arrays

You can define a static variable or static array inside a function by beginning the declaration with the keyword static as shown below:

int account(int n, int m)

{

	static int HisArray[2] = {343, 332};

	...

}

This keyword creates an array that is local to the function. However, a static array retains its values between function calls and is initialized to zeros by default.

For an external or static array, if the number of items listed in the initialization is less than the size of the array, the compiler will fill out the array with zeros.

If the number of items listed is more than the size of the array, a compiler error will result.

You can allow the compiler to determine the size of the array using a statement like the following for which the brackets are empty:

	int Ages[] = {31, 28, 31};

Assigning Array Values

You can use an assignment operator to assign values to members of an array regardless of storage class. A for loop is a convenient way to assign values to the elements of an array on an element-by-element basis.

C and C++ will not allow you to assign one array to another as a unit.

-end-

Introduction to C++ and C Programming, Lecture Notes # 33, Arrays, Initialization, and Storage Classes,

Copyright 1996, R.G.Baldwin, Page � PAGE �1�

