Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 02, File 2003-02.DOC. Revised 7/31/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Differences Between C and C++

� TOC \o "1-4" �1. VOID NOTATION	� GOTOBUTTON _Toc363888429 � PAGEREF _Toc363888429 �1��
2. ALL FUNCTIONS MUST HAVE A PROTOTYPE	� GOTOBUTTON _Toc363888430 � PAGEREF _Toc363888430 �1��
3. WHERE LOCAL VARIABLES MAY BE DECLARED.	� GOTOBUTTON _Toc363888431 � PAGEREF _Toc363888431 �2��
4. REFERENCING	� GOTOBUTTON _Toc363888432 � PAGEREF _Toc363888432 �2��
5. SCOPE REFERENCE OPERATOR	� GOTOBUTTON _Toc363888433 � PAGEREF _Toc363888433 �2��
6. THE NEW AND DELETE OPERATORS	� GOTOBUTTON _Toc363888434 � PAGEREF _Toc363888434 �2��
7. CLASSES	� GOTOBUTTON _Toc363888435 � PAGEREF _Toc363888435 �2��
8. OPERATOR AND FUNCTION OVERLOADING	� GOTOBUTTON _Toc363888436 � PAGEREF _Toc363888436 �2��
9. VIRTUAL FUNCTIONS	� GOTOBUTTON _Toc363888437 � PAGEREF _Toc363888437 �2��
10. ABSTRACT CLASSES	� GOTOBUTTON _Toc363888438 � PAGEREF _Toc363888438 �2��
11. C++ SCOPE	� GOTOBUTTON _Toc363888439 � PAGEREF _Toc363888439 �3��
12. TEMPLATES	� GOTOBUTTON _Toc363888440 � PAGEREF _Toc363888440 �3��
13. THE IOSTREAM CLASS	� GOTOBUTTON _Toc363888441 � PAGEREF _Toc363888441 �3��
14. COMMENTS	� GOTOBUTTON _Toc363888442 � PAGEREF _Toc363888442 �3��
15. KEYWORDS	� GOTOBUTTON _Toc363888443 � PAGEREF _Toc363888443 �3��
16. DEFAULT FUNCTION ARGUMENTS	� GOTOBUTTON _Toc363888444 � PAGEREF _Toc363888444 �3��
17. INLINE FUNCTIONS	� GOTOBUTTON _Toc363888445 � PAGEREF _Toc363888445 �3��
18. CONST VARIABLES AND FUNCTIONS	� GOTOBUTTON _Toc363888446 � PAGEREF _Toc363888446 �3��
19. enum AS A TYPE	� GOTOBUTTON _Toc363888447 � PAGEREF _Toc363888447 �4��
20. LINKAGE SPECIFICATIONS	� GOTOBUTTON _Toc363888448 � PAGEREF _Toc363888448 �4��
21. ANONYMOUS UNIONS	� GOTOBUTTON _Toc363888449 � PAGEREF _Toc363888449 �4��
22. CONSTRUCTORS FOR INTRINSIC TYPES	� GOTOBUTTON _Toc363888450 � PAGEREF _Toc363888450 �4��
�

This set of lecture notes lists some, but possibly not all, of the major differences between C and C++. As you review this section, you will find that some differences are specifically excluded from the course, some are specifically included in the course, and some are not mentioned one way or the other. Generally speaking, the items in this latter category represent benefits which accrue simply by using a C++ compiler instead of a C compiler.

By far, the biggest difference in the revised structure of this course is the inclusion of the C++ iostream class library typified by cin and cout.

VOID NOTATION
In C, (with modern compilers) when a function takes no parameters, its prototype has the word void inside its parameter list. However, in C++, the word void is optional.

ALL FUNCTIONS MUST HAVE A PROTOTYPE
In C, prototypes are recommended but technically optional. However, this instructor has been requiring the use of prototypes for several years. In a C++ program, all functions must have a declared prototype.

WHERE LOCAL VARIABLES MAY BE DECLARED.
In C, local variables may be declared only at the start of a block, prior to any "action" statements. In C++, local variables may be declared anywhere.

REFERENCING
In C you pass arguments only by value. In C++ you can pass arguments by value or by reference. C++ reference types, which are closely related to pointer types, create aliases for objects and let you pass arguments to functions by reference. This is a significant improvement of C++ over C which will be included in this course. A reference parameter in C++ is very similar to a var parameter in Pascal.

SCOPE REFERENCE OPERATOR
The scope access (or resolution) operator :: (double semicolon) lets you access a global name even if it is hidden by a local re-declaration of that name.

THE NEW AND DELETE OPERATORS
The new and delete operators offer dynamic storage allocation and de-allocation, similar but superior to the standard library functions malloc() and free(). This capability will be covered in this course.

CLASSES
C++ classes offer extensions to the pre-defined type system. Each class type represents a unique set of objects and the operations (methods) and conversions available to create, manipulate, and destroy such objects. Derived classes can be declared that inherit the members of one or more base (or parent) classes. C++ allows similar operations using structures. Classes will be introduced near the end of this course, time permitting.

OPERATOR AND FUNCTION OVERLOADING
C++ lets you overload functions so that many functions can exist with the same name. C++ also lets you redefine the action of most operators, so that they perform specified functions when used with objects of a particular class. The compiler distinguishes the different functions or operators by noting the context of the call: i.e. the number and types of arguments or operands. This is an advanced topic that is not covered in this course.

VIRTUAL FUNCTIONS
Virtual functions allow derived classes to provide different versions of a base class function. You can use the virtual keyword to declare a virtual function in a base class, then redefine it in any derived class, even if the number and type of arguments are the same. This is an advanced topic that is not covered in this course.

ABSTRACT CLASSES
An abstract class is a class with at least one pure virtual function. A virtual function is specified as pure by setting it equal to zero. An abstract class can be used only as a base class for other classes. No objects of an abstract class can be created. This is an advanced topic that is not covered in this course.

C++ SCOPE
The lexical scoping rules for C++, apart from class scope, follow the general rules for C, with the proviso that C++, unlike C, permits both data and function declarations to appear wherever a statement may appear.

TEMPLATES
Templates, also called generic or parameterized types, allow you to construct a family of related functions or classes. This is an advanced topic that is not covered in this course.

THE IOSTREAM CLASS
C++ compilers use classes to implement an improved stream Input/Output system as an alternative to the functions used for input and output in C. Elementary aspects will be covered with respect to the C++ cin and cout keywords.

COMMENTS
C++ supports the standard format (/* comment */) used to separate comments from executable code in C. C++ also allows the use of the double-slash (//) at the beginning of each comment (on each line) as an alternative to the format used in C. In addition, many modern C compilers including those recently used at most ACC computer labs allow the // method of identifying comments.

KEYWORDS
C++ contains a number of new keywords. Care must be exercised in converting a C program to a C++ program to ascertain that none of the new keywords are contained in the original C program intended for different purposes.

DEFAULT FUNCTION ARGUMENTS
A C++ function prototype can declare that one of more of the function's parameters have default values. If you omit the corresponding arguments when you call the function, the compiler inserts the default values where it expects to see the argument (certain restrictions apply). This is an advanced topic that is not covered in this course.

INLINE FUNCTIONS
You can tell the C++ compiler that a function is inline, which compiles a new copy of the function each time it is called. This can be used under certain conditions to eliminate the function calling overhead of a traditional function. Inline functions are similar to #define macros, but are less susceptible to certain undesirable side effects. This is an advanced topic that is not covered in this course.

CONST VARIABLES AND FUNCTIONS
The const qualifier adds the constant property to variables, pointers, and function parameters. The const qualifier for a variable specifies that the variable is read-only.

You can qualify a pointer with const in one of two ways. One usage specifies that the pointer may not be modified by the program. The other usage specifies that the program may not modify the object being pointed to by the pointer. This is an advanced topic that is not covered in this course.

enum AS A TYPE
In C, all declarations of instances of a C enum must include the enum keyword. A C++ enum becomes a data type when you define it; therefore, once defined, it is known by its identifier alone, the same as any other type, and declarations may use the name alone.

LINKAGE SPECIFICATIONS
The linkage specifier tells the compiler that one or more functions in your C++ program will be linked with another language that may have different parameter passing conventions. This is an advanced topic that is not covered in this course.

ANONYMOUS UNIONS
A C++ program can define an unnamed union anywhere it can have a variable. This feature can eliminate union name prefixes in places where the only purpose for the union name is to support the union. This is an advanced topic that is not covered in this course.

CONSTRUCTORS FOR INTRINSIC TYPES
C++ allows you to initialize the intrinsic data types, such as int, long, double, etc., by using the notation of a class constructor. The following statements are valid initialized variable declarations in C++.

	int qty(123);
	double spec(5.378);

This is an advanced topic that is not covered in this course.

-end-
Introduction to C++ and C Programming, Lecture Notes # 02, Differences Between C and C++,
Copyright 1996, R.G.Baldwin, Page � PAGE �1�

