Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 51, File 2003-51.DOC. Revised 9/26/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Introduction to C++ and C Programming

Overview

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc368384273 � PAGEREF _Toc368384273 �
3
��

2. Differences between C and C++	� GOTOBUTTON _Toc368384274 � PAGEREF _Toc368384274 �
4
��

3. Simple Program Structure in C++	� GOTOBUTTON _Toc368384275 � PAGEREF _Toc368384275 �
5
��

3.1 Output Control Codes	� GOTOBUTTON _Toc368384276 � PAGEREF _Toc368384276 �
6
��

3.2 Case, Upper and Lower	� GOTOBUTTON _Toc368384277 � PAGEREF _Toc368384277 �
6
��

3.3 Data Types	� GOTOBUTTON _Toc368384278 � PAGEREF _Toc368384278 �
6
��

3.4 Programs with Multiple Functions	� GOTOBUTTON _Toc368384279 � PAGEREF _Toc368384279 �
7
��

3.5 Keywords	� GOTOBUTTON _Toc368384280 � PAGEREF _Toc368384280 �
7
��

4. Simple Input and Output	� GOTOBUTTON _Toc368384281 � PAGEREF _Toc368384281 �
7
��

5. Variables and Constants	� GOTOBUTTON _Toc368384282 � PAGEREF _Toc368384282 �
7
��

6. Data Types	� GOTOBUTTON _Toc368384283 � PAGEREF _Toc368384283 �
7
��

7. Declaring Variables, Representing Constants, etc.	� GOTOBUTTON _Toc368384284 � PAGEREF _Toc368384284 �
7
��

7.1 The int Type	� GOTOBUTTON _Toc368384285 � PAGEREF _Toc368384285 �
7
��

7.1.1 Declaring int Variables	� GOTOBUTTON _Toc368384286 � PAGEREF _Toc368384286 �
7
��

7.1.2 Initializing int Variables	� GOTOBUTTON _Toc368384287 � PAGEREF _Toc368384287 �
7
��

7.1.3 Type int Constants	� GOTOBUTTON _Toc368384288 � PAGEREF _Toc368384288 �
8
��

7.1.4 Other Integer Types	� GOTOBUTTON _Toc368384289 � PAGEREF _Toc368384289 �
8
��

7.1.5 Type long Constants	� GOTOBUTTON _Toc368384290 � PAGEREF _Toc368384290 �
8
��

7.2 The char Type	� GOTOBUTTON _Toc368384291 � PAGEREF _Toc368384291 �
8
��

7.2.1 Declaring char Variables	� GOTOBUTTON _Toc368384292 � PAGEREF _Toc368384292 �
8
��

7.2.2 Initializing char Variables	� GOTOBUTTON _Toc368384293 � PAGEREF _Toc368384293 �
8
��

7.2.3 Non-printing Characters	� GOTOBUTTON _Toc368384294 � PAGEREF _Toc368384294 �
8
��

7.2.4 Special Printing Characters	� GOTOBUTTON _Toc368384295 � PAGEREF _Toc368384295 �
9
��

7.3 The float and double Types	� GOTOBUTTON _Toc368384296 � PAGEREF _Toc368384296 �
9
��

7.3.1 Declaring and Initializing float Variables	� GOTOBUTTON _Toc368384297 � PAGEREF _Toc368384297 �
9
��

7.3.2 Floating-Point Constants	� GOTOBUTTON _Toc368384298 � PAGEREF _Toc368384298 �
9
��

7.4 Other Types	� GOTOBUTTON _Toc368384299 � PAGEREF _Toc368384299 �
9
��

8. Storage of Variables	� GOTOBUTTON _Toc368384300 � PAGEREF _Toc368384300 �
9
��

9. Operators and Operands	� GOTOBUTTON _Toc368384301 � PAGEREF _Toc368384301 �
9
��

9.1 Operator Precedence	� GOTOBUTTON _Toc368384302 � PAGEREF _Toc368384302 �
9
��

9.2 Assignment Operator	� GOTOBUTTON _Toc368384303 � PAGEREF _Toc368384303 �
9
��

9.3 Arithmetic Operators	� GOTOBUTTON _Toc368384304 � PAGEREF _Toc368384304 �
10
��

9.3.1 Division Operator	� GOTOBUTTON _Toc368384305 � PAGEREF _Toc368384305 �
10
��

9.3.2 Modulus Operator	� GOTOBUTTON _Toc368384306 � PAGEREF _Toc368384306 �
10
��

9.4 The sizeof Operator	� GOTOBUTTON _Toc368384307 � PAGEREF _Toc368384307 �
10
��

9.5 The Increment Operator	� GOTOBUTTON _Toc368384308 � PAGEREF _Toc368384308 �
10
��

9.6 The Decrement Operator	� GOTOBUTTON _Toc368384309 � PAGEREF _Toc368384309 �
10
��

9.7 More Assignment Operators	� GOTOBUTTON _Toc368384310 � PAGEREF _Toc368384310 �
10
��

9.8 The Comma Operator	� GOTOBUTTON _Toc368384311 � PAGEREF _Toc368384311 �
11
��

9.9 Relational Operators	� GOTOBUTTON _Toc368384312 � PAGEREF _Toc368384312 �
11
��

10. True and False	� GOTOBUTTON _Toc368384313 � PAGEREF _Toc368384313 �
11
��

11. Expressions and Statements	� GOTOBUTTON _Toc368384314 � PAGEREF _Toc368384314 �
11
��

11.1 Expressions	� GOTOBUTTON _Toc368384315 � PAGEREF _Toc368384315 �
11
��

11.2 Statements	� GOTOBUTTON _Toc368384316 � PAGEREF _Toc368384316 �
11
��

11.3 Compound Statements (Blocks)	� GOTOBUTTON _Toc368384317 � PAGEREF _Toc368384317 �
11
��

12. Type Conversions	� GOTOBUTTON _Toc368384318 � PAGEREF _Toc368384318 �
11
��

12.1 Automatic Type Conversions	� GOTOBUTTON _Toc368384319 � PAGEREF _Toc368384319 �
12
��

12.2 The Cast Operator	� GOTOBUTTON _Toc368384320 � PAGEREF _Toc368384320 �
12
��

13. Functions	� GOTOBUTTON _Toc368384321 � PAGEREF _Toc368384321 �
12
��

13.1 Creating and Using a Simple Function	� GOTOBUTTON _Toc368384322 � PAGEREF _Toc368384322 �
12
��

13.1.1 Formal Arguments	� GOTOBUTTON _Toc368384323 � PAGEREF _Toc368384323 �
12
��

13.1.2 Actual Arguments	� GOTOBUTTON _Toc368384324 � PAGEREF _Toc368384324 �
13
��

13.2 Function Types	� GOTOBUTTON _Toc368384325 � PAGEREF _Toc368384325 �
13
��

13.3 C++ Functions are Equal	� GOTOBUTTON _Toc368384326 � PAGEREF _Toc368384326 �
13
��

13.4 Automatic Type Conversion in Function Calls	� GOTOBUTTON _Toc368384327 � PAGEREF _Toc368384327 �
13
��

13.5 Miscellaneous Notes about Functions	� GOTOBUTTON _Toc368384328 � PAGEREF _Toc368384328 �
14
��

14. Passing Parameters with Pointers	� GOTOBUTTON _Toc368384329 � PAGEREF _Toc368384329 �
14
��

14.1 Finding Addresses: Using the Address Operator (&)	� GOTOBUTTON _Toc368384330 � PAGEREF _Toc368384330 �
14
��

14.2 Modifying Variables in the Calling Program	� GOTOBUTTON _Toc368384331 � PAGEREF _Toc368384331 �
14
��

14.3 Pointers	� GOTOBUTTON _Toc368384332 � PAGEREF _Toc368384332 �
14
��

14.3.1 Declaring Pointers, The Indirection Operator	� GOTOBUTTON _Toc368384333 � PAGEREF _Toc368384333 �
15
��

14.3.2 Communicating Between Functions using Pointers	� GOTOBUTTON _Toc368384334 � PAGEREF _Toc368384334 �
15
��

15. Operations with Pointers	� GOTOBUTTON _Toc368384335 � PAGEREF _Toc368384335 �
16
��

16. References	� GOTOBUTTON _Toc368384336 � PAGEREF _Toc368384336 �
16
��

16.1 Passing Parameters by Reference	� GOTOBUTTON _Toc368384337 � PAGEREF _Toc368384337 �
16
��

16.2 Returning References	� GOTOBUTTON _Toc368384338 � PAGEREF _Toc368384338 �
17
��

17. Manifest Constants	� GOTOBUTTON _Toc368384339 � PAGEREF _Toc368384339 �
17
��

18. Loops	� GOTOBUTTON _Toc368384340 � PAGEREF _Toc368384340 �
17
��

18.1 while Loops	� GOTOBUTTON _Toc368384341 � PAGEREF _Toc368384341 �
17
��

18.2 Indefinite Loops	� GOTOBUTTON _Toc368384342 � PAGEREF _Toc368384342 �
17
��

18.3 Counting Loops and The for Loop	� GOTOBUTTON _Toc368384343 � PAGEREF _Toc368384343 �
18
��

18.4 The Comma Operator in a for Loop	� GOTOBUTTON _Toc368384344 � PAGEREF _Toc368384344 �
18
��

18.5 An Exit Condition Loop: do while	� GOTOBUTTON _Toc368384345 � PAGEREF _Toc368384345 �
18
��

18.6 Deciding which Loop to Use	� GOTOBUTTON _Toc368384346 � PAGEREF _Toc368384346 �
19
��

18.7 Nested Loops	� GOTOBUTTON _Toc368384347 � PAGEREF _Toc368384347 �
19
��

19. The if Statement	� GOTOBUTTON _Toc368384348 � PAGEREF _Toc368384348 �
19
��

20. Logical Operators	� GOTOBUTTON _Toc368384349 � PAGEREF _Toc368384349 �
19
��

20.1 Sample Program using One Form of Logical Statement	� GOTOBUTTON _Toc368384350 � PAGEREF _Toc368384350 �
20
��

20.2 Another Form of Logical Statement	� GOTOBUTTON _Toc368384351 � PAGEREF _Toc368384351 �
20
��

20.3 Order of Evaluation	� GOTOBUTTON _Toc368384352 � PAGEREF _Toc368384352 �
20
��

21. The Conditional Operator	� GOTOBUTTON _Toc368384353 � PAGEREF _Toc368384353 �
20
��

22. Programming for Multiple Choices: Using switch and break	� GOTOBUTTON _Toc368384354 � PAGEREF _Toc368384354 �
20
��

23. The break statement	� GOTOBUTTON _Toc368384355 � PAGEREF _Toc368384355 �
21
��

24. The continue statement	� GOTOBUTTON _Toc368384356 � PAGEREF _Toc368384356 �
21
��

25. The goto statement	� GOTOBUTTON _Toc368384357 � PAGEREF _Toc368384357 �
21
��

26. ctype.h Character Functions	� GOTOBUTTON _Toc368384358 � PAGEREF _Toc368384358 �
22
��

27. I/O Formatting with the iostream Class Library	� GOTOBUTTON _Toc368384359 � PAGEREF _Toc368384359 �
22
��

27.1 Preparation for I/O	� GOTOBUTTON _Toc368384360 � PAGEREF _Toc368384360 �
22
��

27.2 Format Flags and Format Words	� GOTOBUTTON _Toc368384361 � PAGEREF _Toc368384361 �
22
��

27.2.1 Setting Format Flags	� GOTOBUTTON _Toc368384362 � PAGEREF _Toc368384362 �
23
��

27.2.2 Setting Related Flag Bits	� GOTOBUTTON _Toc368384363 � PAGEREF _Toc368384363 �
23
��

27.2.3 Setting Independent Flag Bits	� GOTOBUTTON _Toc368384364 � PAGEREF _Toc368384364 �
24
��

27.2.4 Clearing Flag Bits	� GOTOBUTTON _Toc368384365 � PAGEREF _Toc368384365 �
24
��

27.3 Using width(), precision(), and fill()	� GOTOBUTTON _Toc368384366 � PAGEREF _Toc368384366 �
24
��

27.4 Using I/O Manipulators	� GOTOBUTTON _Toc368384367 � PAGEREF _Toc368384367 �
24
��

28. More on the I/O System	� GOTOBUTTON _Toc368384368 � PAGEREF _Toc368384368 �
25
��

28.1 Stream Output	� GOTOBUTTON _Toc368384369 � PAGEREF _Toc368384369 �
25
��

28.2 Stream Input	� GOTOBUTTON _Toc368384370 � PAGEREF _Toc368384370 �
25
��

28.3 I/O Stream Error Data	� GOTOBUTTON _Toc368384371 � PAGEREF _Toc368384371 �
25
��

28.4 get() and getline() Functions	� GOTOBUTTON _Toc368384372 � PAGEREF _Toc368384372 �
25
��

28.5 Other istream Member Functions (peek, putback, and ignore)	� GOTOBUTTON _Toc368384373 � PAGEREF _Toc368384373 �
26
��

28.6 Unformatted I/O with read, gcount, and write	� GOTOBUTTON _Toc368384374 � PAGEREF _Toc368384374 �
26
��

28.7 Flushing the Buffer	� GOTOBUTTON _Toc368384375 � PAGEREF _Toc368384375 �
26
��

28.8 Testing for I/O Errors, Stream Error States	� GOTOBUTTON _Toc368384376 � PAGEREF _Toc368384376 �
26
��

29. File Input/Output in C++	� GOTOBUTTON _Toc368384377 � PAGEREF _Toc368384377 �
26
��

29.1 Sample Program	� GOTOBUTTON _Toc368384378 � PAGEREF _Toc368384378 �
26
��

29.2 File I/O	� GOTOBUTTON _Toc368384379 � PAGEREF _Toc368384379 �
27
��

29.2.1 binary Mode versus Default text Mode	� GOTOBUTTON _Toc368384380 � PAGEREF _Toc368384380 �
28
��

29.2.2 Access Parameter	� GOTOBUTTON _Toc368384381 � PAGEREF _Toc368384381 �
28
��

29.2.3 Short Form for open() Function	� GOTOBUTTON _Toc368384382 � PAGEREF _Toc368384382 �
28
��

29.2.4 Reading and Writing Text Data to a File	� GOTOBUTTON _Toc368384383 � PAGEREF _Toc368384383 �
28
��

29.2.5 Short Form for Declaring a Stream and Opening a File	� GOTOBUTTON _Toc368384384 � PAGEREF _Toc368384384 �
28
��

30. Enumerated Types in C++	� GOTOBUTTON _Toc368384385 � PAGEREF _Toc368384385 �
29
��

31. Character Strings	� GOTOBUTTON _Toc368384386 � PAGEREF _Toc368384386 �
29
��

31.1 Type char Arrays and the Null Character	� GOTOBUTTON _Toc368384387 � PAGEREF _Toc368384387 �
29
��

31.2 Using Strings	� GOTOBUTTON _Toc368384388 � PAGEREF _Toc368384388 �
30
��

31.3 Strings Versus Characters	� GOTOBUTTON _Toc368384389 � PAGEREF _Toc368384389 �
30
��

31.4 String Length -- strlen()	� GOTOBUTTON _Toc368384390 � PAGEREF _Toc368384390 �
30
��

32. Arrays	� GOTOBUTTON _Toc368384391 � PAGEREF _Toc368384391 �
30
��

33. Storage Classes	� GOTOBUTTON _Toc368384392 � PAGEREF _Toc368384392 �
30
��

33.1 Automatic Variables and Arrays	� GOTOBUTTON _Toc368384393 � PAGEREF _Toc368384393 �
30
��

33.2 External Variables and Arrays	� GOTOBUTTON _Toc368384394 � PAGEREF _Toc368384394 �
31
��

33.3 Static Variables and Arrays	� GOTOBUTTON _Toc368384395 � PAGEREF _Toc368384395 �
31
��

33.4 Assigning Array Values	� GOTOBUTTON _Toc368384396 � PAGEREF _Toc368384396 �
31
��

34. Pointers to Arrays	� GOTOBUTTON _Toc368384397 � PAGEREF _Toc368384397 �
31
��

35. Defining and Using Strings in A Program	� GOTOBUTTON _Toc368384398 � PAGEREF _Toc368384398 �
32
��

35.1 Samples	� GOTOBUTTON _Toc368384399 � PAGEREF _Toc368384399 �
32
��

35.2 Creating Character String Constants	� GOTOBUTTON _Toc368384400 � PAGEREF _Toc368384400 �
32
��

35.3 Initialization of Character String Arrays	� GOTOBUTTON _Toc368384401 � PAGEREF _Toc368384401 �
33
��

35.4 Initializing Character Arrays and Initializing String Pointers: the Difference	� GOTOBUTTON _Toc368384402 � PAGEREF _Toc368384402 �
34
��

35.5 Explicit Specification of Storage for a String	� GOTOBUTTON _Toc368384403 � PAGEREF _Toc368384403 �
34
��

35.6 Arrays of Pointers to Strings (Ragged Arrays)	� GOTOBUTTON _Toc368384404 � PAGEREF _Toc368384404 �
34
��

35.7 Using Pointers with Strings, Miscellaneous	� GOTOBUTTON _Toc368384405 � PAGEREF _Toc368384405 �
35
��

35.8 String Input	� GOTOBUTTON _Toc368384406 � PAGEREF _Toc368384406 �
35
��

36. String Functions	� GOTOBUTTON _Toc368384407 � PAGEREF _Toc368384407 �
35
��

37. Command-Line Arguments	� GOTOBUTTON _Toc368384408 � PAGEREF _Toc368384408 �
35
��

38. String-to-Number Conversions	� GOTOBUTTON _Toc368384409 � PAGEREF _Toc368384409 �
36
��

39. Introduction to Structures in C and C++	� GOTOBUTTON _Toc368384410 � PAGEREF _Toc368384410 �
36
��

40. Unions	� GOTOBUTTON _Toc368384411 � PAGEREF _Toc368384411 �
37
��

41. Structures, Unions, and Classes in C++	� GOTOBUTTON _Toc368384412 � PAGEREF _Toc368384412 �
37
��

42. Multidimensional Arrays	� GOTOBUTTON _Toc368384413 � PAGEREF _Toc368384413 �
37
��

43. Dynamic Memory Allocation	� GOTOBUTTON _Toc368384414 � PAGEREF _Toc368384414 �
38
��

�

Introduction

Prior to the Fall of 1995, the first course in the C/C++ curriculum at ACC was taught using a C textbook and a C compiler. Beginning in the Fall of 1995, the emphasis was shifted to the use of a C++ compiler and a textbook which concentrated on the use of the C++ language.

Differences between C and C++

This section lists some (but possibly not all) of the major differences between C and C++. Much of the material discussed here is beyond the scope of this introductory course and will not be discussed further.

In C, (with modern compilers) when a function takes no parameters, its prototype has the word void inside its parameter list. In C++, the word void is optional.

In C, prototypes are recommended but technically optional. In a C++ program, all functions must have a declared prototype (unless the full definition appears prior to the point of first usage).

In C, local variables may be declared only at the start of a block, prior to any "action" statements. In C++, local variables may be declared anywhere.

In C you pass arguments by value or by pointer. In C++ you can also pass arguments by reference. A reference parameter in C++ is very similar to a var parameter in Pascal.

The scope or resolution operator :: (double semicolon) lets you access a global name even if it is hidden by a local re-declaration of that name. The scope resolution operator has other uses as well.

In C++, the new and delete operators provide dynamic storage allocation and de-allocation, in addition to the standard library functions malloc() and free().

C++ classes have been added, and structures and unions have been enhanced. Definition of a class, structure, or union creates a new type. Each class type can be used to instantiate objects and to provide the methods necessary to manipulate such objects.

Derived classes can be declared that inherit the members of one or more base (or parent) classes.

C++ lets you overload functions (many functions can exist with the same name). The compiler distinguishes between the different functions by noting the context of the call.

C++ lets you overload (redefine the action) of most operators, causing them to perform specified actions when used with objects of the class for which they are overloaded.

Virtual functions allow derived classes to provide different versions of a base class function. A virtual function is specified as pure by setting it equal to zero.

An abstract class is a class with at least one pure virtual function. An abstract class can be used only as a base class for other classes. No objects of an abstract class can be instantiated.

Templates (also called generic) allow you to define an algorithm independent of type, and then have the compiler convert that algorithm to the specific code required for a specific type.

C++ uses classes (iostream class library) to implement a new stream Input/Output system as an alternative to the functions used for input and output in C.

C++ supports the standard format (/* comment */) used to separate comments from executable code in C. C++ also allows the use of the double-slash (//) at the beginning of each comment (on each line).

C++ contains a number of new keywords. Care must be exercised in converting a C program to a C++ program to avoid conflicts between the new keywords and existing identifiers.

A C++ function prototype can declare that one of more of the function's parameters have default values.

You can tell the C++ compiler that a function is inline, which compiles a new copy of the function each time it is called.

The const qualifier adds the constant property to variables, pointers, and function parameters. The const qualifier for a variable specifies that the variable is read-only.

You can qualify a pointer with const in one of two ways. One usage specifies that the pointer may not be modified by the program. The other usage specifies that the program may not modify the object being pointed to by the pointer.

A C++ enum becomes a data type when you define it. Once defined, it is known by its identifier the same as any other type, and declarations may use the name alone.

The linkage specifier tells the compiler that one or more functions in your C++ program will be linked with another language that may have different parameter passing conventions.

A C++ program can define an unnamed (anonymous) union anywhere it can have a variable. This feature eliminates union name prefixes in some cases.

C++ allows you to initialize the intrinsic data types, such as int, long, double, etc., by using the notation of a class constructor. The following statements are valid initialized variable declarations in C++.

	int qty(123);

	double spec(5.378);

Simple Program Structure in C++

The following diagram illustrates the parts of a typical (simple) C++ program.

Typical C++ Program consists of:

	#include and other preprocessor directives

 	external definition of classes, structures, etc.

	main() function (which is always the first function executed)

		statements (functions are composed of statements)

declaration (first of five types of statements in C++ language consisting of keywords, data, and operators)

			assignment

			function call

			control

			null

	function a() (one or more additional functions as needed)

		.

				.

	function b()

A simple C++ program follows for illustration. Your instructor will briefly discuss this program at this point. However, everything illustrated in this program will be discussed in more detail in later sections of this document.

//==========Begin program swap_ref.cpp

//Illustrates passing parameters by reference

#include <iostream.h>

// No external declarations in this simple program

void main()

{

 void SwapMyVar(int&,int&); //function prototype (declaration)

 int x=5, y=10;

 cout << "Originally, x = " << x << " and y = " << y << endl;

 SwapMyVar(x,y); //function call

 cout << "Now x = " << x << " and y = " << y << endl;

 //no control statements such as if, while, or switch in this simple program

} //=====End main()

//=====Begin function SwapMyVar()

void SwapMyVar(int& u,int& v)//definition with inplicit pointer declaration

{

 int temp;

 temp=u; //assignment

 u = v;

 v = temp;

} //=====End function SwapMyVar()

Output Control Codes

Output control codes provide special instructions to the output device. A partial listing of output control codes follows:

\a	alert

\b	backspace

\f	form feed

\n	newline

\r	carriage return

\t	horizontal tab

\v	vertical tab

\\	backslash (\)

\’	single quote (‘)

\”	double quote (“)

Case, Upper and Lower

Case is significant in C++. The following three statements declare three different variables.

	int num;

	int Num;

	int NUM;

Data Types

Both C and C++ deal with different kinds (or types) of data such as:

	integers

	characters

	floating point

	user defined

There are also other types which are generally derived from the above types.

Programs with Multiple Functions

A program consists of one or more functions. One of the functions must be called main(). The function named main() is always the first function to be executed.

Keywords

Keywords are the vocabulary of the language. To successfully program in the C or C++ language, you must know the keywords that make up the language and you must know the purpose of each of the standard C++ library functions. You can find a table of keywords in any good C++ textbook.

Simple Input and Output

Keyboard input: Use of the cin >> combination to obtain input from the standard input device.

Screen output: Use the cout << combination to send output to the standard output device.

Variables and Constants

Variables and constants are the numbers and characters that contain the information that you use.

Data Types

int: Some data are whole numbers without fractional parts. We call those data integers.

float: Some data are numbers with fractional parts. We call those data floating point.

char: Some data represent characters, such as 'A', 'b', '#', '$', etc. Note the use of the apostrophe to surround characters; groups of characters, often called strings, are surrounded by quotation marks.

Declaring Variables, Representing Constants, etc.

This section discusses how to declare a variable and how to represent a constant.

The int Type

C++ offers several integer data types. They differ in the range of values supported and in whether or not negative numbers can be used.

The int type is a signed integer. It must be a whole number and can be positive or negative.

Declaring int Variables

You can declare one or more int values as follows:

	int pigs, calves, chickens;

	int lambs;

These two lines of code instruct the compiler to set aside memory space for four int variables and to name those storage locations as indicated.

Initializing int Variables

To initialize a variable means to give it an initial value in the declaration statement as follows:

	int pigs = 5, calves = 6, chickens = 7;

	int lambs = 3;

Type int Constants

C++ recognizes a number without a decimal point and without an exponent as an integer.

By default, C++ assumes you are writing integers as decimal integers. You can also create octal or hexadecimal integers by using an appropriate prefix. A 0 (zero) prefix means that you are specifying an octal number. A 0x or 0X means you are writing in hexadecimal

Other Integer Types

C++ offers the following adjective keywords to modify the basic integer type: unsigned, long, short, unsigned long int, or unsigned long, and unsigned short int, or unsigned short.

Type long Constants

If you need to define a small number as a type long integer, you can add an L as a suffix.

The char Type

The char type is an integer type because it actually stores integers and not characters where each integer represents a character according to the collating table in use (probably the ASCII table).

Declaring char Variables

char variables are declared the same way as other variables. Here are some examples:

	char MyResponse;

	char MyTable, JonJones;

Initializing char Variables

To initialize a character variable to the letter A, you could use either of the following statements.

	char MyGrade = 65;

	char UrGrade = 'A';

A single character contained between single quotation marks is a C++ character constant.

The compiler converts the 'A' to the proper integer code value.

Non-printing Characters

Some characters are non-printing (the beep character for example). There are at least three ways to specify non-printing characters:

	char beep = 7;			//simply use the ASCII code

	char beep = '\007';		//use the octal value of the ASCII code

	char newline = '\n';		//use the escape sequence

Special Printing Characters

There are three escape sequences (\\, \', and \") which do not represent non-printing characters. Rather, these escape sequences are used to allow you to display the characters

	\ ' "

which taken by themselves in a string have a special meaning.

The float and double Types

Typically, the format used to store a float produces a precision of six or seven decimal digits and a range from 10^-37 up to 10^+37 where the ^ indicates exponentiation.

C++ also provides double (for double precision) floating-point type. C++ also allows for a long double.

Declaring and Initializing float Variables

Floating-point variables are declared and initialized in the same manner as their integer counterparts, for example:

	float Jack, Jill;

	double Dipper;

	float AFamousConstant = 6.63e-34;

	long double MySalary;

Floating-Point Constants

There are many ways to write floating-point constants, and it is also possible to force a floating-point constant to be stored as a float, double, or long double by appending a suffix to the constant.

Other Types

There are other types (including arrays, pointers, structures, unions and classes), which are derived from the intrinsic types.

Storage of Variables

The sizeof operator can be used to determine how your computer treats the storage of different types.

Operators and Operands

Operators operate on operands. There are binary operators and unary operators. Binary operators have two operands (one on each side). Unary operators have only one operand, usually (but not always) on the right-hand side.

Operator Precedence

Each operator is assigned a precedence level which defines the order in which operations are performed in an expression.

The order of operations can be modified by grouping terms in parenthesis.

Assignment Operator

In C++, the = symbol is a value-assigning operator and is called the assignment operator.

Execution of the assignment operation proceeds from right to left. Thus, the following is a valid assignment statement in C++:

	MyVar = UrVar = HerVar = 45;

Arithmetic Operators

C++ uses the following basic arithmetic operators for add, subtract, multiply, divide, and modulus.

	+ - * / %

Two of the operators, divide and modulus, deserve additional discussion.

Division Operator

The binary division operator (/) causes the left operand to be divided by the right operand.

Floating-point division gives a floating-point answer. Integer division yields an integer answer. Any fraction resulting from integer division is discarded.

When a calculation mixes integer and floating-point types, the integer is converted to floating-point before division.

Modulus Operator

The modulus operator (%) provides the remainder that results when the integer left operand is divided by the integer right operand.

The sizeof Operator

The sizeof operator returns the size, in bytes, of its single operand. The operand can be a specific data object, or it can be a type. If the operand is a type, it must be enclosed in parenthesis.

The Increment Operator

The increment operator (++) increases the value of its operand by one. The ++ may be placed before or after the operand. These two options are known as the prefix and postfix modes. The two modes differ with regard to the precise point in the evaluation of an expression that the addition takes place.

If the incrementing operator appears before the variable, the variable is incremented before it is “used.” If it appears after the variable, the variable is incremented after it is “used.”

The Decrement Operator

For each increment operator, there is a corresponding decrement operator (--). As with the increment operator, there is a prefix and a postfix mode for the decrement operator.

More Assignment Operators

There are several other shorthand operators available in C++:

	+= -= *= /= %=

Briefly, the expression

	scores += 20

behaves the same as

	scores = scores + 20

The usage of each of these operators follows this same pattern.

The Comma Operator

The comma operator allows you to include more than one initialization or update in a for loop specification.

When the comma operator is used to separate two expressions, the operator guarantees that the expressions it separates will be evaluated in a left-to-right order.

Relational Operators

A table of C++ relational operators follows:

	Operator	Meaning

		<	is less than

		<=	is less than or equal to

		==	is equal to

		>=	is greater than or equal to

		>	is greater than

		!=	is not equal to

True and False

In C++, a value of zero indicates false and any other value indicates true.

Expressions and Statements

Statements form the basic program steps of C++, and most statements are constructed of expressions.

Expressions

An expression is made up of operators and operands. The operands can be constants or variables. Some expressions are combinations of smaller expressions which may be called sub-expressions.

Statements

Statements are composed of expressions. A program consists of a series of statements. A statement is a complete instruction to the computer. In C++, statements are terminated by a semicolon.

Compound Statements (Blocks)

A compound statement is two or more statements grouped together by enclosing them in braces { }. It is also sometimes called a block.

Type Conversions

C++ provides automatic type conversions in certain circumstances. It is also possible for you to force type conversions using a type cast..

Automatic Type Conversions

If you perform operations in C++ using mixed types of operands, the compiler will usually implement type conversions automatically using a set of rules which you can find in a good textbook or a good C++ Programmers Manual.

The Cast Operator

It is possible for you to give explicit instructions for the precise method of type conversion that you want to occur. The method is called a cast or is sometimes called type casting

The method consists simply of preceding the object to be converted with the name of the desired type in parenthesis. The parenthesis and type name together constitute a cast operator.

Functions

All C++ programs contain a function named main() which can call other functions.

A function is normally a unit of code designed to accomplish a specific task. A function can perform actions, provide values, or both.

Creating and Using a Simple Function

Whenever the program encounters the name of a function with an argument list (function call) in an expression, it passes control to the function and executes the instructions contained therein.

When the last logical instruction in the function is executed, control returns to the point immediately following the function call in the calling program.

The last logical instruction in a function may not be the same as the last physical instruction.

The overall format of a function is the same as the overall format of main().

Parameter names used in the formal argument list of a function become automatic variables in the function which are initialized by the values passed to the function.

Variables declared within the function (without the static keyword) become automatic variables. An automatic variable is known only within the function and ceases to exist when the function terminates.

Functions have types which must be declared. The type of a function is the type of value returned by the function, and is specified ahead of the function name in the function prototype and the function header. The type void is used for functions which do not return a value.

Programs that use a function must declare the function before the function is used. The declaration, also known as the prototype, defines the return type, the name, and the types and order of the arguments. The argument list is empty for the prototype of a function which does not receive parameters.

To send information from the function back to the calling program, we can use the function return value. We can also use pointer or reference parameters to send information back to the calling program.

In the calling program, the return value can be ignored, assigned to a variable, or used as part of a more complex expression.

Formal Arguments

The formal arguments for a typical function might be as shown in the following function prototype:

int DrawChar(char Character, int number);

The argument names are optional in the prototype. Formal arguments become automatic variables, in the function.

Actual Arguments

When you invoke a function, the formal arguments are instantiated as automatic variables and initialized with the values that you pass as actual arguments. A typical invocation of a function might be as shown below:

	cout << DrawChar('x',16); //call the function to print characters

The values passed as actual arguments are used to initialize the corresponding formal arguments on the basis of position in the argument list.

Note that in this case, the value of the actual argument is used to initialize the corresponding variable in the function, and the function does not have access to the original variable in the calling function. In other words, a copy of the original variable is sent to the function and used to initialize the local variables in the function.

Using return terminates the function and returns control to the calling function. This occurs even if the return statement is not the last statement in the function.

Function Types

Functions must be declared by type. Functions with no return value must be declared as type void.

C++ requires that all functions be declared using a function prototype (unless the full function definition appears ahead of its first attempted usage).

C++ Functions are Equal

Unlike Pascal and some other languages, each C or C++ function is on an equal footing with the others. Each function can call any other function, including itself, and including main().

Automatic Type Conversion in Function Calls

Values passed as parameters may undergo automatic type conversion according to the rules for automatic conversion.

The following program illustrates the communication between a calling program and a function.

//==========Begin program conv01.cpp

#include <iostream.h>

#include <iomanip.h>

int conv01(int,float); //function prototype

main()

{

 int times=5;

 char ch = '!'; //ASCII code is 33

 float f = 6.6, dummy =9.9;

 cout << "Return Value is " << conv01(times,dummy) << '\n';

 cout << "Return Value is " << conv01(ch,dummy) << '\n';

 cout << "Return Value is " << conv01(f,dummy)<< '\n';

 return 0;

}

//==========Begin function conv01()

int conv01(int n,float junk) //function with prototyping

{

 int save;

 cout << "Dummy is " << setw(3) << setprecision(1)

 << junk << '\n'; 	//print dummy variable

 save = n; 		//save value to be returned

 while (n-- > 0) 	//print a line of # characters

 cout << "#";

 cout << "\n";

 return save; //return the value which was saved

}

//==========End program

The output from this program follows:

Dummy is 9.9

#####

Return Value is 5

Dummy is 9.9

#################################

Return Value is 33

Dummy is 9.9

######

Return Value is 6

Your instructor will explain how this program operates, including the type conversions which take place.

Miscellaneous Notes about Functions

If the function in a C++ program is to modify variables in the calling program, you must write it to use addresses (pointers or references).

A C or C++ function can call itself, which is called recursion.

Passing Parameters with Pointers

This section introduces the use of pointers to pass parameters to functions. Pointers also have other uses in C++ which will be discussed in subsequent sections.

Finding Addresses: Using the Address Operator (&)

When access to the original variable passed to a function is required, a copy of the address of the variable can be sent to the function. The function can then use this address to access the variable.

The address operator (&) is used to send the address of a variable to the function. If MyVariable is the name of a variable, then &MyVariable is the address of the variable named MyVariable.

Modifying Variables in the Calling Program

We can use return to communicate one value from a function back to the calling program. To communicate two or more values back to a calling program, we must use pointers (or reference parameters).

Pointers

The & operator can be used to pass the address of a variable to the function. We use the address to initialize a pointer variable in the function.

If we include the term &MyVar in an expression, we are including a pointer constant in the expression

If we declare a pointer variable and then execute an assignment such as

	ptr = &MyVar;

then we have a pointer variable which contains the address of MyVar.

Declaring Pointers, The Indirection Operator

Before we can assign an address to a pointer variable, we must declare the pointer variable, which includes specifying the type of data to which the pointer will point. We use the indirection operator (*) to do this.

	int *pint;		//pint is a pointer to an integer variable

	char *pchr;		//pchr is a pointer to a character variable

	float *pf,*pg;	//pf and pg are pointers to float variables

If we declare ptr to be a pointer to a variable of the type of MyVar and assign the address of the variable MyVar to ptr as follows

	ptr = &MyVar;

then we can use the indirection operator, (*) (also called the de-referencing operator) to find the value stored in MyVar using a statement such as:

	MyValue = *ptr;	//finding the value ptr points to

The following two statements:

	ptr = &MyVar;

	MyValue = *ptr;

produce the same result as the
following
 single statement (but is more indirect):

	MyValue = MyVar;

Communicating Between Functions using Pointers

The following C++ program includes a function which uses pointers to swap the values of two variables in the calling program. This is a classic example program which is presented in many textbooks.

//==========Begin program swap3.cpp

//Illustrates use of pointers to pass parameters

#include <iostream.h>

void main()

{

 void SwapMyVar(int*,int*); //function prototype

 int x=5, y=10;

 cout << "Originally, x = " << x << " and y = " << y << endl;

 SwapMyVar(&x,&y); //send addresses to the function

 cout << "Now x = " << x << " and y = " << y << endl;

} //=====End main()

//=====Begin function SwapMyVar()

void SwapMyVar(int* u,int* v)//definition with implicit pointer declaration

{

 int temp;

 temp=*u;

 *u = *v;

 *v = temp;

} //=====End function SwapMyVar()

Your instructor will explain the operation of this program.

Operations with Pointers

C and C++ provide five basic operations that can be performed on pointers:

Assignment. We can assign an address to a pointer variable.

Value-finding (de-referencing). The * operator gives us the value stored in the location pointed to by the pointer variable.

Determine address of a pointer variable. The & operator can be used to tell us where the pointer variable is stored.

Increment or decrement a pointer variable. We can increment a pointer by adding a value to it, or by using the increment operator. The same holds true for decrementing a pointer. Whenever you increment or decrement a pointer variable by one, the value changes by the type size (in bytes) for the type of data that the pointer points to.

Difference. We can find the difference between two pointer variables with the result being in the same units as the type size.

References

A reference acts like another name for a variable. There are three ways that a reference can be used.

A reference can be passed to a function (where it behaves much like a VAR parameter in Pascal).

A reference can be returned by a function.

An independent reference can be created.

Although a reference is similar to a pointer, you cannot change the location to which a reference points.

Passing Parameters by Reference

To prepare a function to receive a reference parameter, follow the name of the type with an & in the formal argument list of the function prototype and the function definition.

Once a parameter has been declared as a reference parameter, the function refers to it just as though it were a local variable. When the function modifies the value of the parameter, the value of the original parameter in the calling function is modified.

The following program passes the parameters to a function by reference.

//==========Begin program swap_ref.cpp

//Illustrates passing parameters by reference

#include <iostream.h>

void main()

{

 void SwapMyVar(int&,int&); //function prototype

 int x=5, y=10;

 cout << "Originally, x = " << x << " and y = " << y << endl;

 SwapMyVar(x,y); //send addresses to the function

 cout << "Now x = " << x << " and y = " << y << endl;

} //=====End main()

//=====Begin function SwapMyVar()

void SwapMyVar(int& u,int& v)//definition with inplicit pointer declaration

{

 int temp;

 temp=u;

 u = v;

 v = temp;

} //=====End function SwapMyVar()

Your instructor will discuss the operation of this program.

Returning References

A function can return a reference to an object. You should return a reference to an object only when the object is guaranteed to persist after the function terminates.

Manifest Constants

Use the #define preprocessor directive to define manifest constants as follows:

	#define PI 3.14159

Once we define a manifest constant, we can use its value in expressions such as the following:

	circumference = PI * diameter;

Prior to compilation, the preprocessor substitutes the value associated with the name wherever the name appears in the program. However, if the name appears within a pair of quotation marks, such as:

	cout << "Enter the value of PI.\n";

substitution will not take place.

Loops

while Loops

The general syntax for a while loop is as follows:

while (conditional expression)

 single or compound statement in the loop

Statement following single or compound statement in the loop

When the program encounters the while, it checks to see if the conditional statement evaluates to true (non-zero). If so, the single or compound statement in the loop is executed and the test is performed again. If false (zero), control passes to the statement following the single or compound statement.

Indefinite Loops

The term indefinite loop is used to describe a situation where it is not known in advance how many times the loop will be executed. The while loop is a good construct for creating indefinite loops.

Counting Loops and The for Loop

When the required number of iterations matches a variable or constant value, we refer to this as a counting loop. Although the while loop can be used as a counting loop, the for loop provides a better approach.

Three actions are involved in setting up a counting loop:

Initialize a counter

Compare the counter with some limiting value

Increment (or decrement) the counter once during each iteration

The for loop gathers these three actions into one place, as shown in the following example:

for(Offset = 3.52, Count = 3; Count < 5; Count++)

 {

 //statements in the loop

 }//end for loop

The parenthesis following the keyword for contain three clauses separated by semicolons (not commas).

The first clause which reads

	Offset = 3.52, Count = 3

is an initialization clause. The actions specified by this clause are performed only once when the for loop first starts.

The second clause

	Count < 5

is a conditional test which is executed before each potential execution of the statements in the loop. When the result of the test is false, the loop is terminated (statements are skipped).

The third clause

	Count++

is an update clause which is evaluated following execution of the last statement in the loop.

Any expression can be used in any of the three clauses provided that the expression evaluates to the type of result required by that clause.

You can leave one or more of the clauses blank provided that you include the semicolon to mark the position.

The for statement is completed by following the (; ;) with a simple or compound statement.

The Comma Operator in a for Loop

The comma operator allows you to include more than one initialization or update in the respective clause of a for loop.

An Exit Condition Loop: do while

The while and for loops are entry condition loops.

The do while loop is an exit condition loop in which the conditional expression is checked after each iteration of the loop. Thus, at least one iteration of the loop is guaranteed to occur.

The general form of the loop is

	do statement while (conditional expression);

The statement can be simple or compound.

Deciding which Loop to Use

If you need an exit-condition loop, use the do while loop.

If you need an entry-condition loop, decide if you need an indefinite loop or a counting loop. If indefinite, use while. If counting, use a for loop.

Nested Loops

A nested loop is a loop that is inside another loop. The following code fragment shows a nested loop.

for (row =0; row < 6; row++)	//outer loop

{

	for (ch = 'A'; ch < 'A' + 6; ch++) cout << ch; //inner loop

 cout << endl;

}

The inner loop runs through its full range of iterations once for each iteration of the outer loop.

The if Statement

if is a branching statement. It provides a junction at which the program has to select which of two paths to follow. The general form is

	if(conditional expression) statement

If the conditional expression evaluates to true, the statement is executed; otherwise it is skipped. The statement can be a single statement or a block (compound statement).

Frequently, relational expressions such as (grade < FAILING) are used in the expression. However, any expression can be used. If the expression evaluates to zero, the expression will be treated as false. Otherwise, it will be treated as true.

The if else form of the statement lets you choose between two alternatives. The general form of the if else statement is

	if(conditional expression) statement1;

	else statement2;

The program chooses between statement1 and statement2 depending on whether the conditional expression is true or false. If true, statement1 is executed. Otherwise, statement2 is executed. Either statement can be a compound statement. (Pascal programmers, note the semicolon before the else.)

Logical Operators

Sometimes it is useful to combine two or more relational expressions into a logical statement.

The logical operators &&, ||, and ! respectively have the meanings and, or, and not and can be used to perform logical tests among expressions.

Caution: The & operator and the | operator have a totally different meaning (but will sometimes work properly in this context, by accident). Don’t forget to use the doublets for the type of logic discussed here.

Sample Program using One Form of Logical Statement

The following code fragment uses logical operators in a program which counts non-whitespace characters in a sentence.

if(ch != SPACE && ch != NEWLINE && ch != TAB) charcount++;

This statement checks to confirm each input character is not a space and is not a newline and is not a tab character. If it is not one of the three, then the character counter is incremented.

With the "and" operator, every expression must be true in order for the entire expression to be true.

Another Form of Logical Statement

Most logical operations can be written in a variety of ways. The following statement behaves like the previous one, but the logical operation is written differently.

if(!((ch == SPACE) || (ch == NEWLINE) || (ch == TAB))) charcount++;

This formulation implements the verbal statement "If the character is not “space or newline or tab” then increment the counter."

The methodology for converting from one form to the other is often referred to as DeMorgan’s theorem.

Order of Evaluation

C++ guarantees that logical expressions are evaluated from left to right, and guarantees that as soon as an element is found that invalidates the expression as a whole, the evaluation stops.

The Conditional Operator

The conditional operator (?:) is essentially a cryptic, shorthand formulation of an if statement. It is a two-part operator that uses three operands. The general form of the conditional expression is

	expression1 ? expression2 : expression3

If expression1 is true, then the entire expression has the same value as expression2. Otherwise, the entire expression has the same value as expression3.

A typical example is setting a variable equal to the maximum of two values as shown below:

	max = (a > b) ? a : b;

Programming for Multiple Choices: Using switch and break

We can use if else if to select among several alternatives. We can also use a switch statement if the test condition is based on integer data. A switch statement may be more convenient and self-documenting than if else if.

The general form of the switch statement is

	switch (integer expression)

	{

	case constant1:

		statements; //optional

 break; //optional

	case constant2:

		statements; //optional

 break; //optional

		...

	default: //optional

		statements; //optional

	}

An attempt is made to match the value of the integer expression to one of the case constants.

If a match is made, all the statements following that constant, down to and including a break statement are executed. It is not necessary to place braces around a series of statements which are to be executed following a match. If you want to execute only those statements associated with a specific match, you must use break to avoid executing statements which follow.

If no match is found and the optional default section is included, the statements in that section are executed. If default is not used and no match is found, then the entire switch statement is skipped.

A special implementation of the switch statement allows for an "or" type of operation. The following program fragment would allow the value of ch to match either 'a' or 'A'.

	switch (ch)

	{

		case 'a':

		case 'A':	count++;

				break;

	. . .

	}

You cannot use a switch if your choice is based on evaluating a float variable or expression. You probably cannot conveniently use a switch if a variable must fall into a certain range.

The break statement

break is often necessary when using a switch. It can also be used with any of the three loop structures. The break statement causes the program to break out of the switch, for, while, or do while that encloses it. When the break statement is inside nested structures, it affects only the innermost structure containing it.

The continue statement

continue can be used in a loop statement. When continue is encountered, the remainder of an iteration is skipped and the next iteration is started.

The goto statement

Although C++ supports the goto statement, most C++ instructors will recommend that it not be used except in very rare circumstances.

ctype.h Character Functions

C and C++ provide several character-related functions that are declared in the ctype.h header file. A partial list of character functions follows:

	NAME		RETURNS TRUE IF ARGUMENT IS

	isalnum()	Alphanumeric

	isalpha()	Alphabetic

	iscntrl()	A control character, e.g., Control-B

	isdigit()	A digit

	isgraph()	Any printing character other than a space

	islower()	A lowercase character

	isprint()	A printing character

	ispunct()	A punctuating character (any printing character other than

			a space or an alphanumeric character).

	isspace()	A whitespace character (space, newline, form feed, carriage

			return, vertical tab, horizontal tab, and possibly other

			implementation-defined characters

	isupper()	An uppercase character

	isxdigit()	A hexadecimal-digit character		

	CHARACTER-MAPPING FUNCTIONS

	toupper()	Maps lowercase characters to uppercase

	tolower()	Maps uppercase characters to lowercase

I/O Formatting with the iostream Class Library

The iostream class library provides default formats for input and output. Sometimes it is necessary to override the defaults.

Preparation for I/O

To prepare for I/O using the C++ I/O system, two steps are required.

Instantiate a stream object of one of the classes contained in the iostream class library.

Link the stream object to a physical device (such as a specific file). When linked, the stream object provides the logical connection between a physical device and the computer’s memory.

When a C++ program begins, four stream objects are automatically instantiated and linked:

Stream			Meaning			Default Device

cin			Standard input			Keyboard

cout			Standard output			Screen

cerr			Standard error			Screen

clog			Buffered version of cerr	Screen

Except for the four streams listed above, before you can make use of a stream, you must link it to a physical input or output device.

Format Flags and Format Words

There are three ways by which you can control the format of output data, and alter certain aspects of how information is input:

Setting format flags with setf() and its companion functions, unsetf() and flags().

Using width(), precision(), and fill() functions to modify corresponding format words.

Using I/O manipulators to modify format flags or format words.

I/O manipulators are frequently easier to use than the other two approaches.

Setting Format Flags

Each C++ stream object contains format flags that determine how data is formatted during I/O. These flags are named and given values as enumerated constants within the ios class as shown below:

Flag		Purpose

skipws		Skip leading whitespace when performing input

left		Output is left-justified

right		Output is right-justified

internal		Has to do with padding to fill a field

dec		Decimal output

oct		Octal output

hex		Hexadecimal output

showbase	Cause the base of numeric values to be shown

showpoint	Display a decimal point and trailing zeros for all floating point output

uppercase	Display the “E” in exponential and the “X” in hex in upper case

showpos	Display a leading plus sign before positive decimal values

scientific	Display floating point values in scientific (exponential) notation

fixed		Display floating point values in normal notation

unitbuf		Flush the output stream after each output operation

Use the setf() function to set one or more flags as in the following example.

cout.setf(ios::showbase | ios::hex);

It is possible to use the setf() function to directly set conflicting flags, so we will discuss an alternate approach to setting some of the flags later.

The complement of setf() is unsetf(). This function can be used to clear one or more format flags.

You can use the flags() function to set all the flags at one time where the argument is a long integer containing the information required to set the appropriate flags.

You can also get a copy of the current settings of all the flags by calling flags() with no arguments.

Setting Related Flag Bits

Some of the flag bits are related in such a way that you can set conflicting bits using the setf() function directly.

The related flag bits can be safely manipulated using the following form of the overloaded setf() function.

long setf(long _setbits, long _field);

The values of the following three items can be used with this version of the function to assure that all the related bits are cleared before one of them is set.

// constants for second parameter of seft()

static const long basefield; // dec | oct | hex

static const long adjustfield; // left | right | internal

static const long floatfield; // scientific | fixed

The comments identify the three groups of format flags which have related bits and which should only be manipulated using the overloaded version of setf() which requires two arguments. For example, the proper way to set the hex bit is using code as follows:

cout.setf(ios::hex,ios::basefield);

Setting Independent Flag Bits

The following flag bits can be set independently using the setf() function without concern for the settings of other flag bits:

skipws, showbase, showpoint, uppercase, showpos, unitbuf, and stdio

Clearing Flag Bits

The unsetf() function can be used to clear one or more flag bits. The usage syntax for this function is essentially the same as setf() except that bits specified are cleared to zero instead of being set to one.

cout.unsetf(ios::showbase | ios::hex);

Using width(), precision(), and fill()

We can control the field width, the decimal precision, and the fill characters on output by using the width(), precision(), and fill() functions.

We control the minimum field width by calling the width() function with the desired width as a parameter.

We control the number of digits to the right of the decimal point or the “fill” character by calling the precision() and fill() functions with the desired precision or the desired fill character as an argument.

In some implementations, each time an output operation is performed, the field width returns to its default setting, so it may be necessary to set the minimum field width before each output operation.

(Note that the precision() function doesn’t work properly in the Borland version 4.5 software installed in the CIS laboratory at ACC as of September 4, 1996.)

Using I/O Manipulators

Another way to control the format of output data in C++ programs is to use I/O Manipulators.

I/O Manipulators are special I/O format function calls that may occur within an I/O statement, instead of separate from it the way the previously-discussed ios member functions must. The standard manipulators are shown in the table below.

Manipulator		Purpose					Input/Output

dec			Format numeric data in decimal			Output

endl			Output newline char and flush the stream	Output

ends			Output a null					Output

flush			Flush a stream					Output

hex			Format numeric data in hexadecimal		Output

oct			Format numeric data in octal			Output

resetiosflags(long f)	Turn off the flags specified in f			Input/Output

setbase(int base)	Set the number base to base			Output

setfill(int ch)		Set the fill character to ch			Output

setiosflags(long f)	Turn on the flags specified in f			Input/Output

setprecision(int p)	Set the number of digits of precision		Output

setw(int w)		Set the field width to w				Output

ws			Skip leading whitespace			 	Input

NOTE: To access manipulators that take parameters (such as setw()), you must include iomanip.h in your program. This is not necessary when you are using a manipulator that does not require an argument.

I/O Manipulators may occur in the chain of I/O operations as in the following examples:

cout << oct << 100 << hex << 100;

cout << setw(10) << 100;

More on the I/O System

Stream Output

The iostream class library provides the ability to perform both formatted and unformatted output. Capabilities include but are not limited to:

Output of standard data types using the stream insertion operator (<<).

Output of characters using the put() member function.

Unformatted output using the write() member function.

Output of integers in decimal, octal, and hexadecimal format.

Output of float values with various precision, with forced decimal points, in scientific notation and fixed notation.

Output of data justified in fields of designated field widths.

Output of data in fields padded with specified fill characters.

Output of lowercase or uppercase letters in scientific notation and hexadecimal notation.

Stream Input

Stream input can be performed using the stream extraction operator (>>) and some functions discussed later..

I/O Stream Error Data

Each stream object contains a set of state bits which are used to maintain the state of the stream (formatting, setting error states, etc.).

get() and getline() Functions

There are several overloaded versions of the get() function. The get()function with no arguments inputs one character from the designated stream.

The get() function with one argument extracts the next character from the keyboard buffer and stores it in the variable passed as an argument.

Another version of the get()function takes three arguments: a pointer to an array, a size limit, and a delimiter (with a default value of ‘\n’). This version reads characters from the input stream, up to one less than the specified maximum number of characters and terminates, or, it terminates as soon as the delimiter is read. A null character is inserted to terminate the string in the array. The delimiter is not placed in the array, but does remain in the input stream (where it can cause problems later).

The getline() member function operates in a manner very similar to the third version of get() but with some subtle differences which are described in a good on-line help system.

Other istream Member Functions (peek, putback, and ignore)

The peek() function returns the next character from an input stream, but does not remove the character from the stream.

The putback() function places a character back into an active input stream at the head of the line.

The ignore() function skips over a designated number of characters (default is one character) or terminates upon encountering a designated delimiter. The default delimiter is EOF.

Unformatted I/O with read, gcount, and write

Unformatted I/O is performed using the read() and write() member functions. Each of these functions reads or writes a specified number of bytes from or to an array in memory. The bytes are not formatted in any way. They are simply read or written as raw bytes.

The gcount() member function reports the number of bytes read by the most recent input operation.

Flushing the Buffer

You can force the data to be physically written before the buffer is full by calling the flush() member function.

Testing for I/O Errors, Stream Error States

A group of data members of ios maintains the state of a stream in a manner which may be tested at any time.

The stream status bits are declared in the ios class as public enumerated constants. The following is an extract from iostream.h showing the declaration.

// stream status bits

 enum io_state {

 goodbit = 0x00, // no bit set: all is ok

 eofbit = 0x01, // at end of file

 failbit = 0x02, // last I/O operation failed

 badbit = 0x04, // invalid operation attempted

 hardfail = 0x80 // unrecoverable error

File Input/Output in C++

Human programmers think of a file as a section of storage, usually on a disk, with a name.

The operating system sees a file as a very complicated entity with data segments and pointers scattered all over the disk.

C++ sees a file as a sequence of bytes, each of which can be read individually.

It is the responsibility of the programmer to assign meaning to the bytes.

Sample Program

The following simple program illustrates the minimum requirements for reading and writing files.

//File FILE01.CPP

//Illustrates writing and reading a file

#include <fstream.h>

void main()

{

 char data;

 ofstream OutFile("c:\\jnk\\jnk.txt");//open file for output

 OutFile << "This is one line\n" << "This is another line\n";

 OutFile.close();

 ifstream InFile("c:\\jnk\\jnk.txt");//open file for input

 while((data = InFile.get()) != EOF) cout << data;

}//end main

The output from running this program is as follows:

This is one line

This is another line

File I/O

File I/O in C++ uses stream objects which are instantiations of three file I/O classes of iostream.h.

You must include the header file fstream.h in your program if you are going to perform file I/O.

You must perform two steps before using insertion or extraction operators (or other I/O functions) to access the data in the file.

Declare a stream object of the proper type: input, output, or input/output.

Link the stream object to a physical file by calling the open() member function. (Defaulted versions of the member functions allow you combine these two steps into one statement.)

Optionally, you can close the file after you have finished processing it.

To create an input stream object, declare the object to be of class ifstream. To create an output stream object, declare it as ofstream. If you plan to perform both input and output operations on a file, declare the object as fstream.

One way to link a stream object with a physical file is by using the open() function. The prototype for the open() function is

void open(const char *myfile, int mode, int access);

where *myfile points to the name of the file which may include a path specifier. The value of mode determines how the file is opened. (access will be discussed later.)

mode must be one of the following values which are enumerated public constants in the ios class.

in = 0x01, // open for reading

out = 0x02, // open for writing

ate = 0x04, // seek to eof upon original open

app = 0x08, // append mode: all additions at eof

trunc = 0x10, // truncate file if already exists

nocreate = 0x20, // open fails if file doesn't exist

noreplace= 0x40, // open fails if file already exists

binary = 0x80 // binary (not text) file

Having acquired a stream and linked it to a physical file, you can then use the insertion operator (<<) to write bytes to the file or use the extraction operator (>>) to read bytes from the file.

binary Mode versus Default text Mode

By default, all files are opened in text mode. The ios::binary value causes a file to be opened in binary mode.

In text mode, various character translations may take place, such as carriage return-linefeed sequences being converted into newlines.

When a file is opened in binary mode, no character translations will occur.

Any file can be opened in either text mode or binary mode. The only difference is whether character translation takes place when data is written to or read from the file.

Access Parameter

The access parameter for the open() function determines how the file can be accessed. The default is “normal.” The following choices are available In DOS/Windows environments. Other platforms may provide different choices.

Attribute	Meaning

	0	normal file: open access

	1	read-only file

	2	hidden file

	4	system file

	8	archive bit set

You can OR two or more of these together.

The following code fragment would open a normal output file in a DOS/Windows environment:

ofstream out; //declare an output stream object

out.open(“test”, ios::out, 0); //link stream to file named “test”

Short Form for open() Function

Both the mode and access parameters have default parameters: ios::in for ifstream and ios::out for ofstream. In both cases: normal access. Therefore, you can frequently get by with the following:

ofstream out; //declare an output stream object

out.open(“test”); //link stream to file named “test”, default mode and access

Reading and Writing Text Data to a File

To read or write formatted text data to an open file, use the << and >> operators the same way you do when performing console I/O, except substitute the name of the stream object for cin or cout. Information is stored in the file in the same format as it would be displayed on the screen. A file produced by using << is a formatted text file, and any file read by >> must be a formatted text file.

Short Form for Declaring a Stream and Opening a File

The ifstream, ofstream, and fstream classes have overloaded constructors that automatically open the file. You can frequently open your file using simple statements such as the following:

ofstream OutFile("jnk.txt");

ifstream InFile("jnk.txt");

You close an open file by calling the close() function as in:

InFile.close();

Enumerated Types in C++

Define an enumerated type by using the keyword enum followed by an optional type designator and a brace-enclosed list of identifiers. For example,

	enum animal {cat, dog, rat};

defines an enumerated type, animal, that has three possible values: cat, dog, and rat.

Internally, these are defined as constants with an integer value equal to their position in the list. cat is 0, dog is 1, and rat is 2.

We can also assign specific integer values to the items in an enumerated list as follows:

	enum animal {cat = 2, dog = 0, rat};

The default value for any item is one more than the value of the item preceding it. Thus, we now have 2 for cat, 0 for dog, and 1 for rat.

Having declared an enumerated type, we can declare variables of that type.

	animal mammals;

We can use any enumerated type as though it were an integer.

Character Strings

There is no string type in C++. Rather, there is a data storage format consisting of a series of sequential bytes in memory terminated by a byte with a value of zero (null) which is interpreted by many functions and the insertion and extraction operators as a character string.

Data stored in this format consists of a set of integers (probably 8-bit integers) which can be manipulated in any manner that any array of integers can be manipulated..

A character string constant in C++ can be represented by one or more characters, surrounded by quotation marks. It will be stored somewhere in memory according to the storage format described above. Taken as a whole, that representation is treated by the C++ compiler as a pointer to the location in memory where the data is stored.

Type char Arrays and the Null Character

Strings may be stored in an array of type char. An array is an ordered sequence of data elements of one type.

Thus, the array must always contain at least one more element than the number of actual characters in the string in order to allow space for the terminating null character.

Using Strings

Tell cout << to print a string by providing a pointer to an array containing the string as the right operand of the insertion operator.

Tell cin >> to read a string (or part of a string) into a char array by following the extraction operator with a pointer to a char array where the string is to be stored. The terminating null character is automatically added and stored in the array.

cin >> can only read single-word strings and stops reading at the first "whitespace" (blank, tab, or newline). A function named getline() can be used to read entire sentences including whitespace..

The name of an array with no square brackets is treated as a pointer to the first element in the array.

Strings Versus Characters

The string "x" is not the same as the character 'x'. For example, 'x' is a basic type (char) whereas "x" is a derived type: an array of char. Also, "x" consists of two characters: 'x' plus the null character.

String Length -- strlen()

The sizeof operator can be used to find the size of an array as in the following example.

	size = sizeof name;	//get size of the array

The strlen() function can be used to determine the length of a string stored in an array (not including the null character) as follows:

	length = strlen(name);	//get size of the string in the array

The strlen() function requires a pointer to the char array as a parameter and uses the presence of the terminating null character to identify the end of the string.

Arrays

An array is a series of data objects of the same type stored sequentially in memory. The entire array bears a single name, and the individual data elements are accessed by using an integer index.

A 20-element array of type float can be declared as follows.

	float MyArray[20];

The first element is called MyArray[0] and the last element is called MyArray[19].

The values used to identify the array elements are called subscripts or indices. They must begin with 0.

Storage Classes

The terms external, static, and automatic describe different storage classes that C++ allows. The storage class determines how widely known a data item is and for how long it is kept in memory.

Automatic Variables and Arrays

An automatic variable or array is one defined inside a function (including formal arguments). It is known only within that function and exists only for the duration of a call to that function.

C++ allows us to initialize automatic arrays using a comma-separated list of values enclosed in braces as shown below:

	main()

	{

		int MyArray[3] = { 16, 3, 48};

	...

	}

You can allow the compiler to determine the size of the array using a statement like the following for which the brackets are empty:

	int Ages[] = {31, 28, 31};

External Variables and Arrays

An external variable or external array is defined outside a function.

External variables and arrays differ from automatic variables and arrays in three respects:

They are known to all functions following them in a file.

They persist for as long as the program runs.

They are initialized to zeros by default.

Static Variables and Arrays

You can define a static variable or static array inside a function by beginning the declaration with the keyword static:

A static variable or array is (typically) accessible only within the function in which it is declared, is initialized to zeros by default, and retains its value between function calls.

Because it persists after the function terminates, it is safe to return a reference to a static variable (causing it to be accessible outside the function).

Assigning Array Values

You can use an assignment operator to assign values to members of an array regardless of storage class.

C and C++ will not allow you to assign one array to another as a unit.

Pointers to Arrays

An array name is a synonym for the address of the first element in the array (pointer constant).

A pointer variable can only be a pointer to a specific type of data.

If you increment a pointer variable, the actual value changes by the number of bytes required to store one object of the type of data to which it points. Pointer arithmetic can be used to efficiently traverse an array.

Given an array named data and a pointer variable named ptr of the same type as the array, you can store the address of the first element in the array into the pointer variable without use of the & operator as follows:

ptr = data;

Note the following equalities where MyIntData is the name of an array:

	MyIntData + 2 == &MyIntData[2]		//same address

	*(MyIntData + 2) == MyIntData[2]		//same value

Defining and Using Strings in A Program

A C++ string is a series of char values terminated by the null character. (The null character is a byte with a value of zero and can be specified as ‘\0’. A string can be stored in a character array, but a character array is not necessarily a string.

 Samples

Strings can be defined in a program in several ways. Some examples follow:

//symbolic string constant or manifest constant

#define Message "What is on your grocery list."

//Initialize a character array. (Note no * required.)

char Str1[] = "Enter them all on one line.";

//Initialize a character pointer.

char *Str2 = "If you don't need anything, enter none.";

//Initialize an array of char pointers. Note the * before MyList[LIM]

// required to initialize an array of char pointers.

char *MyList[LIM] = {

 " One can of applesauce.",

 " Four cans of peaches.",

 " A loaf of bread.",

 " A bunch of green onions.",

 " Three apples." };

//Display a literal string constant.

cout << "Time to go to the grocery.\n";

//Input string into array UrList

cin.getline(UrList,LINLEN-1);

Creating Character String Constants

Anything enclosed in quotation marks is treated as a string constant by the compiler The characters plus a termination null character are stored in sequential memory locations.

The compiler also determines and allocates the required amount of memory.

String constants are placed in static storage class, meaning that the string is stored just once and lasts for the duration of the program, even if the function is called several times.

The entire phrase in quotation marks acts as a pointer to the first character in the string. This is illustrated in the following example.

The following code fragment

cout << "We" << ", "

 << (unsigned)"Us" << ", "

 << *"You" << endl;

would produce the following output:

We, 6047, Y

By default, the first string which is the right operand of the insertion operator is printed as the string We.

The (unsigned) cast causes the contents of the pointer defined by “Us” to be printed. This displays the least significant portion of the memory address where the string is stored. (The entire address would likely be a much larger number.)

A better way to display the address contained in a pointer is to cast the pointer as (*void).

The Y is printed by printing the contents of the address pointed to by the pointer “You”.

If a pointer named ptr points to the string “Fred” the following code fragment

 cout << ptr[2];

 cout << *(ptr+2);

 cout << "Michael"[2] << endl;

would produce the following output:

eec

Each statement causes the third element (or character) in the pointed-to string to be printed.

Initialization of Character String Arrays

One way to define a character string array is to initialize a char array with a string constant as shown below:

	char Str1[] = "This is a string.";

In this case, the compiler determines the amount of memory required allocates, and initializes it automatically with the specified string (including a null character).

The array name Str1 is a synonym for the address of the first element of the array. The following statements are true:

	Str1 == &Str1[0]

	*Str1 == 'T'

	*(Str1+1) == Str1[1] == 'h'

Strings can also be defined using pointer notation as follows:

	char *Str3 = "\nAnother string";

This is similar to but different from the statement:

	char Str3[] = "\nAnother string";

Both cases indicate that Str3 is a pointer to the indicated string, and in both cases, the string itself determines the amount of storage space set aside for the string. However, the forms are not identical, as discussed below.

Initializing Character Arrays and Initializing String Pointers: the Difference

The array form

	char Str3[] = "\nAnother string";

sets aside sufficient space for the string and the terminating null character. Thereafter, the compiler will recognize the name Str3 as a synonym for the address of the first element in the array, &Str3[0]. Str3 is a pointer constant. You can use operations like Str3+1 to identify the next element in an array, but expressions like ++Str3 are not allowed.

The pointer form

	char *Str3 = "\nAnother string";

causes the same amount of space to be set aside to hold the string and the null character, and also sets aside an additional storage location for the pointer variable itself which contains the address of the first element in the string.

Initially, this variable contains the address of the first character in the string, but the value can be changed during program execution.

Explicit Specification of Storage for a String

You can also establish storage for a string explicitly as in:

	char Str1[44] = "This is a string.";

You must make certain that the size of the specified array is at least one greater than the number of characters in the string (to make space for the null character).

Arrays of Pointers to Strings (Ragged Arrays)

It is often convenient to use an array of pointers to char as follows. (Note the requirement to include the de-referencing operator (*) ahead of the array name in the declaration of the array.)

char *MyList[5] = {

 "One can of applesauce.",

 "Four cans of peaches.",

 "A loaf of bread.",

 "A bunch of green onions.",

 "Three apples." };

This allows us to access the strings using subscripts. MyList[] is an array containing five pointers-to-char. The element MyList[0] points to the first string which is located somewhere else in memory.

This structure is sometimes referred to as a “ragged array.”

Using Pointers with Strings, Miscellaneous

Most C++ functions and operators designed to be used with strings actually require pointers to strings.

Making a copy of a pointer to a string doesn't make another copy of the string. The result is simply to have two or more pointers pointing to the same string.

String Input

Reading a string into a program involves two steps:

Setting aside space to store the string.

Using an input function or operator to fetch the string and store it in the allocated space.

One way to set aside space is to declare a char array of sufficient size to contain the largest string that you expect to receive plus the null character. (You can also use dynamically allocated memory.)

String Functions

The C++ library supplies several string-handling functions. This section looks at four of them. All four of these functions require string pointers as arguments.

The Strlen() function returns the numbers of characters in the string, not counting the terminating null character.

This strcat() function appends or concatenates one string to another. This function does not check to confirm that there is sufficient space allocated for the length of the concatenated strings.

The strcmp() function compares two strings (s1 and s2). More specifically, the function performs an unsigned comparison of the characters in s1 to the corresponding characters in s2. The function returns an int value that is

	< 0 if s1 < s2

	== 0 if s1 == s2

	> 0 if s1 > s2

The notation s1 < s2 means less than in terms of the ASCII collating sequence (assuming that the system uses the ASCII character set). Stated differently, s1 < s2 means that the first string precedes the second in the collating sequence.

The strcpy() function copies a specified string into a specified char array. The function writes over any existing contents of the destination array.

The function does not check to confirm that sufficient space is available to hold the string. If the source is not a valid string with a terminating null character, the consequences can be serious.

The sprintf() function is similar to the printf() function (standard C I/O function), except that it sends its formatted output to a string in memory instead of to the standard output device.

Command-Line Arguments

Command-line arguments are additional items on the command line following the name of the program to be executed. Some familiar DOS examples follow:

dir c:\junk*.exe

copy junk1 junk2

format a:

The C++ mechanism for supporting command-line arguments is to declare an argument list for the main() function as shown in the following example program.

//File cmdline1.cpp

//Illustrates use of command line arguments

/*Write a program that echos the command-line arguments in reverse word

order.

*/

#include <iostream.h>

void main(int argc, char *argv[]) //integer and array of pointers

{

 int count;

 cout << "Number strings = " << argc << " incl program name\n";

 for(count = argc-1; count >= 0; count--) cout << argv[count] << endl;

} //End main()

For a command-line entry of

cmdline1 abc defg hijkl

The output from running this program was

Number strings = 4 incl program name

hijkl

defg

abc

C:\JNK\CMDLINE1.EXE

The system stores the arguments as individual strings in memory, establishes an array of pointers argv[] which point to those strings, and provides the size of the array in the integer variable argc.

With some systems, the name of the program is stored as a string and pointed to by argv[0]. The command-line arguments are stored and pointed to by argv[1] through argv[n].

The names of the arguments to main() used in the example program above are traditional, but not required. Any legal identifier names can be used.

String-to-Number Conversions

One of the preferred methods for converting from numeric form to string form is to use the sprintf() function discussed earlier.

C++ provides functions for converting from string form to numeric form. For example, atoi() converts from string to int. As usual, atoi() requires a pointer to a string as its argument.

Introduction to Structures in C and C++

In C++, we can use a structure, class, or union to represent complex data in a program. This section discusses the struct as it is typically used in C. The structure in C is similar to the record in Pascal, allowing you to bundle values of different types and treat the bundle as a unit. .

To write a stockroom inventory program, we could define a structure containing part name, part number, and cost. This would cause the structure to contain two char arrays (strings) and a float variable.

We define the structure using a template as follows:

struct part { //structure template

 char PartName[MAXPARTNAME]; //an array for PartName

 char PartNo[MAXPARTNO]; //an array for PartNo

 float cost; //a variable for cost

 }; //end of structure template, note the required semicolon

Definition of the template creates a new type named part in C++.

We instantiate objects of the new type or pointers to the new type as follows:

part StockRoom, YourStockroom, *MyStockroomPointer;

We could directly access the individual members of the object as follows:

 cin >> StockRoom.PartName; //get and store PartName string

 cin >> StockRoom.PartNo; //get and store PartNo string

 cin >> StockRoom.cost; //get and store cost

Alternately, using our pointer, we could indirectly access the individual members as follows:

 MyStockroomPointer = &StockRoom; //get address into the pointer variable

 cin >> StockRoomPointer->cost; //get and store cost

Unions

Unions allow us to store values of different types in the same physical memory location.

We define and use unions in much the same way that we define and use structs. To define a new union type, follow the keyword union with a name for the new type and a set of members contained within a pair of braces terminated by a semicolon.

The thing that is special about the union is that all the members share the same physical memory.

Once we have defined a new union type, we can declare variables using that type.

We can access a union’s individual members using the dot operator. We can also access the members of a union indirectly through a pointer using the pointer operator (->).

Structures, Unions, and Classes in C++

The C++ extensions to structures and unions and the introduction of the class in C++ are introduced only briefly in CIS2003 and are covered extensively in CIS2204. Therefore, they won’t be discussed further in this document.

Multidimensional Arrays

You should think of a multidimensional array as being an array of arrays.

Consider an array declared as follows:

	float MyArray[5][12];

When working directly with arrays using array notation, it is convenient to consider this to be a matrix with five rows of twelve elements each. However, it is also useful to consider it to be a five-element array where each element in the master array consists of a 12-element sub-array.

Also, it is good to remember that the data is stored sequentially in memory with the first 12-element array followed by the second 12-element array and so on.

Pointers can be used to process multidimensional arrays very efficiently. Keep in mind, however, that although the name of an array is a pointer to the first element in an array, with a multidimensional array, it is a pointer to a subarray, not a pointer to individual data element in the first subarray. This introduces some unique type considerations.

Dynamic Memory Allocation

In C programming, we use malloc() and other similar functions to allocate memory dynamically. We release that memory by using free(). These functions are also available in C++. Another way to allocate and free memory in C++ is to use the new and delete operators.

Before using the new operator to request the allocation of dynamic memory, you should first make a call to the function set_new_handler() with an argument of zero (if using a late-generation compiler).

Upon receiving an allocation request, new returns a pointer of the proper type to the allocated memory. If there is insufficient available memory to fill an allocation request, new returns a NULL pointer.

Dynamically allocated objects may be given initial values. Also, dynamically allocated arrays can be created.

The general syntax for using these operators is:

	ptr = new type;

	delete ptr;

where type is the type specifier of the object for which you want to allocate memory, and ptr is a pointer to that type.

Assuming that a constructor exists for the type, you can give a dynamically allocated object an initial value using the following form:

	ptr = new type(initial value);

(Your instructor will provide a brief discussion of constructors.)

Use the following form to dynamically allocate a one-dimensional array:

	ptr = new type[size];

The pointer which is returned will point to the beginning of an array of size elements of the type specified.

It is not possible to initialize an array that is dynamically allocated.

Use the following form to release a dynamically allocated array:

	delete [] ptr;

This syntax causes the compiler to call the destructor once for each element in the array. (Your instructor will provide a brief discussion of destructors.)

-end-

	

	

Introduction to C++ and C Programming, Lecture Notes # 51, Overview,

 Copyright 1996, R.G.Baldwin, Page � PAGE �
39
�

