Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 46, File 2003-46.DOC. Revised 9/23/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Multidimensional Arrays

You should think of a multidimensional array as being an array of arrays (as opposed to a matrix or a cube).

Consider an array declared as follows:

	float MyArray[5][12];

When working directly with arrays using array notation, it is convenient to consider this to be a matrix with five rows of twelve elements each. However, it is also useful to consider it to be a five-element array where each element in the master array consists of a 12-element sub-array.

Also, it is good to remember that the data is stored sequentially in memory with the first 12-element array followed by the second 12-element array and so on.

Now, let's apply these concepts to the following example problem:

//File TwoDim01.cpp

/*Write and test a program that initializes a two-dimensional array and

uses a copy function to copy it to a second two-dimensional array.

To make things interesting, multiply the values by 2 as they are

being copied.*/

#include <iostream.h>

#include <iomanip.h>

#define MainArray 3

#define SubArray 4

void main()

{

 //declare and initialize array named A

 int A[MainArray][SubArray] =

 { { 1, 2, 3, 4},

 { 5, 6, 7, 8},

 { 9,10,11,12}, };

 int B[MainArray][SubArray];

 void copy(int*,int*,int); //copy function prototype

 int OutterLoop,InnerLoop;

 //print the array named A

 for(OutterLoop=0; OutterLoop<MainArray; OutterLoop++)

 {

 for(InnerLoop=0; InnerLoop<SubArray; InnerLoop++)

 cout << setw(4) << A[OutterLoop][InnerLoop];

 cout << endl;

 }

 cout << endl;

 //copy A to B

 for(OutterLoop=0; OutterLoop<MainArray; OutterLoop++)

 copy(A[OutterLoop],B[OutterLoop],SubArray);

 //print the array named B

 for(OutterLoop=0; OutterLoop<MainArray; OutterLoop++)

 {

 for(InnerLoop=0; InnerLoop<SubArray; InnerLoop++)

 cout << setw(4) << B[OutterLoop][InnerLoop];

 cout << endl;

 }

 cout << endl;

} //=====End main()

//=====Begin function copy()===

void copy(int *M,int *N,int lim)

{ //copy one-dimensional array from M to N

 //multiply values by 2 in the process

 int ctr; //loop control variable

 for(ctr=0; ctr<lim; ctr++,M++,N++) *N=2*(*M); //do the copy

} //=====End copy()

This program illustrates one of the ways to use a function to handle multidimensional arrays. In particular, this program handles one dimension in the calling program and handles the second dimension in the function. Stated differently, this program keeps track of the master array in the calling program and passes information to a function to have it manipulate data at the sub-array level.

The objective is to use a function to copy the contents of an array named A to another array named B (and to multiply those values by two in the process) One of the arrays is initialized when it is declared. Note the use of interior braces for initializing the two-dimensional array. Make certain that you understand this syntax.

This program includes a function to copy a one-dimensional array into a second one-dimensional array. The prototype for that function is:

	void copy(int*,int*,int);	//copy function prototype

This program uses a for loop and array notation in main() to print both arrays. Array A is printed before the contents are copied to array B. Array B is printed after the copy takes place.

The main function calls the other function to copy array A into array B, one sub-array at a time. This is accomplished using a for loop which iterates once for each element in the master array (once for each sub-array). Hence, the function, which has the ability to copy a one-dimensional array into another one-dimensional array, is called once for each row (or sub-array);

If A were a one-dimensional array, then simply the name of the array, A, would contain the address and would be sufficient to send to the function.

However, in a two-dimensional array, the address for each sub-array is specified by A[n]. Hence, each time the function was called, the two addresses specified by A[OutterLoop] and B[OutterLoop] were passed to the function. These are the addresses of the first elements of the one-dimensional sub-arrays which make up the larger two-dimensional array. The other parameter which is passed to the function is the size of the one-dimensional sub-array.

for(OutterLoop=0; OutterLoop<MainArray; OutterLoop++)

 copy(A[OutterLoop],B[OutterLoop],SubArray);

Note that the following version of this statement would produce identical results, and may be easier to understand and remember (your instructor considers this version to be more self-documenting):

for(OutterLoop=0; OutterLoop<MainArray; OutterLoop++)

 copy(&A[OutterLoop][0],&B[OutterLoop][0],SubArray);//copy A to B

The differences are highlighted using boldface. Those differences are the use of the address operator (&) in conjunction with the specification of the first element in the sub-array [0].

After array A is copied into array B using the function, additional code causes array B to be printed.

The function definition for the copy() function is:

void copy(int *M,int *N,int lim)	//function definition

This function receives two addresses, which are used to initialize the pointer variables M and N along with an integer specifying the size of the array, lim. Recall that actual parameters passed to functions are used to initialize the corresponding formal parameters when the call is made. (More properly, the pointer variables come into being when control is passed to the function and the values of those variables are initialized as copies of the actual parameters.)

A
local loop control variable
, ctr is declared and used along with the
two pointer variables
 and the array size to copy the contents of each element of the first one-dimensional array into the corresponding element of the second one dimensional array. The copy operation is accomplished using the following for loop. Just to make things interesting, each value is
multiplied by 2
 enroute from the first array to the second. This leads to the use of the overloaded (*) operator in the same statement as the multiplication operator which can be confusing at times.

	for(ctr=0; ctr<lim; ctr++,M++,N++) *N=2*(*M);	//do the copy

You should understand how the copy process works based on earlier discussion.

Exterior and optional interior braces were used in the array initialization statement. With some compilers, we could leave out the interior braces and use just the two outermost braces. As long as we have the correct number of entries, the effect is the same (if the compiler will support that syntax). However, if we are short of entries, the array is filled sequentially without regard to row until the data run out. What happens then to the remaining elements depends on the storage class of the array. For automatic arrays, the remaining elements would simply contain garbage. For external or static arrays, the remaining elements would be initialized to zero.

-end-

Introduction to C++ and C Programming, Lecture Notes # 46, Multidimensional Arrays,

Copyright 1996, R.G.Baldwin, Page � PAGE �
4
�

