Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes #13, File 2003-13.DOC. Revised 8/1/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Functions

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc363890128 � PAGEREF _Toc363890128 �1��

2. Creating and Using a Simple Function	� GOTOBUTTON _Toc363890129 � PAGEREF _Toc363890129 �1��

3. Function Arguments and Return Values	� GOTOBUTTON _Toc363890130 � PAGEREF _Toc363890130 �3��

3.1 Formal Arguments	� GOTOBUTTON _Toc363890131 � PAGEREF _Toc363890131 �4��

3.2 Actual Arguments	� GOTOBUTTON _Toc363890132 � PAGEREF _Toc363890132 �4��

4. Function Types	� GOTOBUTTON _Toc363890133 � PAGEREF _Toc363890133 �5��

5. All C/C++ Functions are Equal	� GOTOBUTTON _Toc363890134 � PAGEREF _Toc363890134 �5��

6. Compiling Programs with Two or More Functions	� GOTOBUTTON _Toc363890135 � PAGEREF _Toc363890135 �5��

7. Automatic Type Conversion in Function Calls	� GOTOBUTTON _Toc363890136 � PAGEREF _Toc363890136 �6��

8. Miscellaneous Notes	� GOTOBUTTON _Toc363890137 � PAGEREF _Toc363890137 �8��

�

Introduction

All C++ programs contain a function named main() which can call other functions. Previous lecture notes have touched on the use of functions. This set of lecture notes consolidates information about functions.

A function is a unit of code designed to accomplish a specific task. A function can perform an action, provide values, or both.

You need to know how to define a function, how to invoke or call it, and how to establish communication between a function and the program that invokes it. You should already know most of this from your Pascal studies. Only the communication area will be significantly different.

Creating and Using a Simple Function

Let's begin with an example program that illustrates a simple function.

//==========Begin program MyFunc01.cpp Illustrate functions

#include<iostream.h>

#define LIMIT 50

main()

{

	void DrawLine(void);		//function prototype

	DrawLine();		//invoke the function to print minus signs

	DrawLine();	 //invoke the function again to print minus

}	//==========End main()

//==========Begin function DrawLine()

void DrawLine(void)	//function to print a line of 50 minus signs

{

	int count;

	for(count = 1; count <= LIMIT; count++) cout << '-';

 cout << endl;

}	//==========End function DrawLine()

The output from this program is as follows:

--

--

The function that we have created prints a line of 50 minus signs. The program consists of two functions: main() and DrawLine().

Several points are worthy of note:

The DrawLine function performs an action; that is to print a line of minus signs. It requires no parameters and returns nothing. Hence the use of void for the return type in the function prototype and function definition.

We call the function DrawLine() twice from main() by using its name followed by a semicolon.

Whenever the program encounters DrawLine(), it passes control to the DrawLine() function and executes the instructions contained therein.

When the last logical instruction in the function is executed, control returns to the point immediately following the function call in the calling program.

Note that the function call may be included in an expression, in which case the program resumes evaluation of the expression.

Note also that the last logical instruction may not be the same as the last physical instruction. For example, a return statement in the middle of the function will act as the last logical instruction and cause the function to terminate.

The overall format of the DrawLine function is the same as the overall format of main(). The function begins with a name or definition followed by a block of statements enclosed in braces.

This function contains a for loop which we haven’t discussed in detail yet. However, the for loop construct should be familiar to you from your Pascal training.

This program also uses the #define preprocessor directive which we haven’t discussed in detail yet. For now, suffice it to say that prior to compilation, every instance in the program of the first term following the #define is replaced by the second term following the #define.

In this case, we include DrawLine() and main() in the same file for convenience. We could put them in separate files also. If put in separate files, each file must have its own appropriate set of preprocessor directives.

Note that the name or definition statements for the two functions are not followed by a semicolon.

The variable count in DrawLine() is an automatic local variable, which means it is a variable known only to DrawLine(). Thus, you can use the same variable name in other functions, including main(), and there is no conflict. The fact that it is an automatic variable causes it to cease to exist when the function terminates.

Like variables, functions have types which must be declared. The type void is used ahead of the function name in the prototype and the definition for functions without return values.

Programs that use a function must declare the type before the function is used. Therefore, main() contains the declaration:

	void DrawLine(void);		//function prototype

The parenthesis indicate that DrawLine() is a function name.

The void ahead of the name indicates the type of the function (or the type of data returned by the function).

The semicolon indicates that we are declaring the function, not defining it. We are declaring that the program uses a type void function called DrawLine() and that the compiler should expect to find the definition for this function elsewhere.

In C, we also need to include the keyword void within the parenthesis for functions which do not have any formal parameters. However, the void in the parameter list is optional in C++.

We like to think of functions as black boxes that take specific inputs and produce specific outputs. All information required for a function to do its job should be communicated via the parameter list (no global variables should be used).

If we think of DrawLine() as a black box, its action is to print the line of minus signs.

It doesn't receive any input parameters because it doesn't need any information from the calling program.

Also, it doesn't return anything to the calling program.

Thus, other than being awakened to print the minus signs, this function doesn't require any communication with the calling program.

Function Arguments and Return Values

Let's modify our program to incorporate communication with the calling program.

The new version of the program will include a function which can print a specified number of a specified character and return the number of characters printed. Information regarding how many of which character to print will be passed as arguments.

To send information from the function back to the calling program, we can use the function return value. The return value can be ignored, assigned to a variable, or used as part of an expression. In this program it is used as part of an output statement which is an expression.

//==========Begin program MyFunc02.cpp

#include<iostream.h>

main()

{

	int DrawChar(char, int);		//function prototype

 cout << "12345678901234567890" << endl; //print a scale

	cout << DrawChar('x',16);//call the function to print characters

}	//==========End main()

//==========Begin function DrawChar()

int DrawChar(char Character, int number)//function to print line of char

{

 int count;

	for(count = 1; count <= number; count++) cout << Character;

 cout << endl;

 return number;

}	//==========End function DrawChar()

The output from this program follows:

12345678901234567890

xxxxxxxxxxxxxxxx

16

Consider the significant differences between this program and the previous program:

We changed the name of our function to DrawChar() and designed it to receive two parameters and return an integer as shown in the following prototype statement:

	int DrawChar(char,int);		//function prototype

We executed the following statement to cause the function to print sixteen x-characters and to cause the main function to print the value returned by the function.

	cout << DrawChar('x',16);//call the function to print characters

Formal Arguments

The formal arguments for our function are shown by the following function definition:

int DrawChar(char Character, int number)//function to print line of char

Formal arguments become automatic local variables, private to the function.

Actual Arguments

When you invoke a function, the formal arguments are instantiated as automatic local variables and initialized with the values that you pass as actual arguments. In this program, we initialized the local variables by passing the actual arguments ‘x’ and 16 as shown below:

	cout << DrawChar('x',16); //call the function to print characters

Note that in this case, the function call was embedded into a larger overall expression which is a common practice among C and C++ programmers. The value returned by the function call is the value used to evaluate the larger overall statement. In this case, the value returned became the right operand of the insertion operator <<.

The values passed as actual arguments are used to initialize the corresponding formal arguments on the basis of position in the argument list.

Note that the value of the actual argument is used to initialize the corresponding variable in the function, and the function does not have access to the original variable in the calling function, even when a variable is passed as an actual argument. In other words, a copy of the original variable is sent to the function and used to initialize the local variables in the function. This is similar to a "value" argument in Pascal.

Note also that using return has one other effect in addition to returning a value. It terminates the function and returns control to the calling function. This occurs even if the return statement is not the last statement in the function.

Function Types

Functions must be declared by type. Functions with no return value must be declared as type void.

C++ requires that all functions be declared using a function prototype (unless the function definition appears ahead of its first attempted usage).

Header files, such as iostream.h contain, among other things, the declarations for the functions in the family of functions covered by a particular header file.

Don't confuse function declarations with function definitions. A function declaration tells the program what type the function is and specifies its formal argument list. The function definition supplies the actual code. In other words, the math.h header file tells the compiler that sqrt() returns type double, but the actual code for sqrt() resides in a separate file of library functions.

All C/C++ Functions are Equal

Unlike Pascal and some other languages, each C or C++ function is on an equal footing with the others. Each function can call any other function, including main().

Compiling Programs with Two or More Functions

Whenever two or more functions which are to be combined into a single program are contained in different files, special procedures are required to cause the compiler to do the job. The procedures are system dependent, and therefore won't be discussed further here. You should use a combination of the material in your textbook along with your system documentation to determine how to combine files for your system.

Automatic Type Conversion in Function Calls

Consider the following sample program:

//==========Begin program conv01.cpp

#include <iostream.h>

#include <iomanip.h>

int conv01(int,float); //function prototype

main()

{

 int times=5;

 char ch = '!'; //ASCII code is 33

 float f = 6.6, dummy =9.9;

 cout << "Return Value is " << conv01(times,dummy) << '\n';

 cout << "Return Value is " << conv01(ch,dummy) << '\n';

 cout << "Return Value is " << conv01((int) f,dummy)<< '\n';

 return 0; //required by Borland C++ compiler

}

//==========Begin function conv01()

int conv01(int n,float junk) //function with prototyping

{

 int save;

 cout << "Dummy is " << setw(3) << setprecision(1)

 << junk << '\n'; 	//print dummy variable

 save = n; 		//save value to be returned

 while (n-- > 0) 	//print a line of # characters

 cout << "#";

 cout << "\n";

 return save; //return the value which was saved

}

//==========End program

The output from this program follows:

Dummy is 9.9

#####

Return Value is 5

Dummy is 9.9

#################################

Return Value is 33

Dummy is 9.9

######

Return Value is 6

The float parameter in the argument list was included in this example to illustrate the method of function prototyping when more than one argument is required.

The following statement in the function

	cout << "Dummy is " << setw(3) << setprecision(1)

		<< junk << '\n'; //print dummy variable

causes this dummy parameter to be printed as

Dummy is 9.9

each time the function is called.

Statements of the following type in the main program

	cout << "Return Value is " << conv01((int) f,dummy)<< '\n';

cause the return value to be printed each time after the function is called. This produces outputs like

Return value is 5

The following statements in the function

	while (n-- > 0)		//print a line of # characters

		cout << "#";

	cout << "\n";

cause the following type of output:

#####

where the number of # symbols printed on the line is equal to the incoming value of the n parameter. (Note that this while loop uses a postfix decrementing operator to count a value down to zero. Do you understand the implications of prefix versus postfix in this case?)

The parameter list defined in the function is referred to as the formal parameter list. In our program, the formal parameter list is defined by:

int conv01(int n,float junk)	 	

The parameter list in the actual call to the function is referred to as the actual parameter list. In our program, the actual parameter lists are defined by:

	cout << "Return Value is " << conv01(times,dummy) << '\n';

	cout << "Return Value is " << conv01(ch,dummy) << '\n';

	cout << "Return Value is " << conv01((int) f,dummy)<< '\n';

where the actual parameter lists are highlighted using boldface.

There is no conversion of the parameter dummy in this program, so we won't discuss it further. However, the actual parameters: times, ch, and f may undergo type conversion before reaching the function. That is the primary subject of this discussion.

The first call to conv01() passes the int variable times directly to the function. Since the function requires a parameter of type int and times is of type int, no conversion takes place. The function uses this value to print a line containing five # characters.

The second call to conv01() passes the char variable named ch. This value was given an initial value of 33 (which is the ASCII value for the '!' character). The function call automatically promotes char to int, causing the function to print a line containing thirty-three # characters.

In the third call, type casting is used to convert the floating-point variable f to an integer before passing it to the function. This causes the function to print a line containing six # characters.

Using this author's Borland Turbo C++ compiler, version 3.1, if the cast operator is removed with full function prototyping, there is no difference in the output. The compiler is able to make the necessary type conversion from float to int before passing it to the function. In both cases, however, the fractional part of the float value was discarded truncating the float value 6.6 to the integer value 6.

Miscellaneous Notes

If the function in a C++ program is to affect variables in the calling program, you must write it to use addresses (pointers or references). This topic will be discussed in a subsequent lecture.

A C or C++ function can call itself, which is called recursion. However, recursion is beyond the scope of this course and is treated in the next C++ course.

-end-

Introduction to C++ and C Programming, Lecture Notes # 13, Functions,

Copyright 1996, R.G.Baldwin, Page � PAGE �8�

