Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 16, File 2003-16.DOC. Revised 8/5/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Indefinite Loops, Counting Loops, and the for Loop

� TOC \o "1-4" �1. Indefinite Loops and Counting Loops	� GOTOBUTTON _Toc366919273 � PAGEREF _Toc366919273 �1��

2. The for Loop	� GOTOBUTTON _Toc366919274 � PAGEREF _Toc366919274 �1��

3. The Comma Operator	� GOTOBUTTON _Toc366919275 � PAGEREF _Toc366919275 �2��

�

Indefinite Loops and Counting Loops

The term indefinite loop is used to describe a situation where it is not known in advance how many times the loop will be executed. A common example is a loop that depends on user input for termination. The while loop is a good construct for creating indefinite loops.

When it is known in advance how many iterations of the loop will be required, we refer to this as a counting loop. Although the while loop can be used as a counting loop, there is a better way: the for loop. You should be familiar with the general construct of a for loop from your Pascal training.

The for Loop

Three actions are involved in setting up a counting loop:

Initialize a counter

Compare the counter with some limiting value

Increment (or decrement) the counter once during each iteration

The for loop gathers these three actions into one place, as shown in the following program.

//==========Begin program Incrmnt2.cpp

#include <iostream.h>

#include <iomanip.h>

#define FACTOR 0.654

main()

{

 float Result, Offset;

 int Count;

 cout <<"Count Result \n"; //display column headers

 for(Offset = 3.52, Count = 3; Count < 5; Count++)

 {

		Result = FACTOR*Count+Offset;

		cout << setw(5) << Count << ' '

		 << setw(7) << setprecision(4) << Result << " units\n";

	}//end for loop

 cout <<"Have a good day.\n";

 return 0;

}

//==========End program

The output from running this program is shown below:

Count Result

 3 5.482 units

 4 6.136 units

Have a good day.

(For those of you who know what the setprecision(4) format specification should do, note that there is a bug in the Borland C++ compiler, V4.5 which causes the format to be different from what it should be.)

The significant new item in this program is the for statement which is highlighted using boldface.

The parenthesis following the keyword for contain three clauses separated by semicolons (not commas).

The first clause, Offset = 3.52, Count = 3, is an initialization clause. The actions specified by this clause are performed only once when the for loop first starts.

The second clause, Count < 5, is a conditional test which is executed before each potential execution of a loop. When the result of the test is false, the loop is terminated.

The third clause, Count++, is an update clause which is evaluated at the end of each loop.

Virtually any expression can be used in any of the three clauses provided that the expression evaluates to the type of result required by that clause. You can even leave one or more of the clauses blank provided that you include the semicolon to mark the position.

The for statement is completed by following it with another clause which may be a simple or compound statement.

The Comma Operator

The comma operator allows you to include more than one initialization or update in the respective clause of a for loop. The previous program included two separate initializations inside the initialization clause of the for loop.

The comma operator is not restricted to for loops, but that is where it is most often used. The operator has other properties which are discussed in another set of lecture notes.

 -end-

Introduction to C++ and C Programming, Lecture Notes # 16, Indefinite Loops, Counting Loops, and the for Loop,

Copyright 1996, R.G.Baldwin, Page � PAGE �1�

