Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++
 Programming, Lecture Notes # 12
, File 2003-12
.DOC.  Revised 8/2/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Type Conversions

� TOC \o "1-4" �1. Automatic Type Conversions	� GOTOBUTTON _Toc342902328  � PAGEREF _Toc342902328 �
1
��
2. The Cast Operator	� GOTOBUTTON _Toc342902329  � PAGEREF _Toc342902329 �
1
��
�
Automatic Type Conversions
If you perform operations in C++ using mixed types of operands, the compiler will usually implement type conversions automatically using a set of rules which you can find in a good textbook or a good C++ Programmers Manual.  This can be a danger and you should be aware of the rules which will be applied.  If possible, it is best to avoid mixed-type arithmetic unless you understand exactly how the type conversions will be performed.

The Cast Operator
It is possible, and sometimes desirable, for you to give explicit instructions for the precise method of type conversion that you want to occur.  The method is called a cast or is sometimes called type casting

The method consists simply of preceding the quantity to be converted with the name of the desired type in parenthesis.  The parenthesis and type name together constitute a cast operator.  

Consider the following program.

//Illustrates  automatic  type  conversion  and  type  casting
#include  <iostream.h>
main()                
{
    int  miles;
    miles  =  1.6  +  1.7;    //automatic  conversion  after  arithmetic
    cout  <<  "Miles  is:  "  <<  miles  <<  '\n';
    miles  =
  (int)  1.6  +  (int)  1.7;  
//type  casting  before  arithmetic
    cout  <<  "Miles  is:  "  <<  miles  <<  '\n';
    return  0;
}
//==========End  program  

The output from this program follows:

Miles is: 3
Miles is: 2

In this program, the value of miles which is an integer is computed twice, once with automatic type conversion and once again with type casting.

In the first case, 1.6 is added to 1.7 giving 3.3.  This value is then automatically converted to integer type and truncated to 3 and stored in the integer variable miles.

In the second case, using the cast operator, 1.6 is truncated to the integer 1 and 1.7 is truncated to the integer 1.  Then these two values are added giving a sum of 2.

Thus, the two approaches result in significantly different answers.

-end-


Introduction to C++ and C Programming, Lecture Notes # 12, Type Conversions,
Copyright 1996, R.G.Baldwin, Page � PAGE �
2
�






