Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 24, File 2003-24.DOC. Revised 9/4/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

I/O Formatting with the iostream Class Library

� TOC \o "1-4" �
1. Setting Format Flags	
�

GOTOBUTTON
_Toc366920648

�

PAGEREF
_Toc366920648

�
1
�
�

1.1 Setting Format Flags, First Look	
�

GOTOBUTTON
_Toc366920649

�

PAGEREF
_Toc366920649

�
2
�
�

1.2 Setting Related Flag Bits	
�

GOTOBUTTON
_Toc366920650

�

PAGEREF
_Toc366920650

�
4
�
�

1.3 Setting Independent Flag Bits	
�

GOTOBUTTON
_Toc366920651

�

PAGEREF
_Toc366920651

�
5
�
�

1.4 Clearing Independent Flag Bits	
�

GOTOBUTTON
_Toc366920652

�

PAGEREF
_Toc366920652

�
5
�
�

2. Using width(), precision(), and fill()	
�

GOTOBUTTON
_Toc366920653

�

PAGEREF
_Toc366920653

�
7
�
�

3. Using I/O Manipulators	
�

GOTOBUTTON
_Toc366920654

�

PAGEREF
_Toc366920654

�
9
�
�

�

Setting Format Flags

Now we find ourselves faced with a real problem in our attempt to use C++ as the language for an introductory course in C/C++ programming. In particular, most first-semester C++ programming students are not prepared (due simply to lack of background) to understand how the C++ I/0 system (iostream class library) works.

When the introductory course is taught using C, a good student will learn enough during the first semester to at least appreciate how the I/O functions such as printf() gets(), puts(), scanf(), work, and how format specifiers are used by some of those functions to produce the desired format in the output.

However, when C++ is used for the introductory course, even the best students probably won’t learn enough during the first semester to have any understanding at all as to how the C++ I/O system works. This is unfortunate, because understanding is a much better aid to learning than is memorization.

However, we must get by with what we have to work with. As a practical matter, about the best that we can do at this point is to provide some “cookbook” guidance for using the C++ I/O system and let the understanding of that system wait until sometime during the second semester.

There are essentially three ways by which you can control the format of output data, and alter certain aspects of how information is input:

Setting format flags with setf() and its companion functions, unsetf() and flags().

Using width(), precision(), and fill() functions

Using I/O manipulators

The capabilities of setf() generally do not overlap the capabilities of width(), precision(), and fill(). However, the capabilities of I/O manipulators do overlap these functions, and in addition are easier to use in some cases.

Setting Format Flags, First Look

Even though you probably do not have the background to understand how the iostream class library works, it probably wouldn’t hurt to for you to hear some of the proper terminology at this point. To prepare for I/O in C++, two steps are required. First, you must declare an object of one of the classes contained in the iostream class library. This object becomes a stream which is the logical connection between a physical device and the computer’s memory. Second, you must link that stream object to a physical device (such as a specific file on a specific disk).

Each C++ stream object has associated with it a number of format flags that determine how data is displayed. They are encoded into a long integer. These flags are named and given values as enumerated constants within the ios class (don’t even ask what the ios class is at this point) as shown below:

Flag		Purpose

skipws		Skip leading whitespace when performing input

left		Output is left-justified

right		Output is right-justified

internal		Has to do with padding to fill a field

dec		Decimal output

oct		Octal output

hex		Hexadecimal output

showbase	Cause the base of numeric values to be shown

showpoint	Display a decimal point and trailing zeros for all floating point output

uppercase	Display the “E” in exponential and the “X” in hex in upper case

showpos	Display a leading plus sign before positive decimal values

scientific	Display floating point values in scientific (exponential) notation

fixed		Display floating point values in normal notation

unitbuf		Flush the output stream after each output operation

Generally, when a format flag is set, that feature is turned on. When a flag is cleared, the default format is used.

To set a format flag, use the setf() function. This function returns the previous settings of the format flags and turns on those flags specified by the argument passed to the function. For example, to turn on the showpos flag for output, you can use this statement:

cout.setf(ios::showpos);

Don’t bother to ask about the syntax involving the period and the pair of colons until next semester. You probably don’t have the background to understand the answer so just memorize the syntax.

It is possible to set two or more flags in one call to setf(). To do this, or together the values of the flags you want to set using the binary bitwise or operator (|). Note that this is different from the logical or operator (||).

For example, this single call sets the showbase and hex flags for the cout output stream object. At this point, you also probably don’t have the background to understand the use of the binary bitwise or operator (|) so again, you will simply have to memorize the syntax (or know where to find it in your reference material).

cout.setf(ios::showbase | ios::hex);

Unfortunately, it is possible to use the setf() function to directly set conflicting flags, so we will discuss an alternate approach to setting some of the flags later.

The complement of setf() is unsetf(). This function can be used to clear one or more format flags. This function clears the specified flags (using the same argument format as setf()) and returns the previous flag settings. The value returned is a long integer.

To use the returned value later to re-establish the previous settings of the format flags, use the flags() function where the argument is a long integer containing the information required to set the appropriate flags. This function also returns the previous settings.

You can also get a copy of the current settings of all the flags by calling flags() with no arguments and assigning the returned value to a long integer variable.

The following sample program illustrates the use of setf() and flags().

//File setfdemo.cpp

//Illustrates the use of setf()and flags()

#include <iostream.h>

main()

{

	long int save;	//long int variable for saving settings

	//save default settings

 	save = cout.flags();

	cout << "Display using default settings\n";

	cout << 123.23 << " hello " << 100 << '\n';

	cout << 10 << ' ' << -10 << '\n';

	cout << 100.0 << "\n\n";

	//now change formats

	cout << "cout.setf(ios::hex | ios::scientific)\n";

	cout.setf(ios::hex | ios::scientific);

	cout << 123.23 << " hello " << 100 << '\n';

	cout << "cout.setf(ios::showpos | ios::uppercase)\n";

	cout.setf(ios::showpos | ios::uppercase);

	cout << 10 << ' ' << -10 << '\n';

	cout << "cout.setf(ios::showpoint | ios::fixed)\n";

	cout.setf(ios::showpoint | ios::fixed);

	cout << 100.0;

	cout << "\nRestore default flags\n";

	cout << "cout.flags(save)\n";

	cout.flags(save);

	cout << "\nDisplay original data using restored default settings\n";

	cout << 123.23 << " hello " << 100 << '\n';

	cout << 10 << ' ' << -10 << '\n';

	cout << 100.0 << "\n\n";

	return 0;

}//end main

The output from this program is as follows:

Display using default settings

123.23 hello 100

10 -10

100

cout.setf(ios::hex | ios::scientific)

1.2323e+02 hello 64

cout.setf(ios::showpos | ios::uppercase)

A FFFFFFF6

cout.setf(ios::showpoint | ios::fixed)

+100.000000

Restore default flags

cout.flags(save)

Display original data using restored default settings

123.23 hello 100

10 -10

100

Hopefully the previous explanation, and the material which follows, along with the sample programs will provide you with enough information that you can use the format flags to control the format of your C++ program outputs

Setting Related Flag Bits

As mentioned earlier, some of the flag bits are related in such a way that you can set conflicting bits using the setf() function directly. As you might imagine, it is not possible to display numeric data as decimal, hexadecimal, and octal simultaneously. Therefore, setting the hex bit without first clearing the dec and oct bits can lead to problems. However, the related flag bits can be safely manipulated using the following form of the overloaded setf() function. You will learn all about overloading functions during the second semester C++ course. For now, suffice it to say that C++ allows you to create two or more functions having the same name so long as they differ in their formal argument list. That process is referred to as function overloading.

long setf(long _setbits, long _field);

There are three static data members (you will also learn about static data members during the second-semester C++ course) in the ios class which can be used with this version of the function to assure that all the related bits are cleared before one of them is set. Those data members are defined in the definition of the ios class as follows:

// constants for second parameter of seft()

static const long basefield; // dec | oct | hex

static const long adjustfield; // left | right | internal

static const long floatfield; // scientific | fixed

These variables are initialized to hexadecimal values of 70, E, and 1800 respectively.

If we were to compare these values with the values of the enumerated format flag bit constants, we would find that basefield has bits in common with dec, oct, and hex.

Similarly, adjustfield has bits in common with left, right, and internal.

Finally, floatfield has bits in common with scientific and fixed.

These are the three groups of format flags which have related bits and which should only be manipulated using the overloaded version of setf() which requires two arguments. Given this information, the proper way, for example, to set the hex bit is using code as follows:

cout.setf(ios::hex,ios::basefield);

This usage will first clear the bits for dec, oct, and hex, and then set the bit for hex. A sample program which uses this statement to set the output format to hex is presented later.

Setting Independent Flag Bits

The following flag bits can be set independently without being concerned about the settings of other flag bits:

skipws, showbase, showpoint, uppercase, showpos, unitbuf, and stdio

As mentioned earlier, one way to set these flags is to use the following version of the setf() function:

long setf(long);

where you call the function and pass it a long integer which contains the combination of all the bits that you want to set.

You can construct the long integer directly (if you know the required values) or you can construct it by referencing the enumerated constants contained within the IOS class as described earlier.

For example, you can cause the function to set multiple bits by either setting those bits directly in the long integer passed to the function or by performing a bitwise “or” of two or more of the enumerated constants as in: ios::showpos | ios::uppercase.)

Clearing Independent Flag Bits

As mentioned earlier, the following function can be used to clear one or more flag bits. The usage syntax for this function is essentially the same as setf() except that flag bits specified by the individual bits in the long integer are cleared to zero instead of being set to one. Again, you can construct the long integer directly (if you know the required values) or you can construct it by using the binary bitwise or operator along with the enumerated constants provided in the ios class.

long unsetf(long);

The following program uses the member functions and data members of ios to demonstrate the results of setting and clearing the format flag bits.

//File SETFMT02.CPP

//Program to set and display format flags using two versions

//of the overloaded setf() function and the unsetf() function.

#include <iostream.h>

main()

{

 int IntData = 128;

 float FloatData = 3.14159;

 cout << "Display integer and float data in default format\n";

 cout << "Default display of IntData: " << IntData << '\n';

 cout << "Default display of FloatData: " << FloatData << '\n';

 cout << "\nSet the flag bits which will cause the output to be \n"

 "displayed in hex with the hex digits in upper case\n";

 cout.setf(ios::hex,ios::basefield);

 cout.setf(ios::uppercase);

 cout << "\nDisplay the values in the three static data\n"

 "members which represent the groups of related flag bits\n";

 cout << "basefield contains: " << ios::basefield << '\n';

 cout << "floatfield contains: " << ios::floatfield << '\n';

 cout << "adjustfield contains: " << ios::adjustfield << '\n';

 cout << "\nDisplay IntData in hex format\n";

 cout << "Hex display of IntData: " << IntData << '\n';

 cout << "\nNow convert to plus sign format for positive data\n"

 "with trailing zeros\n";

 cout.setf(ios::showpoint | ios::showpos);

 cout << "Display of positive FloatData with plus sign\n"

 "and trailing zeros: " << FloatData << '\n';

 cout << "\nNow use unsetf() to clear plus sign and trailing "

 "zero flags\n";

 cout.unsetf(ios::showpoint | ios::showpos);

 cout << "Display of positive FloatData without plus sign\n"

 "or trailing zeros: " << FloatData << '\n';

 cout << "\nTerminating, Dick Baldwin";

 return 0;

}//end main

The output from running this program follows:

Display integer and float data in default format

Default display of IntData: 128

Default display of FloatData: 3.14159

Set the flag bits which will cause the output to be

displayed in hex with the hex digits in upper case

Display the values in the three static data

members which represent the groups of related flag bits

basefield contains: 70

floatfield contains: 1800

adjustfield contains: E

Display IntData in hex format

Hex display of IntData: 80

Now convert to plus sign format for positive data

with trailing zeros

Display of positive FloatData with plus sign

and trailing zeros: +3.141590

Now use unsetf() to clear plus sign and trailing zero flags

Display of positive FloatData without plus sign

or trailing zeros: 3.14159

Terminating, Dick Baldwin

Using width(), precision(), and fill()

In addition to those aspects of the output format which can be controlled by the use of setf() and the format flags, we often
also
 want to
control the field width
, the decimal
precision
, and the
fill characters
 on output. This can be accomplished by using the width(), precision(), and fill() functions which also
manipulate values
 of some of the
data members
 of the ios class.

By default, when a value is output, it occupies only as much space as the number of characters it takes to display it. You can specify a minimum field width by using the width() function with the following format:

OldWidth = cout.width(NewWidth);

where
OldWidth
 and
NewWidth
 are integers.

In
some implementations
 (including Borland Turbo C++ for Windows, Version 3.1), each time an output operation is performed, the field width
returns to its default setting
, so it may be necessary to set the minimum field width
before each output element
.

After you set a minimum field width, when a value
uses less
 than the specified width, the field is
padded
 with the
current fill character
 (the
space
 character is the
default
 fill character) so that the field width is reached. If the size of the value output exceeds the minimum field width, the
field will be overrun
. No values are truncated. You can change the fill character using the fill() function with the following format:

OldChar = cout.fill(NewChar);

where
OldChar
 and
NewChar
 are of type char.

By default,
six digits of precision
 are used
 (with Borland Turbo C++ or Windows)
. However, you can change this number by using the precision() function with the following format:

OldPrecision = cout.precision(NewPrecision);

where
OldPrecision
 and
NewPrecision
 are integers.

The following program illustrates the use of these functions.

//File filldemo.cpp

//Illustrates the use of width(), precision(), and fill()

#include <iostream.h>

main()

{

	int OldWidth, OldPrecision;	//save old values

	char OldFill;

	cout << "Display using default settings\n";

	cout << 123.23 << " hello " << 100 << '\n';

	cout << 10 << ' ' << -10 << '\n';

	cout << 100.0 << "\n\n";

	cout << "Change width, precision, and fill before each output\n";

	cout << "and display the same data as before\n";

	OldWidth = cout.width(10);

	OldPrecision = cout.precision(5);

	OldFill = cout.fill('!');

	cout << 123.23 << " hello " << 100 << '\n';

	OldWidth = cout.width(10);

	OldPrecision = cout.precision(5);

	OldFill = cout.fill('!');

	cout << 10 << ' ' << -10 << '\n';

	OldWidth = cout.width(10);

	OldPrecision = cout.precision(5);

	OldFill = cout.fill('!');

	cout << 100.0 << "\n\n";

	cout << "Display the same data after automatic reset to default\n";

	cout << 123.23 << " hello " << 100 << '\n';

	cout << 10 << ' ' << -10 << '\n';

	cout << 100.0 << "\n\n";

	return 0;

}//end main

The output from this program is shown below:

Display using default settings

123.23 hello 100

10 -10

100

Change width, precision, and fill before each output

and display the same data as before

!!!!123.23 hello 100

!!!!!!!!10 -10

!!!!!!!100

Display the same data after automatic reset to default

123.23 hello 100

10 -10

100

(Note that the
precision()
 function doesn
’
t work properly in the Borland
version 4.5
software installed in the CIS laboratory at ACC as of Septe
mber 4, 1996.)

Hopefully the explanation given above along with the sample program and its output will provide you with enough information that you can make effective use of these three functions in your programs.

Using I/O Manipulators

We have discussed several functions such as setf(), unsetf(), etc., to
modify the format flags
 in the ios class. We have also discussed the use of width(), precision(), and fill() to
control several format parameters
. Finally, there is one
additional way
 to control the format of output data in C++ programs: I/O Manipulators.

In some cases, I/O Manipulators are
easier to use
 than ios format flags and functions. In addition, when you get into your second semester of C++, you will learn how to
create your own manipulators
 relative to objects of classes which you create.

I/O Manipulators
are special I/O
format function calls
 that may occur
within an I/O statement
, instead of separate from it the way the previously-discussed ios member functions must. The
standard manipulators
 are shown in the table below. Many of the I/O Manipulators
parallel member functions
 of the ios class.

Manipulator		Purpose					Input/Output

dec			Format numeric data in decimal			Output

endl			Output newline char and flush the stream	Output

ends			Output a null					Output

flush			Flush a stream					Output

hex			Format numeric data in hexadecimal		Output

oct			Format numeric data in octal			Output

resetiosflags(long f)	Turn off the flags specified in f			Input/Output

setbase(int base)	Set the number base to base			Output

setfill(int ch)		Set the fill character to ch			Output

setiosflags(long f)	Turn on the flags specified in f			Input/Output

setprecision(int p)	Set the number of digits of precision		Output

setw(int w)		Set the field width to w				Output

ws			Skip leading whitespace			
 	
Input

NOTE: To access manipulators that take parameters (such as setw()), you must include iomanip.h in your program. This is not necessary when you are using a manipulator that does not require an argument.

I/O Manipulators may
occur in the chain
 of I/O operations as in the following examples:

cout << oct << 100 << hex << 100;

cout << setw(10) << 100;

The first statement tells cout to display integers in
octal
 and then outputs 100 in
octal format
. It then tells the stream
 object
 to display integers in
hexadecimal
 and then outputs 100 in
hexadecimal format
.

The second statement sets the
field width to 10
 and then displays 100 in
hexadecimal
 format again. Notice that when a manipulator does not take an argument, it is not followed by parentheses.

The following sample program illustrates the use of I/O manipulators.

//File manipdmo.cpp

//Illustrates I/O Manipulators

#include <iostream.h>

#include <iomanip.h>

main()

{

 cout << "Output 100 in decimal\n";

	cout << 100 << '\n';

	cout << "Output 100 decimal in octal and then in hex with a space\n";

	cout << oct << 100 << ' ' << hex << 100 << '\n';

	cout << "Set field width to 10 and output in oct and hex again.\n";

	cout << setw(10) << oct << 100 << setw(10) << hex << 100 << '\n';

	return 0;

}//end main()

This program produces the following output:

Output 100 in decimal

100

Output 100 decimal in octal and then in hex with a space

144 64

Set field width to 10 and output in oct and hex again.

 144 64

As mentioned previously, with Borland
Turbo
C++ for Windows, Version 3.1, each output operation
resets the field width
 to the default value. Therefore, it is necessary to
set the field width
 to the desired width
prior
 to each output operation.

-end-

Introduction to C++ and C Programming, Lecture Notes # 24, I/O Formatting with the iostream Class Library,

Copyright 1996, R.G.Baldwin, Page � PAGE �
10
�

