Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 30, File 2003-30.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Be sure to change the page number format using Layout, Page, Numbering, Options.

File Input/Output in C++

� TOC \o "1-4" �
1. Introduction	
�

GOTOBUTTON
_Toc368120529

�

PAGEREF
_Toc368120529

�
1
�
�

2. What Is a File?	
�

GOTOBUTTON
_Toc368120530

�

PAGEREF
_Toc368120530

�
1
�
�

3. A Simple Example Program	
�

GOTOBUTTON
_Toc368120531

�

PAGEREF
_Toc368120531

�
1
�
�

4. Generalized I/O in C++	
�

GOTOBUTTON
_Toc368120532

�

PAGEREF
_Toc368120532

�
2
�
�

5. File I/O	
�

GOTOBUTTON
_Toc368120533

�

PAGEREF
_Toc368120533

�
2
�
�

5.1 binary Mode versus Default text Mode	
�

GOTOBUTTON
_Toc368120534

�

PAGEREF
_Toc368120534

�
3
�
�

5.2 Access Parameter	
�

GOTOBUTTON
_Toc368120535

�

PAGEREF
_Toc368120535

�
6
�
�

5.3 Short Form for open() Function	
�

GOTOBUTTON
_Toc368120536

�

PAGEREF
_Toc368120536

�
6
�
�

5.4 Reading and Writing Text Data with a File	
�

GOTOBUTTON
_Toc368120537

�

PAGEREF
_Toc368120537

�
6
�
�

5.5 Testing for a “true” Stream	
�

GOTOBUTTON
_Toc368120538

�

PAGEREF
_Toc368120538

�
6
�
�

5.6 Short Form for Declaring a Stream and Opening a File	
�

GOTOBUTTON
_Toc368120539

�

PAGEREF
_Toc368120539

�
8
�
�

�

Introduction

Both C and C++ offer powerful methods of communicating with files. Both languages allow you to open a file from within a program and then use special I/O functions to read from or write to that file. This set of lecture notes does not contain any information regarding methods for using files in C programs. Further, this set of lecture notes barely scratches the surface of using files in a C++ program. This topic is covered in much more detail in the second-semester C++ course at ACC.

What Is a File?

We think of a file as a section of storage, usually on a disk, with a name. The operating system sees a file as a very complicated entity with data segments and pointers scattered all over the disk. C++ sees a file as a sequence of bytes, each of which can be read individually.

A Simple Example Program

The following simple program illustrates the minimum requirements for reading and writing files.

//File FILE01.CPP

//Illustrates writing and reading a file

#include <fstream.h>

void main()

{

 char data;

 ofstream OutFile("c:\\jnk\\jnk.txt");//open file for output

 OutFile << "This is one line\n" << "This is another line\n";

 OutFile.close();

 ifstream InFile("c:\\jnk\\jnk.txt");//open file for input

 while((data = InFile.get()) != EOF) cout << data;

}//end main

The output from running this program is as follows:

This is one line

This is another line

Usually programs which read and write files are more complicated than this one. The following sections explain some of the reasons why.

Generalized I/O in C++

General information and background material for input/output in C++ is discussed in a separate set of lecture notes.

File I/O

File I/O in C++ is simply an extension of generalized I/O using objects which are instantiations of the three file I/O classes of iostream.h.

You must include the header file fstream.h in your program if you are going to perform file I/O. It defines several classes including ifstream, ofstream, and fstream. Since these classes are derived by inheritance from ios, all the capabilities of the class ios are available for file I/O.

To use a file in C++, you must perform two steps
before using

insertion or extraction operators
(or other I/O functions)
to access the data in the file.

The first step is to declare a stream object of the proper type, input, output, or input/output.

The second step is to link that stream object to a physical file by calling the open() member function. (Defaulted versions of the member functions allow you combine these two steps into one statement.)

Optionally, you can close the file after you are finished processing it.

You must obtain a stream before you can open a file. To create an input stream, you must declare the stream to be of class ifstream. To create an output stream, declare it as ofstream. If you plan to perform both input and output operations on a file, declare the stream as fstream.

Having created a stream by declaring a stream object, one way to link it with a physical file is by using the open() function. This is a member function of all three classes listed above. The prototype for the open() function is

void open(const char *myfile, int mode, int access);

where myfile is the name of the file which may include a path specifier. The value of mode determines how the file is opened. It must be one of the following values which are enumerated public constants in the ios class.

in = 0x01, // open for reading

out = 0x02, // open for writing

ate = 0x04, // seek to eof upon original open

app = 0x08, // append mode: all additions at eof

trunc = 0x10, // truncate file if already exists

nocreate = 0x20, // open fails if file doesn't exist

noreplace= 0x40, // open fails if file already exists

binary = 0x80 // binary (not text) file

These constants may be specified in the parameter list as ios::app, etc. You can combine two or more of the values by concatenating them using the binary OR operator (|) as in:

ios::out | ios::binary

The description of each of the modes is listed above, as extracted from the file iostream.h.

The mode values for ios::in and ios::out specify that the file is capable of input and output respectively. However, creating a stream by declaring objects of type ifstream and ofstream imply input and output, so it is not necessary to specify the mode values for objects of that type.

Having acquired a stream and linked it to a physical file, you can then use the insertion operator (<<) to write bytes to the file or use the extraction operator (>>) to read bytes from the file.

binary Mode versus Default text Mode

The ios::binary value causes a file to be opened in binary mode. By default, all files are opened in text mode.

In text mode, various character translations may take place, such as carriage return-linefeed sequences being converted into newlines.

When a file is opened in binary mode, no such character translations will occur.

Any file, whether it contains formatted text or raw data can be opened in either the default text mode or in binary mode. The only difference is whether character translation takes place when data is written to or read from the file.

This difference is illustrated in the following program. A file is written in the default text mode with the data consisting of the following string:

"ABC\nDEF\nG"

(Note the shorthand method of declaring an output stream in the default text mode and linking it to a physical file in this program. This is discussed in more detail later.)

ofstream OutFile("c:\\jnk\\jnk.txt");

Note that this string contains two newline characters which are highlighted using boldface. The file is then read twice, once in the default text mode and again in binary mode.

The file is read into an array which had been preconditioned by filling it with ‘x’ characters so that the “background” in the array would be printable, and distinguishable from the data. Each time, the data is read, it is displayed twice, first in integer format and again in character format. The output from running the program follows the program listing.

/*File BINARY01.CPP

Illustrates difference between binary and text mode

for opening and reading a file.

*/

#include <fstream.h>

main()

{

 char data[50];

 int cnt;

 //Open an output file in default text mode and put data in it

 ofstream OutFile("c:\\jnk\\jnk.txt");

 OutFile << "ABC\nDEF\nG"; //write data to the file

 OutFile.close(); //close the file

 cout << "The data file for this test was written on a DOS\n"

 "machine in the default text mode and consisted of\n"

 "the following string\n"

 " \"ABC\\nDEF\\nG\" \n"

 "The data file was read twice into an array which\n"

 "was preconditioned by filling it with the\n"

 "lower-case x character. Each time that it was read,\n"

 "it was displayed twice: first as integer data and\n"

 "again as character data.\n";

 ifstream InFile; //declare an input stream

 cout << "\nRead the file in default text mode and display it.\n";

 InFile.open("c:\\jnk\\jnk.txt");

 //Precondition the data array by filling with 'x' characters

 for(cnt = 0; cnt < 49; cnt++)data[cnt]='x';

 InFile.read(data,49); //read the file into the data array

 //Display the data in integer format

 for(cnt = 0; cnt < 12; cnt++)cout << (int)data[cnt] << " ";

 cout << endl;

 //Display the data in character format

 for(cnt = 0; cnt < 12; cnt++)cout << data[cnt] << " ";

 InFile.close();

 cout << "\n";

 cout << "\nRead the file in binary mode and display it.\n";

 InFile.open("c:\\jnk\\jnk.txt",ios::binary);

 for(cnt = 0; cnt < 12; cnt++)data[cnt]='x';//precondition array

 InFile.read(data,49);//read file into data array

 //Display data in integer format

 for(cnt = 0; cnt < 12; cnt++)cout << (int)data[cnt] << " ";

 cout << endl;

 //Display data in character format

 for(cnt = 0; cnt < 12; cnt++)cout << data[cnt] << " ";

 InFile.close();

 cout << "\nTerminating program";

 return 0;

}//end main

The output from this program follows:

The data file for this test was written on a DOS

machine in the default text mode and consisted of

the following string

 "ABC\nDEF\nG"

The data file was read twice into an array which

was preconditioned by filling it with the

lower-case x character. Each time that it was read,

it was displayed twice: first as integer data and

again as character data.

Read the file in default text mode and display it.

65 66 67 10 68 69 70 10 71 120 120 120

A B C

 D E F

 G x x x

Read the file in binary mode and display it.

65 66 67 13 10 68 69 70 13 10 71 120

A B C

 D E F

 G x

Terminating program

The significant difference in the text-mode read and the binary-mode read appears in the following two lines of output:

65 66 67 10 68 69 70 10 71 120 120 120

65 66 67 13 10 68 69 70 13 10 71 120

In the second case, which shows the data from the binary-mode read, the newline character which was written to the file is represented by the two characters having ASCII values of 13 and 10; line feed and carriage return respectively. This is what was actually written in the file for the newline character when the data file was created.

In the first case, which shows the data from the default text-mode read, the newline character is represented by the single character having an ASCII value of 10 which is a line feed character. In other words, the line feed/carriage return character combination in the raw data was translated to a single line feed when read in the default text mode.

Access Parameter

The material in this section is generally beyond the scope of the first-semester C++ class. The access parameter In the argument list for the open() function determines how the file can be accessed. In both UNIX and DOS/Windows environments, this parameter defaults to “normal” access. In DOS/Windows environments, the following choices are also available:

Attribute	Meaning

	0	normal file: open access

	1	read-only file

	2	hidden file

	4	system file

	8	archive bit set

You can OR two or more of these together.

The following code fragment would open a normal output file in a DOS/Windows environment:

ofstream out; //declare an output stream object

out.open(“test”, ios::out, 0); //link stream to file named “test”

Short Form for open() Function

It is frequently unnecessary to use the full argument list with the open() function. Both the mode and access parameters have default parameters. For ifstream, the default mode is ios::in. For ofstream, the default mode is ios::out. In both cases, the default value for access is normal access. Therefore, you can frequently get by with the following:

ofstream out; //declare an output stream object

out.open(“test”); //link stream to file named “test”, default mode and access

Reading and Writing Text Data with a File

Once a file has been opened, it is very easy to read text data from it or write formatted text data to it. Simply use the << and >> operators the same way you do when performing console I/O, except that instead of using cin and cout, you substitute the name of a stream that is linked to a file. All information is stored in the file in the same format as it would be displayed on the screen. Therefore, a file produced by using << is a formatted text file, and any file read by >> must be a formatted text file.

Testing for a “true” Stream

In all cases that you attempt to open a file on a stream, the stream should be “true” following the call to open(). You should test to make certain that the open operation succeeded in some manner similar to that shown in the following program. This program uses both an if statement and an assert statement to test the stream for true after the open() function was executed. (Use of the assert statement is beyond the scope of this course, but learning how to use it would make debugging programs easier for the student.)

/*File OPEN01.CPP

Illustrates testing for a successful file opening.

*/

#include <fstream.h>

#include <assert.h>

main()

{

 char data[50];

 int cnt;

 //Open an output file in default text mode and put data in it

 ofstream OutFile("c:\\jnk\\jnk.txt");

 OutFile << "ABC\nDEF\nG";

 OutFile.close();

 ifstream InFile; //declare an input stream

 cout << "Attempt to open and process file \"c:\\jnk\\jnk.txt\"\n";

 InFile.open("c:\\jnk\\jnk.txt");

 if(InFile) {//process data for successful open

 //Precondition the data array by filling with 'x' characters

 for(cnt = 0; cnt < 49; cnt++)data[cnt]='x';

 InFile.read(data,49); //read the file into the data array

 //Display the data in integer format

 for(cnt = 0; cnt < 12; cnt++)cout << (int)data[cnt] << " ";

 cout << endl;

 }

 else cerr << "Cannot open file \n";//end test for successful open

 InFile.close();

 cout << "\nAttempt to open and process file \"c:\\jnk\\abc.txt\"\n";

 InFile.open("c:\\jnk\\abc.txt");

 if(InFile) {//process data for successful open

 //Precondition the data array by filling with 'x' characters

 for(cnt = 0; cnt < 49; cnt++)data[cnt]='x';

 InFile.read(data,49); //read the file into the data array

 //Display the data in integer format

 for(cnt = 0; cnt < 12; cnt++)cout << (int)data[cnt] << " ";

 cout << endl;

 }

 else cerr << "Cannot open file \n";//end test for successful open

 cout << "\nAttempt again to open and process "

 "file \"c:\\jnk\\abc.txt\"\n";

 InFile.open("c:\\jnk\\abc.txt");

 assert(InFile); //test for successful open using assert()

 //Precondition the data array by filling with 'x' characters

 for(cnt = 0; cnt < 49; cnt++)data[cnt]='x';

 InFile.read(data,49); //read the file into the data array

 //Display the data in integer format

 for(cnt = 0; cnt < 12; cnt++)cout << (int)data[cnt] << " ";

 cout << endl;

 cout << "\nTerminating program";

 return 0;

}//end main

When this program attempts to open and process the nonexistent file named abc.txt the first time, the if else statement causes an error message to be produced and the processing attempt is bypassed. When the program attempts to open and process the same file the second time, the assert() statement causes the program to abort with a system message providing some information about the failure.

Short Form for Declaring a Stream and Opening a File

Much of the time, you will not need to use the open() function to open a file. The ifstream, ofstream, and fstream classes have constructor functions that automatically open the file. The constructor functions have the same parameters and defaults as the open() function. Therefore, you will frequently be able to open your file using statements such as those highlighted in boldface in the following program.

/*File OPEN02.CPP

Illustrates use of short form to open a stream and link

to a file.

*/

#include <fstream.h>

#include <assert.h>

main()

{

 char data[50];

 int cnt;

 cout << "Use short form to open output file \n"

 "in default text mode";

 ofstream OutFile("c:\\jnk\\jnk.txt");

 OutFile << "ABC\nDEF\nG";// and put data in it

 OutFile.close();

 cout << "\nUse short form to open input file \n"

 "in default text mode\n";

 ifstream InFile("c:\\jnk\\jnk.txt");

 cout << "\nRead and process data\n";

 if(InFile) {//process data for successful open

 //Precondition the data array by filling with 'x' characters

 for(cnt = 0; cnt < 49; cnt++)data[cnt]='x';

 InFile.read(data,49); //read the file into the data array

 //Display the data in integer format

 for(cnt = 0; cnt < 12; cnt++)cout << (int)data[cnt] << " ";

 cout << endl;

 }

 else cout << "Cannot open file \n";//end test for successful open

 InFile.close();

 cout << "\nTerminating program";

 return 0;

}//end main

The output from this program follows:

Use short form to open output file

in default text mode

Use short form to open input file

in default text mode

Read and process data

65 66 67 10 68 69 70 10 71 120 120 120

Terminating program

As you have seen in several of the previous example programs, you close an open file by calling the close() function as in:

InFile.close();

-end-

Introduction to C++ and C Programming, Lecture Notes # 30, File Input/Output in C++,

Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

