Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 45, File 2003-45.DOC. Revised 9/23/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Structures, Unions, and Classes in C++

� TOC \o "1-4" �
1. Combining Data Into Structures	
�

GOTOBUTTON
_Toc368123904

�

PAGEREF
_Toc368123904

�
1
�
�

2. Using Parts of a Structure	
�

GOTOBUTTON
_Toc368123905

�

PAGEREF
_Toc368123905

�
2
�
�

3. Three Properties of an Object-Oriented Programming Language	
�

GOTOBUTTON
_Toc368123906

�

PAGEREF
_Toc368123906

�
3
�
�

4. Encapsulation	
�

GOTOBUTTON
_Toc368123907

�

PAGEREF
_Toc368123907

�
3
�
�

5. The Abstract Data Type
day
	
�

GOTOBUTTON
_Toc368123908

�

PAGEREF
_Toc368123908

�
4
�
�

6. Specifics	
�

GOTOBUTTON
_Toc368123909

�

PAGEREF
_Toc368123909

�
5
�
�

7. Example Program for my_class	
�

GOTOBUTTON
_Toc368123910

�

PAGEREF
_Toc368123910

�
7
�
�

8. Public Member Variables	
�

GOTOBUTTON
_Toc368123911

�

PAGEREF
_Toc368123911

�
7
�
�

9. Stack Class Example Program	
�

GOTOBUTTON
_Toc368123912

�

PAGEREF
_Toc368123912

�
8
�
�

�

This set of lecture notes introduces you to the C++ extensions to the structure and the union and also introduces you to the new C++ capability embodied in the class.

When you define a structure in C++, you have
created a new data type
 and have added it to the language.

C++ supports the concept of encapsulation by extending the capability of the structure
and the
union
and introducing the class.

Combining Data Into Structures
A structure bundles together a set of
data values
that may be
of different types
.
For example, information about an employee could be stored in the following structure:

	struct employee {
		char last_name[30];
		char first_name[20];
		double employee_no;
			.
			.
			.
		float annual_salary;
	};

In C++, we have now defined a
new data type
 employee and have specified the
list of data items
 (members) that a variable
 (object)
 of employee type will have.

Using Parts of a Structure

The following example program bundles together
information that a program
might
need to keep track of information about automobiles. Note that as illustrated in this example, a field
 (member)
 of a structure is
referred to
 by using the structure name followed by a
period
 and the member
name
. (We have previously referred to this as using a
dot operator
.) Thus
MyCar.price
 is the
member
 containing the
price
 of the car.

//----- Begin program CARS10.CPP

#include <iostream.h>
#include <string.h>

struct car {
	char brand[10];
	float weight;
	float price;
};

car MyCar;

int main()
{
	strcpy(MyCar.brand,"Honda");
	MyCar.weight = 1234.5;
	MyCar.price = 16359.;

	cout << "Automobile information:\n";
	cout << "Name: "<< MyCar.brand << '\n';
	cout << "Weight in pounds: " << MyCar.weight << '\n';
	cout <<"Price $" << MyCar.price;

	return 0;
}//end main

The output from running this program is shown below.

Automobile information:
Name: Honda
Weight in pounds: 1234.5
Price $16359

This program
creates a template
 for the new data type car, creates a
variable
 of type car named MyCar, and then
manipulates
 that variable in the main() function. (In previous lecture notes, we have referred to this as a structure variable.
Since
this is
a variable declared according to a defined type, we will begin now to refer to the result of the declaration simply as a variable. Later we will refer to it as an object.)

The struct keyword gives the name car to a structure consisting of three members or fields. The brand member is an array of characters, while the weight and price
are floating-point members
. The declaration

car MyCar;

creates a variable
 MyCar whose type is car.
Values are assigned
 to these three data members in main() and then those values are
displayed
.

In both the assignment statements and the display statements, the
name.member notation
 is used to reference the individual data members of the structure.

Three Properties of an Object-Oriented Programming Language

OOP is a method of programming that seeks to mimic the way we form
models of the world
. To cope with the complexities of life,
humans
have
developed
a capacity to
generalize
,
classify
, and
create abstractions
.

Many
nouns
 in our vocabulary represent a
class of objects
 sharing some set of attributes or behavioral traits. From a world full of individual cars, we distill an
abstract class called car
. This allows us to develop and process ideas about automobiles without being concerned about the details concerning any particular car. The OOP extensions in C++ exploit this tendency to classify and abstract things.

T
hree main properties characterize an OOP language:

Encapsulation:
Combining
 a
data
 structure with the functions (actions or
methods
)
for
manipulating the data.
Encapsulation
 is achieved by means of a new structuring and data-typing mechanism -- the
class
.

Inheritance: Building new, derived classes that
inherit
 the
data
 members
 and
methods
 from one or more previously-defined base classes, while possibly
redefining or adding
 new data and
 methods
. This creates a hierarchy of classes.

Polymorphism: Giving an action
one name
 or symbol that is shared up and down a class hierarchy, with each class in the hierarchy implementing the action in a way appropriate to itself.

This set of lecture notes will deal only with encapsulation.

Encapsulation
C++ supports encapsulation: the
bundling
 of code and data together into a single
class-type object
. For example, you might develop a data structure, such as an array holding the information needed to draw a character font on the screen, and code (functions) for displaying, scaling, and rotating, highlighting, and coloring your font character.

C++ extends the power of C's struct and union keywords by adding a keyword not found in C: class. (Note that we must be careful to
distinguish
 between
class or classes as a concept
, and class as a keyword. All three keywords (struct, union, class) are used in C++ to define classes

In C++, a single class entity (defined with struct, union, or class)
combines
 functions (known as member functions or methods) and data (known as data members). You usually give a class a
name, such as Font. This name becomes a new type identifier that you can use to declare instances or objects of that class type. For example:

	class Font {
	// here you declare your members: both data and functions;
	// don't worry about how for the moment.
	};	//note the semicolon

	Font MyFont;	//declares variable MyFont to be of type class font

The variable
 (
object
)
 MyFont is an
instance
 (sometimes called an instantiation) of the class Font.
You can use the class name Font like a
normal C data type
. For example, you can declare arrays and pointers of the new type Font.

	Font MyFontArray[10];	//declare an array of 10 Fonts
	Font* font_ptr;	 //declare a pointer to Font

With C++, you can
control access
 to struct and class members (code and data) by declaring individual members as public, private, or protected. (A C++ union has all its members public.) A detailed discussion of these three keywords is beyond the scope of this course.

C++ structures and unions
can hold
function
 declarations and definitions as well as
data
 members. In C++, the keywords struct, union, and class can all be used to define classes (
define new types
).

A class defined with struct is simply a class in which all the members are public by default (but you can cause them to be public or private.).

A class defined with union has all its members public (this access level
cannot be changed
).

In a class defined with class, the members are private by default (but
you can change
the
 access level
).

When we talk about
classes
 in C++, we
include structures and unions
, as well at types defined by the keyword class.

Typically
 in OOP, you
restrict access to members
: you usually make the data members private and the member functions public.

B
y creating a suitable
class, you can
ensure
 that the private
data
 can be
accessed and manipulated only
 through the public
member functions that you have created for that purpose. You are now
free
to change
 the
data structure
 from an array to a linked list, or whatever. You would need to re-code the member functions to handle the new font data structure, but if the function names and arguments are unchanged, programs (and programmers) in other parts of your system will be unaffected by your changes except that hopefully you have implemented improvements which they will enjoy.

The technique of
encapsulation
 in classes helps provide the
benefit of modularity
. The C++ class establishes a well-defined interface that helps you design, implement, maintain, and
reuse programs
. The class concept leads to the idea of data abstraction. Our
data structure is no longer tied to any particular physical implementation; rather, it is defined in terms of the operations (member functions) allowed on it.

The Abstract Data Type day
The textbook Problem Solving Abstraction and Design using C++ by Friedman and Koffman contains an interesting illustration of using C++ classes for the purpose of developing a new abstract data type named day. You should review this illustration. The following sections contain additional examples of abstract data types.

Specifics

The
class
 is the mechanism that is
used to create objects
. As such, the class is at the heart of many C++ features. The syntax of a class declaration is as follows:

	class class-name{
		private functions and variables of the class

	public:
		public functions and variables of the class
	} optional object-list;

The object-list is
optional
. You can
declare
 class
objects
 later
, as needed. While the class-name is also technically optional, from a practical point of view, it is virtually always needed. The reason for this is that the class-name becomes a
new type name
 that is used to declare objects of the class.

Functions
 and
variables
 declared
inside a class declaration
 are said to be
members
 of that class. By default, all functions and variables declared inside a class are private to that class (where the word class in this context means class and not struct, or union). This means that they
are accessible only by other members of that class
. To declare public class members, the
public keyword
 is used, followed by a colon. All functions and variables declared after the public keyword are accessible both by other members of the class and by any other part of the program that is within the scope of objects instantiated from the class.

Here is a simple class declaration:

	class my_class {
		int a;	// private to my_class
	public:
		void set_a(int num);
		int get_a();
	};		// note the semicolon used here

This class has one
private data member
, called a, and two
public member functions
, set_a() and get_a(). Notice that functions are declared within a class using their prototype forms. Functions that are declared to be part of a class are called
member functions

or
methods
.

Since a is private, it is
not accessible
 by any code outside my_class. However, since the two member functions are members of the class, they may access a. Further, the two member functions are declared as
public members
 of the class and can be called by
any other part
 of the program that contains an object of the class.

Although the two member functions are
declared
 by the class, they are
not yet defined
. To define a member function, you must
link the type name
 of the class with the
name of the function
. You do this by preceding the function name with the class name followed by two colons. The two colons are called the
scope resolution operator
. For example, here is the way the member functions are defined:

	void my_class::set_a(int num) // note the two colons
	{
		a = num;
	} // end set_a

	int my_class::get_a()
	{
		return a;
	} // end get_a

Notice that both member functions have access to a which is private to the class. Because they are
member functions
 of the class, they may
directly access its private data
.

When you define a member function, use this general form (unless it is defined as an
inline
 function which is beyond the scope of this course):

	type class_name::func-name(parameter-list)
	{
		... // body of function
	}

The declaration of a class does not define any objects of the class (
does not set aside any memory
) It only defines the type of object that will be created when one is actually declared. To create an object, use the
class name to specify the type
. For example, the following statement declares two objects of type my_class:

	my_class ob1, ob2; // these are objects of type my_class

A class declaration defines a new type that determines what an object of that type will look like. An object declaration creates a physical entity of that type.

Once
 an
object
 of a class has been
instantiated
, your program may
reference
 its
public members
 by using the dot (period) operator. (If you have a pointer to the object, you may access the public members using the pointer operator). Assuming the preceding object declaration, the following statements call set_a() for objects ob1 and ob2:

	ob1.set_a(10);		// sets ob1's version of a to 10
	ob2.set_a(99);		// sets ob2's version of a to 99

Each object contains its own copy of all data declared in the class (except for the special case where the data member is declared as static which is beyond the scope of this course). This means that ob1's version of a is distinct and different from the one linked to ob2.

Example Program for my_class

As an example, the following program uses my_class, described earlier, to set the value of a for ob1 and ob2 and to display the value of a for each object:

/* This example declares a class named my_class, defines functions
 for entering data into and getting data from a private variable
 named a, creates two instances of the class (objects), and
 manipulates those objects. */

#include <iostream.h>

class my_class {
	int a; // variable which is private to this class
public:
	void set_a(int num); //function to enter a value into the variable a
	int get_a(); //function used to access the value of the variable a
}; //end of class declaration

void my_class::set_a(int num) //define the operations of one function
{ a = num; }

int my_class::get_a() //define the operations of the other function
{ return a; }

main() //program to test the class
{
	my_class ob1, ob2; //declare two instances (objects) of the class

	ob1.set_a(10); //set "a" in the first object to a value of 10
	ob2.set_a(99); //set "a" in the other object to a value of 99

	// access the values of "a" in each of the objects
	cout << ob1.get_a() << "\n";
	cout << ob2.get_a() << "\n";

	return 0;
} // end main
//���

Public Member Variables
Just as there may be public member functions, there may be
public member variables
. For example, if the class from the preceding example were declared as follows, data members of objects of the class could be accessed from any part of the program within the scope of the object.

class my_class {
public:
	int a; // variable which is public to this class
	void set_a(int num); //function to enter a value into the variable a
	int get_a(); //function used to access the value of the variable a
}; //end of class declaration

In this case, there would be no need for the two member functions since their purpose is to provide an interface to the member variable a. Note however, that you would need to use the dot operator (ob1.a) to access the member variable.

Stack Class Example Program
Let’s examine a more
practical example
. The following program creates a class called stack that implements a stack that can be used to store and retrieve characters in a "last-in, first-out" (LIFO) fashion. To use common computer jargon, this program creates a new abstract data type named stack. This new type supports the following operations
 (methods)
:

initialization
pushing data onto the stack, and
popping data from the stack (more jargon).

// stack10.cpp
/* Create a "stack" class which provides a LIFO stack capability. Two
 objects of the stack class are instantiated and manipulated.
 This is a good example of OOP where the stacks are objects which can
 be manipulated by the program.
*/

#include <iostream.h>
#define SIZE 10 //used to control the size of the stack

//Declare a stack class for characters
class stack {
 char aStack[SIZE]; //create a char array to serve as the stack
 int TopOfStack; //create a variable to index within the stack
public:
 void init(); //function to initialize the stack
 void push(char ch); //function to push characters onto the stack
 char pop(); //function to pop characters off the stack
}; //end of class declaration

//Define the function which will initialize the stack
void stack::init()
{ TopOfStack = 0; } //set the index to zero

//Define the function to push a character onto the stack
void stack::push(char ch)
{
 if(TopOfStack==SIZE) {
 cout << "Stack is full\n";
 return;
 }
 aStack[TopOfStack] = ch; //store indexed into the array
 TopOfStack++; //bump the index
} // end definition of push()

//Define the function to pop a character off the stack
char stack::pop()
{
 if(TopOfStack==0) {
 cout << "Stack is empty\n";
 return 0; // return null on empty stack
 }
 TopOfStack��; //decrement the index
 return aStack[TopOfStack]; //access the array indexed and return the char
} // end definition of pop()

//Test the system by creating and manipulating two objects of class stack
main()
{
 stack Stack1, Stack2; //create two objects of class stack
 int i; //create a counter variable
 Stack1.init(); //call the function to initialize the first stack
 Stack2.init(); //call the function to initialize the other stack

 Stack1.push('a'); //push some data onto the two stacks
 Stack2.push('x');
 Stack1.push('b');
 Stack2.push('y');
 Stack1.push('c');
 Stack2.push('z');

 // Now pop the values off the two stacks
 for(i=0;i<3;i++) cout << "Pop Stack1: " << Stack1.pop() << "\n";
 for(i=0;i<3;i++) cout << "Pop Stack2: " << Stack2.pop() << "\n";

 return 0;
} // end main
//���

The inner workings of this program are pretty well described by the comments and you should have no difficulty understanding how it works at this point. The output from running the program is
shown
 below.

Pop Stack1: c
Pop Stack1: b
Pop Stack1: a
Pop Stack2: z
Pop Stack2: y
Pop Stack2: x

-end-

Introduction to C++ and C Programming, Lecture Notes # 45, Structures, Unions, and Classes in C++,
Copyright 1996, R.G.Baldwin, Page � PAGE �
1
�

