Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 31, File 2003-31.DOC. Revised 9/18/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Character Strings

� TOC \o "1-4" �1. Introductory Program	� GOTOBUTTON _Toc368122810 � PAGEREF _Toc368122810 �1��

2. Character Strings	� GOTOBUTTON _Toc368122811 � PAGEREF _Toc368122811 �2��

2.1 Type char Arrays and the Null Character	� GOTOBUTTON _Toc368122812 � PAGEREF _Toc368122812 �2��

2.2 Using Strings	� GOTOBUTTON _Toc368122813 � PAGEREF _Toc368122813 �3��

2.3 Strings Versus Characters	� GOTOBUTTON _Toc368122814 � PAGEREF _Toc368122814 �3��

2.4 String Length -- strlen()	� GOTOBUTTON _Toc368122815 � PAGEREF _Toc368122815 �3��

�

Introductory Program

The following program engages in an interactive dialog with the user, producing the output shown following the program.

The idea for this C++ program is based on a C program which originally appeared in the book, C: Step-by-Step, by Mitchell Waite and Stephen Prata.

//==========Begin program talkback.cpp

//

#include <iostream.h>

#include <iomanip.h>	//requires for setprecision()

#include <string.h>	//required for strlen() function

#define DENSITY 62.4	//manifest constant

main()

{

 float weight, volume;	//two floating-point variables

 int size, letters;	//two integer variables

 char name[40];	//40-element character array

// cout.precision(2);	//one way to set decimal digits to 2

 cout << "Hi! What's your first name?\n";	//prompt for name

 cin >> name;	//get name from input as a one-word string

 // The following prompt includes the name

 cout << name << ", what's your weight in pounds?\n";	

 cin >> weight;	//get weight as floating point value

 size = sizeof name;	//get size of the array

 letters = strlen(name);	//get size of the string in the array

 volume = weight/DENSITY;	//calculate volume

 cout << "Well " << name << ", your volume is "

 << setprecision(2)		//another way to set decimal digits to 2

 << volume << " cubic feet.\n"

 << "Also, your first name has " << letters << " letters, \n"

 << "and we have " << size << " bytes to store it in.\n";

 return 0;

}

The output from this program follows with the user responses shown in bold italics.

Hi! What's your first name?

Dick

Dick, what's your weight in pounds?

200

Well Dick, your volume is 3.21 cubic feet.

Also, your first name has 4 letters,

and we have 40 bytes to store it in.

Character Strings

In reality, there is no such thing as a string in C or C++, at least not in the sense that other languages have strings.

Rather, in C and C++, there is an agreed-upon data structure which requires sequentially storing the characters that make up a string in an array of type char with the last character being a special terminating null character (byte with a value of zero). Complementing this data structure are a number of standard functions which process data stored in that manner in ways that other languages process strings: concatenation, length determination, modifying case, etc.

Keep in mind, however, that the data stored in this structure consists simply of a set of integers which can also be manipulated in any manner that any array of integers can be manipulated. For simplicity, we will refer to this special data structure as a character string or simply string for short.

A character string constant in C and C++ can be represented by a series of one or more characters, surrounded by double quotation marks.

The quotation marks are not part of the string. They are there to mark off the string, just as single quotation marks are used to mark off a character. If you represent a string constant in this manner, it will be stored somewhere in memory according to the special data structure described above. In addition, taken as a whole, that representation is treated by the C++ compiler as a pointer to the location in memory where the data is stored. Virtually all of the standard string functions in C and C++ require you to provide a pointer as an input parameter.

Type char Arrays and the Null Character

Strings are stored in an array of type char.

An array is an ordered sequence of data elements of one type.

When you represent the string in the double-quoted format described above, C and C++ automatically place a null character at the end of the string in the array to terminate the string. Thus, the array must always contain at least one more element than the number of actual characters in the string in order to allow space for the null.

In our example, we created an array of 40 memory cells to contain the string using the following code:

	char name[40];	//40�element character array

The square brackets identify name as an array. [40] indicates the number of elements in the array. char identifies the type of each element.

Using Strings

We can tell cout << to print a string by providing a pointer to the array containing the string as the right operand of the insertion operator.

We can also tell cin >> to read a string (or part of a string) by following the extraction operator with a pointer to the array where the string is to be stored. When that pointer points to an array of type char, the compiler recognizes the need to read a string and invokes the proper version of the overloaded >> operator causing the system to read the string from the keyboard and store it in the array.

By definition, the name of an existing array in C and C++ with no square brackets is treated as a pointer to the first element in the array.

The following statements were used in the previous sample program to prompt the user for string data, to read that string data into the array, and then to echo that string back to the screen with some additional text following it.

 cout << "Hi! What's your first name?\n";	//prompt for name

 cin >> name;	//get name from input as a one-word string

 // The following prompt includes the name

 cout << name << ", what's your weight in pounds?\n";	

Note that when used in this manner, cin >> can only read single-word strings. It stops reading input when it encounters the first "white space" (blank, tab, or newline). A function named getline() can be used to read entire sentences.

Strings Versus Characters

The string "x" is not the same as the character 'x'. One difference is that 'x' is a basic type (char) whereas "x" is a derived type, an array of char. A second difference is that "x" consists of two characters: 'x' plus the null character.

String Length -- strlen()

In a previous set of lecture notes, we used the sizeof operator to get the size in bytes of a type. In the above example, we use the same operator to obtain the size of an array as follows:

	size = sizeof name;	//get size of the array

We then use that information in the following output statement:

cout << "Well " << name << ", your volume is "

 << setprecision(2)		//set decimal digits to 2

 << volume << " cubic feet.\n"

 << "Also, your first name has " << letters << " letters, \n"

 << "and we have " << size << " bytes to store it in.\n";

Note also that in a previous set of lecture notes, we used parenthesis with the sizeof() operator, but we omitted the parenthesis in this example. Whether or not you use parenthesis depends on whether you want the size of a type class or the size of a particular data object. Parenthesis are required for type classes, but are optional for data objects.

In this example, we use the strlen() function to determine the length of the string which is stored in the array (not including the null character) as follows:

	letters = strlen(name);	//get size of the string in the array

It was also necessary to add the following line to support the use of strlen():

	#include <string.h>	//required for strlen() function

Having used sizeof to obtain the size of the array which we stored in size and having used strlen() to determine the length of the string which we stored in letters, we can communicate that information to the user in the output statement shown above.

As with most C++ string functions, the strlen() function requires a pointer to the char array as a parameter and uses the presence of the terminating null character to know when to identify the end of the string.

-end-

Introduction to C++ and C Programming, Lecture Notes # 31, Character Strings,

Copyright 1996, R.G.Baldwin, Page � PAGE �4�

