Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #25, File 2003-25.DOC. Revised 9/4/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Passing Parameters with Pointers

� TOC \o "1-4" �
1. Finding Addresses: Using the Address Operator (&)	
�

GOTOBUTTON
_Toc366920826

�

PAGEREF
_Toc366920826

�
1
�
�

2. Modifying Variables in the Calling Program	
�

GOTOBUTTON
_Toc366920827

�

PAGEREF
_Toc366920827

�
1
�
�

3. Pointers	
�

GOTOBUTTON
_Toc366920828

�

PAGEREF
_Toc366920828

�
2
�
�

3.1 Declaring Pointers	
�

GOTOBUTTON
_Toc366920829

�

PAGEREF
_Toc366920829

�
2
�
�

3.2 The Indirection Operator: *	
�

GOTOBUTTON
_Toc366920830

�

PAGEREF
_Toc366920830

�
2
�
�

3.3 Communicating Between Functions using Pointers	
�

GOTOBUTTON
_Toc366920831

�

PAGEREF
_Toc366920831

�
3
�
�

�
This set of lecture notes
introduces
 the use of
pointers
 in conjunction with the passing of parameters to functions. Pointers also have
other uses
 in C++ which will
be
discussed in subsequent lecture notes.

Finding Addresses: Using the Address Operator (&)
Some functions need to
manipulate
 the values of
variables
 in the
calling program
. This means that they need access to the
original variable
 and not simply access to a
copy of the variable
. When this is required, a copy of the address of the variable
can
be sent to the function. The function can then use this address to
access the variable directly
, provided it knows how to deal with the type of the variable.

(
Another feature
 of C++ known as
reference parameters
 can
also
be used for the same purpose.)

The
 address operator

(
&
)

is used to
 send the address
 of a variable to the function. For example, if
MyVariable
 is the
name of a variable
, then &
MyVariable
 is the
address of the variable
 named
MyVariable
.

(Note that in C++, the & is also used
with a different syntax
to pass
parameters by reference
, a topic to be discussed in a later set of lecture notes.)

Modifying
 Variables in the Calling Program

With regard to providing the capability for a function to modify a variable in the calling
 program,
p
assing an address to a function is only one side of the coin. The other side of the coin is using that address to manipulate the variable. You should remember the following:

A return statement can be used to communicate only one value from a function back to the calling program.
To communicate two or more values from a function back to a calling program in C, we must use pointers. (You may use reference parameters in C++.)

Pointers

A function in C++
can return one value
 to the calling program through use of a
return
 statement.

To communicate
 two or more
 values from a functio
n back to a calling program
, we
can
 use
either

pointers
 or
reference parameters
.
(Reference parameters are discussed elsewhere.)

A
pointer
, or more properly a
pointer variable
can be
used to
pass the address
 of the variable to the function.
 The
&
 operator is used to
determine the address
 of a variable.

We can
send the addresses
 of one or more variables to a function using the &
operator
. This
 mak
e
s
 it possible for the function to
directly manipulate
 the contents of one or more variables in the calling program.

For example, if we include the term &
MyVar
 in an expression, we are including
a
 pointer constant in the expression

If we
declare a pointer variable
 and then
 execute an assignment such as

	ptr = &
MyVar
;

then we have a pointer variable which
contains the address
 of
MyVar
.
It is common for programmers to state that
ptr

points to

MyVar
.

Declaring Pointers
Before we can assign the address of a variable to a pointer variable, we must first
declare the type of data to which the pointer will point
. To do this, we need the indirection operator (*), not to be confused with the multiplication operator which also uses the *.

The Indirection Operator: *
It is
not sufficient

to
simply state
that a variable is a pointer. We also have to
define

what
type

of variable
 the pointer points to.

D
ifferent variable types take up
different amounts of storage
.

S
ome pointer operations (such as pointer arithmetic) require knowledge of the storage size. Also, the compiler has to know what type of data is stored at a particular address in order to deal with the
organization
 of that data.
 For example,
float
 and
int
 data are organized in memory in significantly different ways.

Therefore,
before we can assign
 an address to a pointer variable, we must
declare the pointer
 variable
, which includes
specifying the type
 of data to which the pointer will point. We
use the indirection operator
 for this purpose. Here's how pointer
 variables
 are declared:

	int *pint;		//pint is a pointer to an integer variable
	char *pchr;		//pchr is a pointer to a character variable
	float *pf,*pg;	//pf and pg are pointers to float variables

The
type specification
 identifies the
type
 of variable
pointed to
, and the indirection operator (*) identifies the variable
as a
pointer
 variable
. Thus, the declaration int *pint says that pint is a pointer
 variable capable of pointing to data of type
int
.

Any of the following formats is acceptable in the declaration
 (note the different positions of the indirection operator
*
)
.

	int *pint;		//pint is a pointer to an integer variable
	int * pint;		//pint is a pointer to an integer variable
	int* pint;		//pint is a pointer to an integer variable

Now, suppose that we declare ptr to be a pointer to a variable
of the type of

MyVar

and assign the address
 of the variable
MyVar
 to ptr as follows:

	ptr = &
MyVar
;

We then know that ptr
points to

MyVar
 and can use the indirection operator, (*) (also called the
de-referencing operator
) to
find the value
 stored in
MyVar
 using a statement such as:

	
MyValue
 = *ptr;	//finding the value ptr points to

The following two statements:

	ptr = &
MyVar
;
	
MyValue
 = *ptr;

produce the same result

as the single statement:

	
MyValue
 =
MyVar
;

Using the address and the indirection operator to accomplish this is an
indirect route
, hence the name
indirection operator
.

Note that the indirection operator serves a
dual purpose
 in pointer operations.

First, it is used in the declaration of pointer variables.

Second, it is used to access the contents of a variable given its address.

In C++, the & also serves a dual purpose.

It is used as the
address operator
 as described above.

It is also used in a function prototype to indicate that a parameter is to be
passed
 to a
function by reference
. (Passing parameters by reference is discussed in a subsequent set of lecture notes.)

This multiple use of each of the operators
can lead to confusion
. Make sure you understan
d the differences.

Communicat
ing
 Between Functions
 using Pointers

Now back to the reason that pointers were introduced in this set of lecture notes in the first place. As an
example
, we would like to write a function in C++ which can
swap two parameters
. One way to successfully implement the swap program is to use pointers. In this case, the function must
communicate two different values
 back to the calling program.

The following C++ program includes a function which will successfully swap the values of two variables in the calling program.
 This is a
classic example
 program which is presented in many textbooks.

//==========Begin program swap3.cpp
//Illustrates use of pointers to pass parameters
#include <iostream.h>

void main()
{
 void
SwapMyVar
(int*,int*); //function prototype
 int x=5, y=10;
 cout << "Originally, x = " << x << " and y = " << y << endl;

SwapMyVar
(&x,&y); //send addresses to the function
 cout << "Now x = " << x << " and y = " << y << endl;
} //=====End main()

//=====Begin function
SwapMyVar
()
void
SwapMyVar
(int* u,int* v)//definition with implicit pointer declaration
{
 int temp;
 temp=*u;
 *u = *v;
 *v = temp;
} //=====End function
SwapMyVar
()

Let's examine how this program works. First, take a look at the function declaration (prototype) and the function definition statements which follow:

void
SwapMyVar
(int*,int*);	//function prototype

void
SwapMyVar
(int* u,int* v)//definition with implicit pointer declaration

(The prototype is
sometimes
called a referencing declaration and the definition is
called a defining declaration.)

These two statements
identify

the function variables u and v
as

pointer variables
 designed to
point to
 variables of
type

int
. This is accomplished through use of the indirection operator (*) along with the int keyword within the parenthesis.

The function call passes

copies
 of
the addresses of
x
 and
y
 to the function using the following statement:

	
SwapMyVar
(
&x,&y
);	//send addresses to the function

These addresses are used to
initialize the values
 of the pointer variables u and v in the function.
 (The fact that this is an
initialization operation
 becomes
extremely
 important in later
, more advanced C++ courses
 so you should try to remember it
.)

To swap two variables, a third variable is required to temporarily hold one of the variables. Such a variable is declared in the function with the statement:

	int temp;

Using the pointer variable u, we store the contents of the address pointed to by u into temp with the following statement:

	temp = *u;

You might think of this statement as saying:

“Go to the address pointed to by u, get what you find there, and store it in temp.”

Now that we have put that value aside for safekeeping, we can do something that might be described as:

“Go to the address pointed to by v, get what you find there, and store it in the address pointed to by u.”

We accomplish this with the following statement:

	*u = *v;

Our "swap" is now
half completed
. The next step is:

“Get the value stored in temp and store it in the address pointed to by v.”

We accomplish this with the following statement:

	*v = temp;

and the
swap is
complete
.

To summarize, we
needed
a function that
modifies
the values
 of
two variables
:
x
 and
y
. By
passing
copies
 of the

addresses
 of
x
 and
y
, we gave the function
SwapMyVar
()
the ability to
access

those variables.
By
u
sing
pointers

along with
the
indirection operator
, the function can
access
the values stored at those locations and change them.

In
C
 and C++
, we can
communicate two kinds of information
 about a variable to a function.
A function
call of the form

	
MyFunction
(x);

passes
the
value
 of
x
. (In C++, this function call may
also
mean
something different
, depending on whether or not the function prototype declared the parameter as a reference parameter. This possibility is discussed in a subsequent set of lecture notes.)

A
call of the form

	
YourFunction
(&x);

passes
a
copy
 of

the
address
 of
x
.

The first form requires that the function definition
specifies
a formal argument of
the same type as x
:

	
MyFunction
(int num)

The second form requires that the function definition
specifies
a formal argument that is
a pointer to the correct type
:

	
YourFunction
(int* ptr)

In both cases, the function prototype
must match the definition
 (but does not require that the name of the argument be provided)
.

We
can
use the
first form
 if the function
only
needs
the

value

of the argument
to accomplish its purpose. We
can
use the second form if the function
needs access to the variable
 in the calling program to accomplish its purpose.
 (We can also use
reference parameters
 if the function needs
access to the variable
.)

Much more
 will be said about pointers before the completion of this course of study. It is
not possible
 to be a
successful
 C or C++ programmer without becoming
fluent in the use of pointers
.

-end-

Introduction to C++ and C Programming, Lecture Notes # 25, Passing Parameters with Pointers,
Copyright 1996, R.G.Baldwin, Page � PAGE �
6
�

