Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, www.geocities.com/Athens/7077

CIS 2003, C++ Programming, Lecture Notes # 40, File 2003-40.DOC. Revised 9/21/96. These lecture notes are intended to supplement and not to replace the material in the textbook.

Introduction to Structures in C and C++

� TOC \o "1-4" �1. Example Problem: Creating an Inventory of Parts	� GOTOBUTTON _Toc368123774 � PAGEREF _Toc368123774 �1��

2. The Structure Template	� GOTOBUTTON _Toc368123775 � PAGEREF _Toc368123775 �2��

3. Declaring a Structure Variable	� GOTOBUTTON _Toc368123776 � PAGEREF _Toc368123776 �3��

4. Gaining Access to Members of a Structure Variable	� GOTOBUTTON _Toc368123777 � PAGEREF _Toc368123777 �3��

�

We frequently need a way to represent complex data in a program. C++ provides the structure, the class and the union which serve that purpose. We will begin our discussion of these data forms by discussing the struct as it is typically used in C. Later we will discuss the extensions that C++ provides for the struct and also discuss the class and the union. The structure in C is similar to the record in Pascal.

Example Problem: Creating an Inventory of Parts

The following is a simplified version of a program to keep track of various kinds of information about the parts in a stockroom. Since this information consists of both string and numeric data, we need a data form which will accommodate both types of data.

In this example program, we will include part name, part number, and cost, and for simplicity, we will limit the size of the stockroom to only one part. Although we won’t do so, we could use arrays to manage a stockroom with a large number of parts. In effect, we are creating the beginnings of a specialized database management program.

// parts1.cpp -- one-part inventory

#include <iostream.h>

#define MAXPARTNAME 41 //maximum length of PartName + 1

#define MAXPARTNO 31 //maximum length of author's name + 1

struct part { //first structure template, tag is part

 char PartName[MAXPARTNAME]; //an array for PartName

 char PartNo[MAXPARTNO]; //an array for PartNo

 float cost;

 }; //end of structure template

void main()

{

 part StockRoom;//declare StockRoom as part-type var

 cout << "Please enter the part Name.\n";

 cin >> StockRoom.PartName; //get and store PartName string

 cout << "Now enter the PartNo.\n";

 cin >> StockRoom.PartNo; //get and store PartNo string

 cout << "Now enter the cost.\n";

 cin >> StockRoom.cost; //get and store cost

 cout << "Part Name: " << StockRoom.PartName << endl

 << "Part Number: " << StockRoom.PartNo << endl

 << "Cost: $" << StockRoom.cost;

} //End main()

A sample output from this program follows with the operator input shown in bold italics.

Please enter the part Name.

MyPart

Now enter the PartNo.

abcdef

Now enter the cost.

3.69

Part Name: MyPart

Part Number: abcdef

Cost: $3.69

Our simple structure consists of three members or fields: one to store the part name as a string in a char array, one to store the part number as a string in a char array, and one to store the cost in a float variable.

The following sections will discuss three main points:

How to set up the template or format for the structure.

How to declare a structure variable based on that template.

How to gain access to the individual components of a structure variable.

The Structure Template

The structure template is the master plan that defines how the structure is put together. Our template is as follows:

struct part { //first structure template, tag is part

 char PartName[MAXPARTNAME]; //an array for PartName

 char PartNo[MAXPARTNO]; //an array for PartNo

 float cost;

 }; //end of structure template

As mentioned earlier, our structure template describes two char arrays for strings and one float variable for the cost.

The first element in the template is the keyword struct, which tells the compiler that what follows is a structure. Following this is a (sometimes optional) tag: the word part. We use the tag later to refer to the structure as in the following declaration:

 part StockRoom;//declare StockRoom as part-type var

This declaration declares StockRoom to be a structure variable of the part type. We have created a new type of variable according to our own design. The name of the variable is StockRoom and the type is part. The new type is a composite of the data types: char and float.

Following the tag (or new type name) in the structure template is the list of structure members enclosed in a pair of braces terminated by a semicolon. Each member is described by its own declaration. The members can be any data type, including types defined by other structures. It is important to remember that the template definition is terminated using a semicolon.

The template may be placed outside of any function (external), or it may be placed inside a function definition. If inside, then it can be used only inside that function. If external, it is available to all functions which follow the definition in the file containing the program.

Since our template is defined outside of any function, we could use it in another function with a declaration of the following type:

part YourPart;

That function would have a structure variable YourPart that follows the form of the template.

Declaring a Structure Variable

In C++, the word struct is used to define a template for the new data type. The template is a plan which tells the compiler how to represent the data, but it doesn't allocate storage space.

Having created the structure template (defined a new type), we can then declare a variable of that type (or an array of variables of that type) which does cause storage space to be allocated. In our case, the compiler allocates space for two char arrays and a float variable. All of this allocated storage is grouped under the name StockRoom in our program.

In the declaration of our structure variable, the tag or type name part plays the same role that int or float would play in the declaration of a simple variable. For example, we could declare two variables and a pointer to a third variable with the following declaration:

part MyStockroom, YourStockroom, *MyStockroomPointer;

In this case, the two structure variables each have part name, part number, and cost members. The pointer MyStockroomPointer can point to any variable of type part.

Gaining Access to Members of a Structure Variable

In C and C++, we access individual structure variable members using a period (.) which is the structure access operator (sometimes also called the member access operator or the dot operator). For example, StockRoom.cost identifies the cost member of the StockRoom variable. By using the structure access operator (.), we can access and use the individual members of the structure variable exactly as we would use the members if they were not part of a structure. (Note that in C++, it is possible to cause structure members to be private which results in special access requirements.)

In the event that we have a pointer to a structure variable, we can use the pointer operator (->) to access the individual members. For example, the following expression would access the cost member of the structure variable to which the pointer points.

StockRoomPointer->cost

-end-

Introduction to C++ and C Programming, Lecture Notes # 40, Introduction to Str
