Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 03, File 2003-03.DOC. Revised 8/1/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Sample Programs in C++

� TOC \o "1-4" �1. A Sample C++ Program	� GOTOBUTTON _Toc363888736 � PAGEREF _Toc363888736 �1��

2. The Quick Explanation	� GOTOBUTTON _Toc363888737 � PAGEREF _Toc363888737 �2��

3. The Detailed Explanation	� GOTOBUTTON _Toc363888738 � PAGEREF _Toc363888738 �4��

3.1 #include Directives and Header Files	� GOTOBUTTON _Toc363888739 � PAGEREF _Toc363888739 �4��

3.2 The main() Function	� GOTOBUTTON _Toc363888740 � PAGEREF _Toc363888740 �4��

3.3 Comments	� GOTOBUTTON _Toc363888741 � PAGEREF _Toc363888741 �4��

3.4 Braces, Bodies, and Blocks	� GOTOBUTTON _Toc363888742 � PAGEREF _Toc363888742 �5��

3.5 Declarations	� GOTOBUTTON _Toc363888743 � PAGEREF _Toc363888743 �5��

3.6 Case, Upper and Lower	� GOTOBUTTON _Toc363888744 � PAGEREF _Toc363888744 �5��

3.7 Data Types	� GOTOBUTTON _Toc363888745 � PAGEREF _Toc363888745 �5��

3.8 Name Choice	� GOTOBUTTON _Toc363888746 � PAGEREF _Toc363888746 �6��

3.9 Assignment	� GOTOBUTTON _Toc363888747 � PAGEREF _Toc363888747 �6��

3.10 The cout Stream and the << Operator	� GOTOBUTTON _Toc363888748 � PAGEREF _Toc363888748 �6��

4. The Structure of a Simple Program	� GOTOBUTTON _Toc363888749 � PAGEREF _Toc363888749 �7��

5. Programs with Multiple Functions	� GOTOBUTTON _Toc363888750 � PAGEREF _Toc363888750 �7��

6. Keywords	� GOTOBUTTON _Toc363888751 � PAGEREF _Toc363888751 �8��

�

A Sample C++ Program

Let's begin our investigation into C++ by examining and discussing the following C++ program.

#include <iostream.h>

main()

{

 int num = 1; //define a variable called num and assign a value of 1

 cout << "I am a computer program.\n";	//print a text line

 // Now print a line with text and data

 cout << "The value of num is " << num << " because it was initialized.\n";

 return 0;

}// end main

If you compile, link, and run this program, the following will be displayed on your screen:

I am a computer program.

The value of num is 1 because it was initialized.

C is a subset of C++. With some rare exceptions, programs written to be compiled using a C compiler will compile and run using a C++ compiler. The reverse is not true.

Most modern compiler packages can compile, link, and execute programs written either in C or in C++. It is necessary to tell the compiler which language was used to write the program. Some compilers require a C program to have a file extension of C and a C++ program to have an extension of CPP.

All useful C and C++ programs use a preprocessor directive to “include” existing source code files within the program (or you could type it in yourself). Typically, these files have an extension of “h”, and are called header files. You will learn the purpose of header files later.

The common way to display data on the screen in a C program is to use printf() (or one of the other standard output functions). C++ can also use printf(). C++ also uses cout and the << operator.

Technically, << is an insertion operator and cout is a pre-defined stream-object that is linked to the console when a C++ program begins execution.

In particular, << is an insertion operator that inserts data into the cout stream. However, for brevity, much of the text in these lecture notes refers to the “cout <<“ combination simply as the “cout operator.”

We will take two passes at explaining this C++ program. The first pass highlights the meaning of each line. The second pass explores some of the implications and details.

The following diagram illustrates the parts of a typical C++ program.

Typical C++ Program consists of:

	include and other preprocessor directives

	main() function (which is always the first function executed)

		statements (functions are made up of statements)

declaration (first of five types of statements in C++ language consisting of keywords, data, and operators)

			assignment

			function

			control

			null

	function a() (one or more additional functions as needed)

		.

		.

		.

	function b()

The Quick Explanation

Some of the lines of code in the program are simply comments which begin with the symbols //. Most C++ compilers also support the older (/* comment */) version where comments must be bracketed by the symbols shown.

The following line in the program tells the compiler to include information found in the file iostream.h.

	#include <iostream.h>

This "header file" is part of the C++ compiler software package.

This statement is a preprocessor directive. Preprocessor directives always begin with a #.

C++ programs consist of one or more functions. This program contains only one function called main(). The parenthesis identify main() as a function name.

	main()

The opening brace ({) marks the beginning of statements that make up the function. The function definition is ended with a closing brace (}).

The following declaration statement announces that we will use a variable called num and that it is an integer.

In C++, executable statements are terminated by a semicolon.

	int num = 1; //declare a variable called num and assign a value of 1

A variable may be initialized when it is declared. The statement initializes the value of the variable to a value of 1.

The following statements together display two lines of text on the screen. The text within the double quotation marks is displayed.

The \n in each of the statements tells the compiler to start a new line after displaying the text for that statement. Otherwise, the cursor would have been left at the end of the text without advancing to a new line.

cout << "I am a computer program.\n";	//print a text line

// Now print a line with text and data

cout << "The value of num is " << num << " because it was initialized.\n";

There are a large number of print control codes which begin with the \ character (these are referred to as escape character sequences). A partial listing of such control codes follows:

\a	alert

\b	backspace

\f	form feed

\n	newline

\r	carriage return

\t	horizontal tab

\v	vertical tab

\\	backslash (\)

\’	single quote (‘)

\”	double quote (“)

The following statement prints the value of num embedded between the two text strings.

cout << "The value of num is " << num << " because it was initialized.\n";

One of the powerful features of C++ is the ability to “overload” functions and operators. What this means is that you can write different versions of a function where each function is designed to deal with data of different types but all of the functions in the set of functions have the same name.

The compiler then causes the appropriate version of an overloaded function or operator to be used depending on the type of data involved. This is one of the features of C++ which supports polymorphism, an important aspect of “object-oriented programming.” Polymorphism is often described as “one interface, many methods.”

Generally, function and operator overloading is beyond the scope of this course. In this case, however, the standard cout << operator is automatically overloaded to handle the type of your data without your having to specify the type.

We get to enjoy the benefit of overloading without having to think about how it occurs. This implies that you must either accept the default display format, or provide formatting information. Techniques for providing formatting information will be covered in a later set of lecture notes.

Finally, the program ends with a closing brace.

	}// end main

The Detailed Explanation

Now let's take a closer look at the use of the C++ language for this simple program.

#include Directives and Header Files

The iostream.h file contains information about input and output functions and operators (such as cout <<) for the compiler to use. The name stands for input output stream header.

The effect of the following statement is the same as if you were to type the entire contents of the file into your program at the position where the statement appears.

	#include <iostream.h>

The <> surrounding the name of the file tell the compiler to search first in the directory which has been designated to contain "include" files.

If you want the compiler to search first in the current directory (the one containing the source code) replace the <> with double quotation marks (“ “).

There are different header files which provide information for different families of standard functions and operators. If you get a compiler error to the effect that a function requires a prototype, that generally means that you need to include a specific header file.

With some compilers, you can look the function up in the on-line help to determine the name of the header file to include.

The main() Function

A C++ program always begins execution with the function called main(), even if it is not physically the first function in the program. (Unlike Pascal, there is no required physical order for functions in C++.)

We can choose names for other functions, but there must (almost) always be a function called main().

Why is the word almost in the above statement? Because if you continue your C++ programming education to the point where you begin writing programs for the Windows Graphical User Interface (GUI), you will learn that things are different in that programming environment and it will not be necessary for you to provide a main() function.

Comments

You should make liberal use of comments. The older style of comments has the comment enclosed between the comment indicators as shown below:

	/* comment */

A newer style allows the following type of comment indicators:

	// comment

Modern compilers allow the two types to be mixed within a program.

Braces, Bodies, and Blocks

A pair of braces {} marks the beginning and the end of a function.

Braces are also used within a C++ program to identify the beginning and the ending of a block of code as shown below:

	if (condition)

	{

		//do the statements within the braces

	}

Declarations

All variables must be declared; list all variables and show what "type" is represented by each.

We declared one variable and initialized it to a value of 1 in the process as follows:

	int num = 1;

It is also necessary to declare all functions other than main() using function prototypes which are known as referencing declarations.

The keyword int declares the variable num as an integer variable. An integer variable is a whole number without a decimal point.

The compiler uses the information in the declaration to arrange for suitable storage space for the variable.

Case, Upper and Lower

Case is significant in C++ whereas it is not significant in some other languages such as Pascal. The following three statements declare three different variables.

	int num;

	int Num;

	int NUM;

Data Types

Data types are treated more fully in a later lesson. Both C and C++ deal with several kinds (or types) of data such as:

	integers

	characters

	floating point

	user defined

You should be familiar with the first three types of data from your Pascal training. (In Pascal, floating point is referred to as REAL.) You will learn more about “user defined” types during this course.

Declaring a variable to be of a particular type makes it possible for the compiler to store, fetch, and interpret the data properly.

Name Choice

You should use meaningful names for variables. The number of characters depends on the specific implementation, but is at least 8 characters in all implementations and is more than 8 characters in most implementations.

You may use lowercase letters, uppercase letters, digits, and the underscore. The first character must be a letter (or an underscore).

Library functions frequently use names which begin with the underscore character. Thus, you should avoid using the underscore character as the first character for your variable names to avoid clashes with a library function.

Assignment

We could have declared the variable and assigned a value to it later using the assignment operator as shown below:

	int num;

	num = 1;

Assignment gives a value to a variable.

The declaration above allocated computer memory space for the variable num.

A declaration does not place data into the allocated space (unless you specifically include initialization in the declaration or unless the variable is static, in which case it is initialized to zero). The assignment statement places a value in the memory space.

The cout Stream and the << Operator

The following three lines

cout << "I am a computer program.\n";	//print a text line

// Now print a line with text and data

cout << "The value of num is " << num << " because it was initialized.\n";

all use a standard C++ operator, <<, in conjunction with a pre-defined stream object called cout.

The cout << object/operator combination prints the information following the << onto the computer screen. (In this case, << is an operator, cout is the left operand of that operator, and the text string on the right surrounded by double quotation marks is the right operand of the operator.)

(Later, we will learn about the use of single quotation marks and the difference between single and double quotation marks.)

The \n causes the cursor to advance to the next line and move to the left-hand side of the screen. This is often referred to as the "newline" code.

In C++, the << used in the context of an output operation is an overloaded insertion operator, meaning that the data following the operator is “inserted” in the stream of data going to the computer screen (or other output device).

The Structure of a Simple Program

A program consists of one or more functions. One of the functions must be called main().

A function consists of a header and a body.

The header contains any preprocessor directives and the function name, return type, and argument list (we will discuss return types and argument lists later).

The body is enclosed by braces and consists of a statements terminated by semicolons

Programs with Multiple Functions

The following program makes use of two different functions. This program shows how you can define and execute user-defined functions. This program contains a user-defined function named MyFriend().

The program, uses a technique known as function prototyping which is not required in C but is a requirement of C++. Function prototyping makes it possible for the compiler to do a better job of detecting errors at compile time by performing more stringent type checking.

//File Friendsl.cpp

//Begin program

#include <iostream.h>

void MyFriend();	//function prototype

//=====Begin main function

main()

{

 cout << "I will call my friend function.\n";

 MyFriend();	//call a function defined within the program

 cout << "Yes. How are you doing?\n";

 return 0;

}//end main()

//=====Begin MyFriend() function

void MyFriend()	//function definition

{

 cout << "Hello. Did you call?\n";

}//end MyFriend()

//=====End program

The output produced by this program is as follows:

I will call my friend function.

Hello. Did you call?

Yes. How are you doing?

The MyFriend() function is called by referencing its name including empty parenthesis. In this case, the parenthesis are empty because no parameters are passed to the function.

A function prototype defines the type of data (if any) returned by the function, and also defines the name and the number, order, and type of all arguments passed to the function. In this case, no arguments were passed to the function so the parentheses were empty.

Keywords

Keywords are the vocabulary of the language. To successfully program in the C or C++ language, you must know the keywords that make up the language and you must remember the purpose of each of the standard C++ library functions. You should be able to find both in your textbook or in the on-line help system which supports your compiler.

-end-

Introduction to C++ and C Programming, Lecture Notes # 03, Sample Programs in C++,

Copyright 1996, R.G.Baldwin, Page � PAGE �1�

