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In this paper, we present in some detail new trends in application of asymptotic techniques to mechanical problems.


First we consider the various methods which give a possibility to extend a space of application of perturbation series and hence to omit their local character.

While applying the asymptotic methods very often as a rule appears the following situation: an existence of the asymptotics 
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). Therefore, an idea of construction of a one solution valid for a whole interval of the parameter ( changes is very attractive. On the other words, we discuss a problem of asymptotically equivalent functions construction possessing for 
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 a known asymptotic behaviour. 

The defined problems are very important from a point of view for both theoretical and applied sciences. In this work we review a state-of-the-art. By presenting the existing methods pointing out their advantages and disadvantages as well as the fields of their applications. In addition, some new methods are also proposed. This review article contains 340 references.

1. INTRODUCTION - ASYMPTOTIC APPRO--ACHES IN THE INFORMATION AGE

The end of the century and close birthday of a new millennium focused the attention of many researchers on the future of and relations between analytical and numerical strategies applied in science and engineering (Elishakoff, 1998; Gromov, 1998; Guckenheimer, 1998; Morgan, 1998). Those problems earlier also attracted the attention of researchers (Andrianov and Manevitch, 1992, 1994; Awrejcewicz et al., 1998; Barantsev, 1989; Hamming, 1973; Nayfeh, 1973, 1981; Obraztsov et al., 1991; Van Dyke, 1975a, 1991; Wilcox, 1995).

The fundamental impressions can be summarized in the following way. A possibility of obtaining required information has significantly increased in recent years. This implies high quality tools for its safe keeping and a transformation in a manner to be understandable by a human being. The last requirement is related to: a) construction of low dimensional models; b) extraction of high dimensional information; c) extraction of the most important singularities in a system’s behaviour (for instance, the bifurcation points), and so on. The most suitable tools to realize the mentioned requirements are related to analytical, and in particular to asymptotic methods.

On the other hand, it has  been observed that in recent years asymptotic approaches have been highly developed from both qualitative (an increase of number of possible applications) and quantitative points of view. The most interesting directions of development of the mentioned analytical approaches refer to detection of new non-trivial small (perturbation) parameters (even in classical problems) and an application of various methods of summations and interpolations. The last problems are dealt with in this review paper, whereas a problem related to detection of new small parameters will be reconsidered later.

Last, but certainly not least, we would like to describe briefly the role of asymptotic approaches in investigations of chaotic dynamics as well as in quasi-periodic solutions.

In this work we also are going to emphasize the role of Padé approximants, which seems to play a more important role in today’s non-linear mechanics. For instance, they have been widely used during analysis of non-linear oscillations through the concept of normal modes of non-linear oscillations (Mikhlin, 1985, 1995; Manevitch and Mikhlin, 1989; Manevitch et al., 1989; Vakakis et al., 1996; Salenger et al., 1999) and normal form (Robnik, 1993), padeons (Lambert and Musette, 1984, 1986), and even in the theory of chaos and fractals (Barnsley et al., 1983; Barnsley, 1988; Barnsley and Demko, 1984, 1985; Karlsson and Wallin, 1994).

2. SUMMATION METHODS

2.1. General remarks


The principal shortcoming of perturbation methods is the local nature of solutions based on them. Besides that, the following questions are very difficult for the theory: what values may ( be considered as small (large)? How can a solution for any ( be constructed if its behaviour is known for 
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? As the technique of asymptotic integration is well developed and widely used, such problems as elimination of the locality of expansion, evaluation of the convergence domain, construction of uniformly suitable solutions are very urgent.


There exist many approaches to these problems. The method of analytic continuation (Kayuk, 1991) requires a knowledge of the singularities positions of the sought function of the parameter (. The same may be said about the Euler transformation 
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 (Van Dyke, 1975a, 1991). It is useful to apply those methods in cases when many expansion components are known. It is then possible, using, for example, the Domb-Sykes diagram (Van Dyke, 1991), to determine the singularities’ positions and to perform analytic continuation. A significant number of the expansion components is also necessary to apply the methods of the generalized summation (Kayuk, 1991).


An application of the summation method of Borel-Laplace (Sternin and Shatalov, 1995; Shawyer and Watson, 1994) led to revolutionary results in the WKBJ method, increasing the accuracy of exponentially small terms and overcoming the problems related to Stokes phenomenon (Berry, 1989 a, b; 1990 a, b; Berry and Howles, 1990a, b, 1991; Boyd 1990; Dingle, 1973; Olver, 1990, 1997; Balian et al., 1978; Balser, 1994; Ecalle, 1981; Jones, 1990; Balser et al., 1991). It should be noted, that various integral transformations, like for instance the Mellin transformation (Martin, 1995), sometimes are very effective from a point of view of summation.


The reader is encouraged to follow the review papers devoted to a state-of-the-art in a field of summation methods (see, for instance, Smith and Ford, 1979, 1982).


Not diminishing the merits of the mentioned techniques, let us, however, note that in practice only a few of the first components of a perturbations expansion are usually known. Lately, the situation has indeed changed a little due to computer application (Andersen and Geer, 1982; Andersen et al., 1984; Buonomo, 1998; Dadfar and Geer, 1987). However, up till now there are usually 3 - 5 components available in a perturbation series, and exactly from this segment of the series we have to extract all available information (Van Dyke, 1975a,b). To this end the method of Padé approximants (PA) may be very useful.

2.2. Padé approximants


In this section the approaches based on transformation of the initial series of the perturbation method to a fractional rational function will be treated. Such transformation can be performed using different methods: nonlinear transformation of the initial series (Shanks, 1955), continued fraction (CF) (Jones and Thron, 1970, 1980), PA (Baker, 1975; Baker and Graves-Morris, 1981, 1996), analytic continuation (Arteca et al., 1990; Van Dyke, 1975, 1991; Kayuk, 1991), generalized summation (Kayuk, 1991); Euler transformation (Bellman, 1964; Van Dyke, 1975a).


Let us consider PAs which allow us to perform, to some extent, the most natural continuation of the power series. Let us formulate the definition. Let
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where the coefficients ai, bi are determined from the following condition: the first (m + n) components of the expansion of the rational function Fmn (() in a Maclaurin series coincide with the first (m + n +1) components of the series F((). Then Fmn is called the [m/n] PA. The set of Fmn functions for different m and n forms the Padé table.


The diagonal PAs (m = n) are most widely used in practice. Let us notice that a PA is unique when m and n are specified. To construct the PAs, it is necessary to solve systems of linear algebraic equations (for optimal methods of PA coefficients determinination see Baker and Graves-Morris, 1981, 1996). The PAs have found wide utilization in the various fields of mathematics and physics.


PA performs meromorphic continuation of the function given in the form of the power series, and for this reason it aloows to achieve success in the cases where analytic continuation can not be applied. If the PA sequence converges to a given function, then the roots of its denominators tend to singular points. It allows to determine with a sufficiently great number the series components the singularities and then to perform the analytic continuation.


The data concerning PA convergence could have application in practice only as opinions which would enhance the reliability of the results. Indeed, in practice it is possible to construct only a limited number of PA while all convergence theorems require information about an infinite number of them.


Gonchar’s theorem (Gonchar, 1986) states that if none of the diagonal Pas [n/n] has any pole in a circle of a radius R, then the sequence [n/n] converges uniformly in the circle to the initial function f. Further, the lack of poles in the sequence [n/n] in a circle of radius R implies the convergence of an initial Taylor series in the circle.


As the diagonal Pas are invariant to the fractional-linear transformations 
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, then the theorem is valid for any open circle containing the expansion point and for any domain being a union of such circles.


The theorem has one important consequence for continuous fractions, namely: the holomorphity of all suitable fractions of an initial continuous fraction inside a domain ( implies uniform convergence of the fraction inside (.


An essential disadvantage in practice is the necessity to verify all diagonal Pas. The point is that if inside a circle of the radius R only some subsequence of the diagonal sequence PA has not any pole, then its uniform convergence to the initial holomorphic in the given circle function, is guaranteed only for 
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 (Vyatchin, 1982). There exists a counter-example showing that in general 
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As in practice only a finite number of components components of the series of the perturbation theory is known and there are no estimations of the convergence rate, then the above mentioned theorems could only increase the likelihood of the obtained results. This likelihood is also augmented by some known “experimental results” since the  practice of PAs application shows that the convergence domain of PA sequence is usually wider that the convergence domain of the initial  series (Baker and Graves-Morris, 1996).


Let us note that widely applied continued fractions (Jones and Thorn, 1970) form a particular case of PAs. Exactly, the suitable fractions, representing the sequence of approximations of the continued fraction, coincide with the following PA sequence: [0/0], [1/0], [1/1], [2/1], [2/2]… That is why we shall not separate the case of the continued fractions application. 


A wide application of the PA is observed due to its suitable properties. Among others, we must mention a so called effect of error autocorrection (Litvinov, 1994; Luke, 1980, 1982). This effect occurs in efficient methods of rational approximation (e.g., PA, linear and nonlinear Padé-Chebyshev approximations), where very signify-cant errors in the coefficients do not affect the accuracy of the approximation: this is because the errors in the numerator and the denominator of a fractional rational approximant compensate each other. This effect is because the errors in the coefficients of a rational approximant are not distributed in an arbitrary way, but form the coefficients of a new approximant to the approximated function. The understanding of the error autocorrection mechanism allows us to decrease this error by adapting the approximation procedure to the form of the approximant.


The mentioned autocorrection effect helps to find a series of solutions related to ill-posed problems (for instance, a solution to a system of linear algebraic equations) (Litvinov, 1994; Rybic'ka and Syavavko, 1998; Schock, 1988; Syavavko, 1996;), and also application of PA to the problems with noise (Bessis, 1996; Gilewicz and Pindor, 1997, 1999; Bowman and Shenton, 1989; March and Barone, 1998).


The last remark is important, because through  PAs have long been considered as an formal approach, extending of application of either the range known series or iterational schemes (for instance, Adomian's decomposition method, see Andrianov et al., 1998). The last properties seem to be a necessity when non-trivial small parameters are taken into account (Bender et al., 1989; Bender et al., 1991).


PAs can be used for a heuristic evaluation of the domain of applicability of a perturbation series. The ( values, up to which the difference between calculations according to the segment of the perturbation series and its diagonal PA do not exceed a given value (e.g. 5%), can be considered as approximative values for the domain of applicability of the initial series (Andrianov and Bulanova, 1993).


Nowadays the PA are widely applied in mechanics. We mention only the theory of waves (Barclay et al., 1983; Moodie and Barday, 1991), viscoelasticity (Kagadiy, 1998; Kagadiy et al., 1992; Kagadiy and Pavlenko, 1989) and elasticity (Kaptzov and Shifrin, 1991; Smetanin, 1990), deformations of bars, plates and shells (Karpov, 1989; Kobayashi and Sonoda, 1991), in the theory of deterministic and stochastic vibrations (Handy, 1985; Mishanina and Muzychuk, 1992; Muzychuk, 1991; Pol and Ray, 1982), biomechanics (Smith and Twizell, 1982), or seismology (Longman, 1966).


PA has been applied not only to improve a convergence of asymptotic series but also to improve a convergence of the WKBJ method (Monaco and Capelas de Oliveira, 1994).


Other non-trivial application of PA will be described further.

2.3. Nonuniformity elimination in asymptotic expansions


A transformation to a rational function allows one to describe nontrivial behaviour at infinity and to take into consideration the singular points of the sought solutions. We shall consider, as an example, the problem of flow around a thin elliptical airfoil (
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) by a plane stream of a perfect liquid incoming with the velocity (. A few components of the asymptotic expansion of the relative stream velocity q* on the airfoil surface are like this (Van Dyke, 1975a)
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which diverges for x = 1. After replacing the expansion (1) by PA, the singularity for x = 1 disappears:
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Figure 1 presents for ( = 0.5: 1 - exact solution; dashed line is solution (1); 2 is PA (2); point line is solution according to the Lighthill method, which gives in this case worse results than PA.


PA does not always give such satisfactory results for problems (Andrianov, 1984). It would be interesting to find general relationship (related perhaps to group features of the considered equations (Kovalev et al., 1998)) of removing nonuniformities of asymptotic expansions with PAs.


Some results in this field are reported in the references of Boyer and Miller, 1977; Chudnovsky and Chudnovsky, 1982; Fushcich and Stelen, 1989. After a separation of singularities the different modification of the classical PA approach have been applied, for instance the Hermite-Padé approximants (Common, 1982; Shafer, 1974; Sergeev, 1986). Also the bifurcation points can be analysed in different physical problems (Drazin and Tourigny, 1996).


One more important property of PA, namely, a tracking of a local behaviour of solutions, has been effectively applied in the theory of solitons (a so called description "padeon" has occurred), as well as in non-linear mechanics (Emachi et al., 1997).


An important particularity of trigonometric PAs has been detected by Semerdjiev, 1979. It appears that with Padé-transformation of the Fourier series the Gibb's effect significantly diminishes. The application of this very promising method has only commenced (Nemeth and Paris, 1985).

	[image: image18.png]0.4

0.6

0.8






Fig. 1. Solution divergence removing with the method of the perturbation theory for the problem of flow arround an elliptical airfoil by the plane potential stream of the perfect liquid.
2.4. Boundary conditions perturbation method


An introduction of a non-trivial small parameter and an application of PA results in a new effective method to solve complex boundary-value problems (Andrianov and Ivankov, 1987, 1988, 1992, 1993; Andrianov et al., 1994). Namely, a parameter ( is introduced into the initial boundary conditions in such a way that for ( = 1 we have the initial boundary problem, and for ( = 0 a simplified problem admitting a simple solution. Then an expansion in terms of the parameter ( is constructed. Unfortunately, the series obtained is usually not convergent for ( = 1. To eliminate this disadvantage, we can apply PA.


Let us consider the flexural vibration of a rectangular plate
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 (see Fig. 2). The governing equation reads
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The boundary conditions have the form
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where
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is the Heaviside's function.


Here an artificial small parameter ( has been as introduced described earlier.


Substituting w and ( in the form of (-series:
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and after applying the usual procedure of the perturbation method, we have
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Fig. 2. The relationship between the vibration frequency of partially clamped on two opposite sides plates and the clamped segment length.

Let us compare the frequencies given by this method with the exact value for the limit case (( = 0) when both sides y = ( 0.5 are completely clamped.


For the square plate
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PA for three terms of perturbation series is
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For ( = 1, one obtains 
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Figure 2 presents the diagram of the relation of ( versus ( for the cases of symmetrical and nonsymmetrical restraint layout.

2.5. A new iterational method for the solution of algebraic systems


As is well known, asymptotic approaches for nonlinear dynamics of continuous systems are well developed for infinite spatial variables. For systems of infinite size we have an infinite number of resonances, and the Poincaré-Lighthill method does not work. The use of an averaging procedure (Mitropolsky et al., 1997) or the method of multiple scales (Lau et al., 1989) leads to infinite systems of nonlinear algebraic or ordinary differential equations, and a subsequent truncation method does not provide the possibility of obtaining all the important properties of the solutions. In this section we use an asymptotic procedure which is based on the introduction of an artificial small parameter (Andrianov and Danishevski, 1995).


Let us assume a governing boundary value problem in the following form
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where all variables are nondimensional, and ( is a nondimensional small parameter (( << 1). From the physical point of view we have longitudinal vibrations of a rod with nonlinear drag. Let us introduce a change of the variable 
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We will now search for solutions using the ansatzes
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After substituting expresions (4) and (5) into the governing boundary value problem (3) and splitting it with respect to (, one obtains
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The solution (6) may be written in the form
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Here C1 is the amplitude of the fundamental oscillation, while the constants Ci for i > 1 provide the next approximations. After some routine but cumbersome transformations, we arrive at the following infinite set of nonlinear algebraic equations
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Systems like (8), (9) may be obtained in various ways and the main problem in this approach consists in its solution. The truncation of the infinite systems (8), (9) cannot give any information about resonances of a higher order. We propose to introduce an artificial small parameter (, writing it near all nondiagonal members of system (8), (9) and representing the unknown coefficients as an expansion:
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After splitting with respect to (, solutions may be obtained routinely. It may be easily shown that for even n
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Farther, in order to improve the series (10) convergence the PAs are applied.


Numerical results (the dependencies of the fundamental nondimensional frequency ( upon the nondimensional amplitude C1) are displayed in Fig. 3 for various values of the small parameter (.
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Fig. 3. Amplitude-frequency dependencies for fundamental  oscillations for various values of the small parameter (.

The described method (an introduction of an artificial small parameter together with application of PA) can be applied to solve the systems of linear or non-linear algebraic and differential equations. We hope that its combination with classical methods such as Ritz, Bubnov-Galerkin, Vlasov-Kantorovitch, etc., lead to more accurated results. On the other hand, a method of truncation and the discussed method are, in some sense, supple-mentary ones, and can be used for accuracy checking of each other.


For the systems of linear algebraic equations the PA has been applied by Bultheel (1985), Cabay and Domzy (1987), Moenck and Carter (1979), for Lanczos algorithm-Gragg (1974), Gutknecht (1997), Brezinski et al. (1991).

2. 6. “Padeons” and blow-up phenomena


Recently solutions and solutions close to them have been widely used in mechanics, These are essentially nonlinear solutions which cannot be constructed using the quasi-linear approach when any number of components is conversed. It is still more interesting to note that PA allows to construct solutions of that type beginning from local (quasi-linear) expansions (Lambert, 1980; Lambert and Musette, 1984, 1986; Liverani and Turchetti, 1983; Turchetti, 1980).


Moreover there has appeared the term “padeon”.


A model example is presented by the boundary value problem
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which has the exact solution (“soliton”)
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A solution in the form of the Dirichlet series
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C = const,

after rearrangement into PA and determination of C becomes the exact solution.


Solutions of nonlinear problems (e. g. calculation of nonlinear boundary layers) in the form of Dirichlet series are widespread in the contemporary mechanics. It may be expected that their combination with the PA technique should lead to interesting results. 


Application of PAs to jump (Kassoy, 1982; Reiss, 1980) and blow-up (Samarskii et al., 1987) phenomena seems to have favourable prospects.


In order to illustrate an application of PA and blow-up problems we consider the following model problem
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. The exact solution to this boundary-value problem has the following form
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 the solution goes to infinity (blow-up of solution appears). A regular asymptotics of the form
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can not describe the mentioned phenomenon, but an application of the PA using only two terms leads to exact solution.

2. 7. Improvement of iteration processes


PAs often given good results even for a small number of components of the perturbation series. Obviously, however, PA efficiency increases when the number of approximations increases. So, in the papers (Andersen and Geer, 1982; Andersen et al., 1984; Dadfar and Geer, 1987) a component of the expansion series of amplitude 
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 of the period of the Van der Pol equation has been constructed PAs have allowed to discover the singularities of the sought period as a function of  
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 and then, using analytic continuation, to construct a solution applicable throught the range of 
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. At present there appears the possibility of obtaining approximations of a higher order with computers. It can be imagined that in cases where a complicated problem of construction of approximation of higher order in the perturbation methods is solved, then it is desirable to try to apply PAs and other methods of convergence acceleration.


At the same time it must be noticed that iterative methods are essentially simpler to realize by means of computer technology. PAs can be used to improve those methods (Gurinski, 1981; Krylov, 1988; Sakurai et al., 1991).


Let the iterative process have the form



[image: image63.wmf],...

2

,

1

n

     

),

u

(

T

u

    

,

0

)

u

(

T

1

n

1

n

0

=

=

=

-

.


We introduce a function 
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     Let us consider, as an example, the problem of large deflections of round isotropic plate of a radius R, with a free opening of the radius R0 and a rigidly restraint external outline on which a superficial pressure of constant intensity is acting. The problem solution was found by Kayuk (1991) using the method of finite central differences for the Young modulus 
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The method of successive approximations applied for the solution of the system of nonlinear algebraic equation, for comparatively large loads, has converged for some 150-200 iterations, and the convergence to the solution has been of an oscillating nature (Kayuk, 1991).


Table 1 gives the results of computations of the dimensionless radial force 
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; q is the intensity of the external load; 
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Table 1.

	Approxim.

number
	T
	Approxim.

number
	T

	0

1

2

3

4

5

6

7

8

9
	5.27286

1.09640

4.81246

1.45039

4.55120

1.67086

4.37191

1.82867

4.23735

1.94992
	10

145

146

147

148

149

150

151

152

-
	4.13072

3.02320

3.11416

3.02603

3.11236

3.02680

3.11063

3.02849

3.10890

-



Applying the method of generalized summing (Kayuk, 1991), the situation can be improved (Table 2). Let us present the proposed method. PA taking into account four approximations, will have the following form:
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When 
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, this formula gives T=3.079. The boundary problem considered above demonstrates the high efficiency of PA to accelerate the convergence of iterative processes.

Table 2.

	Approxim.

number
	T
	Approxim.

number
	T

	0

1

3

4

5
	-

2.6955

3.0140

3.0941

3.0656
	6

7

8

9

10
	3.0656

3.0760

3.0791

3.0789

3.0789


2. 8. Generalizations

Theories of PA and CF are being justified mathematically (convergence, velocity of convergence, etc.) as well as being generalized in various directions. In particular, branching and integral continued fractions (Kuchminskaya and Siemaszko, 1987; Scorobogat'ko, 1983, 1987; Syavavko, 1994), continued exponentials (Bender and Vinson, 1996) are still waiting for their applications.


The last remark also holds for multivariate PA (Cuyt, 1983; Cuyt and Verdonk, 1993) and PA for operators (Cuyt, 1984).


Lately an investigation of PA is carried out very intensively by mathematicians and physicists, and the computational experiments are widely used (Bender and Boetcher, 1994a,b), and many interesting properties are illustrated. For instance Bender and Boetcher (1994) wrote: ‘The connection between a Taylor series and a continued fraction involves a nonlinear relation between the Taylor coefficients {a k} and the continued fraction coefficients {b k}. In many instances it turns out that this nonlinear relation transforms a complicated sequence {a n} into a very simple one {b n}’.


This phrase can be illustrate using a simple example taken from a theory of numbers.  The so called golden mean value 
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which clearly manifests a peculiarity of this number.


It should be emphasized, that in order to estimate efficiently the errors introduced by PA other summation techniques can be applied, see for instance (Belokurov et al., 1995; Belokurov et al., 1997; Levin, 1973).

3. MATCHING OF LIMITING ASYMPTOTIC EXPANSIONS

3.1. Two-point Padé and quasifractional approx-imants

3.1.1. Definitions


First we give some definitions. The notion of TPPAs is defined by Baker and Graves-Morris (1981, 1996). Let
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The TPPA is represented by the rational function
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where k + 1 (k = 0, 1, ..., n + m + 1) coefficients of a Taylor expansion, if 
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, coincide with the corresponding coefficients of the series (11). Properties of the TPPAs were investigated by Draux (1991), McCabe (1975). The two-point continued fractions (TPCFs) are closely connected with this subject (Achutan and Ponnuswamy, 1991; Gonzales-Vera and Orive, 1994; McCabe and Murphy, 1976; Sidi, 1980b). For a heuristic role of TPPAs see Andrianov (1991b), Andrianov and Manevitch (1992).


Evidently, the TPPAs is not a panacea. For example, one of the “bottlenecks” of the TPPAs method is related to the presence of logarithmic components in numerous asymptotic expansions. Van Dyke (1975a) wrote: “A technique analogous to rational functions is needed to improve the utility of series containing logarithmic terms”. This problem is the most essential for the TPPAs, because, as a rule, one of the limits 
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 for a real mechanical problems gives expansions with logarithmic terms or other complicated functions. It is worth noting that in some cases these obstacles may be overcome by using an approximate method of TPPAs construction by taking as limit points not 
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, but some small and large (but finite) values (Terapos and Diamessis, 1984). On the other hand, Martin and Baker (1991) (see also Chalbaud and Martin, 1992) proposed the so called quasifractional approximants (QAs). Let us suppose that we have a perturbation approach in powers of ( for 
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. By definition QA is a ratio R with unknown coefficients ai, bi, containing both powers of ( and F((). The coefficients a, b are chosen in such a way, that (a) the expansion of R in powers of ( match the corresponding perturbation expansion; and (b) the asymptotic behaviour of R for 
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 coincides with F((). Let us examine the example of inverting Laplace transform. We had power series expansions for 
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. But this case is not general, because usually the inverse contains exponential functions. Then, we may construct QA for power expansion for 
[image: image91.wmf]0

t

®

 and for exponential terms given for 
[image: image92.wmf]¥

®

t

 (Andrianov, 1992). Interesting heuristic methods for multiplicative and additive matching of limiting asymptotic expansions were proposed by Chicovani et al. (1990), Frost and Harper (1976), Kalitvyansky et al. (1985), Kashin et al. (1983), Kashin et al. (1989).

3.1.2. Simple examples


Let us investigate a model problem of vibrations of a chain consisting of n masses m, joined with springs of rigidity a. It may be a finite difference approximation of the longitudinal vibrations of a rod. The deflection y of the k-th particle is determined by
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At the ends of the chain the boundary conditions are given


y k = 0        for      k < 1   or    k > n.

There are possible:

· n proper forms of vibrations
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with the discrete spectrum of natural vibrations
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Let us construct the asymptotic expansions of the frequency 
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 in the vicinities of the points s = 0 and s = 2(n+1), respectively. We introduce new variables
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Thus instead of the segment [0.2 (n+1)] for s, we obtain the semi-infinite interval 
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A solution obtained with the TPPA method, valid for 
[image: image102.wmf]¥

<

£

x

0

, is given by



[image: image103.wmf].

x

81

.

0

x

57

.

1

1

x

81

.

0

x

57

.

1

m

a

2

2

2

*

+

+

+

=

w

 
      (14)

The results of the calculations of the frequency 0.5(*(a/m)-0.5 are presented in Figure 4. The exact solution of (13) is depicted by I, whereas the approximations are denoted by II and III, respectively. The rearranged TPPAs solution (14) practically coincides with the exact solution.
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Fig. 4. Frequencies of a chain natural oscillations obtained by various approaches.


Another interesting example is the Van der Pol equation (Andersen et al., 1984; Andersen and Geer, 1982; Andrianov and Bulanova, 1984; Buonomo, 1998). We give some necessary preliminary information according to Hinch (1991). The Van der Pol oscillator is governed by the equation
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After long times the frequency and amplitude of the oscillations do not depend on the initial conditions. The limit period T is plotted in Fig. 5 as a function of the coefficient of the nonlinear friction k. The curve 3 gives the numerical results obtained by means of the Runge-Kutta method. The curves 1, 2 give the second order perturbation approximations
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   The TPPA formula constructed from two terms of the expansion (15) and one term of the expansion (16),


[image: image107.wmf]k

2433

.

0

1

k

3927

.

0

k

5294

.

1

2832

.

6

T

2

+

+

+

=

,

shows a good agreement with the numerical results for all values of k > 0 (curve 4 in Fig. 5).
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Fig. 5. Period of the Van der Pol pendulum: comparison of numerical, perturbative and TPPA solutions.

3.1.3. A hydrofoil problem


Let us consider the problem of a hydrofoil. For large values of a relative submerging h, the relative hydrodynamic lift Q of a thin plate is expressed as follows (Panchenkov, 1976)
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For 
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Q = 0.5. 



      (18)

The exact solution for intermediate values of the parameter h is not known. In the monograph of Panchenkov (1976), it is proposed to use the method of functional parameters. On the contrary in the present approach, the formulae (17) and (18) allow us to construct quite simply cumbersome the TPPAs, which give the values of Q for any h
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Figure 6 presents the numerical values calculated from Eqs (17) and (19) (curves 2 and 1, respectively) and the experimental data taken from Panchenkov's monograph (1976) (curve 3). The correspondence between experimental data and the results of the TPPA (19) is quite satisfactory.
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Fig. 6. Using of the asymptotic and TPPA approaches when solving the problem of hydrofoil.


For other applications of TPPA the reader is encouraged to see (Anolik and Barantsev, 1998; Barantsev and Pashkevitch, 1994; Pozzi, 1994).

3.1.4. Inverse transform problem


Papers of Andrianov (1992), Grundy (1977) were devoted to the following problem. Let us consider the Laplace transform
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where H0 is Struve function, Y0 is Bessel function,  p is parameter of the Laplace transform.


The exact inverse is
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The asymptotic inverses take forms
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By using the TPPAs one obtains
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      (20)

The numerical results are plotted in Fig. 7. The upper curve (Eq (20)) coincides satisfactorily with the lower one (exact solution).
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Fig. 7. Laplace transform inverse, the exact and TPPA solutions.


Hence the rational function (20) is an "asymptotically equivalent function" in the sense of Slepyan and Yakovlev (1980). The accuracy of the TPPA solution may be improved by removing essential singularities (Krylov and Skoblya, 1969). The other approximate methods (Longman, 1973; Sidi, 1980a; Talbot, 1979; Van Iseghem, 1987) enable an error analysis. The TPPAs approach can also be applied to other integral transforms (Fourier, Bessel, Mellin and so on).


It should be emphasized that a construction of analytical inversions of Laplace transformations is very helpful while solving viscoelastic problems (Kagadii, 1998; Kagadii and Pavlenko, 1989).

3.1.4. Matching of quasi-linear and essentially nonlinear asymptotics

The next example deals with the problem of oscillations of a plate on a nonlinear elastic foundation (Andrianov and Bulanova, 1995). That problem may be solved using numerical or quasilinear asymptotic methods. In the latter quasi-linear asymptotics are usually used. For large amplitudes the solutions can be obtained as follows. In the long-wave approximation the plate bending rigidity may be neglected and we can investigate oscillations of the body on the elastic nonlinear spring. In a short-wave approximation the nonlinearity of the foundation is negligible as well. For such a case the TPPAs method is very suitable.


 It is also suitable for solving nonlinear problems for beams, plates and shells. Now we are going to give an example of TPPAs application to the nonlinear theory of shells (Evkin, 1989). Within the theory of shells buckling, the solution presented below has been obtained by means of the asymptotic method for a closed sphere subjected to the uniform external pressure q
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and w is amplitude of supercritical axially-symmetric equilibrium form.. In the region of small deflection the approach of Koiter is valid, which gives the solution expansion in the form
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By matching the expansions (21) and (22) with the TPPA, we obtain the solution in the form
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Here
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Curve 1 in the Fig. 8 corresponds to the solution (21). The precise numerical results, obtained by Gabrilyantz and Feodos'ev (1961) (practically the exact solution) is presented by the curve 2. The curve corresponds to the solution (23) practically coincides with the exact solution (i.e., with the curve 2 in Fig. 8).


The shell model discussed above was used for estimation of the critical pressure for cylindrical shells with initial imperfections (Evkin and Krassovsky, 1991). Moreover, the TPPAs were also applied for matching the coefficients of the governing equations as functions of time (Stankevich et al., 1991).


An application of TPPA opens a new perspective during a solution to the singularly perturbated systems (Belyaeva and Dmitriev, 1999a, b). For 
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     It must be emphasized that a link of PA with the exponential series suitable for an analysis of boundary layers exists (Bezmaternik and Borisov, 1989).


As Vorovich (1999) points out: “PAs are also quite useful in the analysis of results of experiments with thin – walled structures. They can be used to develop high-precision methods of prediction of the upper critical pressure of a shell.”
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Fig. 8. Using TPPA for matching of quasilinear and essentially nonlinear asymptotics.

3.1.5. Matching of expansion for high and low-frequency oscillations


Dynamics of a ribbed plate are described by a system of partial differential equations with discontinuous coefficients. Numerical methods are not efficient and very often are not acceptable for such equations. It is possible to use the homogenization method (Bakhvalov and Panasenko, 1989) for the low frequency case. At the first stage, rigidities and densities of the lateral ribs are spread along the plate and the plate itself is replaced by a smooth orthotropic plate with effective rigidities and densities. Further on, using the Vishik and Lyusternik (1960a,b) first approximation approach, corrections to the frequencies and displacements, caused by ribs, are obtained. In the high-frequency case a perturbation method (Nayfeh, 1973) is used, and the theory of smooth plates plays the role of the first approximation. In this section the homogenization and perturbation solutions are to be matched by the TPPAs. As a result of the application of the above-mentioned method an analytic expression has been deduced which describes the oscillations of a ribbed plate on elastic foundation for the whole spectrum of frequencies (Andrianov et al., 1997). A comparison with known solutions was made and accuracy of the method was found. Let us consider the ribbed plate 
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, resting on the Winkler elastic foundation of stiffness C1. To a great extent this model represents the basic features of the real system oscillations. The model equations are given by



[image: image127.wmf],

0

W

)]

y

(

EFP

h

[

W

C

W

)

y

(

IP

E

W

D

1

1

xxxx

1

4

=

r

+

r

l

-

+

+

Ñ


      (24)

where
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and N is number of ribs, N = 2k + 1, ( is mass density of the plate material, E1, (1 is modulus of elasticity and mass density of the rib material, ( is Dirac function, ( is square of frequency, I is inertia moment, F is square of the cross-section of the rib.


The boundary conditions on the edges of the plate may be formulated as
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The homogenization procedure leads to the following boundary value problem
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and the boundary conditions (25) (after replacing W with W0). The approach used allows us to determine the expansions of frequencies and oscillation modes with any desired accuracy. Now we will investigate high-frequency oscillations. Let us introduce new "fast" variables (, (  given by
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Here ( is an auxiliary small parameter. Then the  derivatives may be rewritten as follows
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The plate oscillation mode and frequency squared asymptotic expansion may be found as
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Substituting Eqs (27), (28) into Eq (24) and preforming the (-splitting, from the system of equations that determines the unknown expansion coefficients, one obtains
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Eq (29) describes the smooth plate oscillations, while Eq (30) allows one to obtain the frequency and mode expansions for the first order of (. The values of the parameters used in the numerical analysis are: N = 11, 
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, E1F/(Db)  = 200,    (1F/(bh = 0.5,    L2/L1 = 1,    m = 1,    0 < k < 80. Here m(k) is the wave number in the direction of the x (y) axis. The results are plotted in Fig. 9, here the curves correspond to:


I is the orthotropic model; II is the case of the smooth plate's oscillation; III and IV are the truncated series for the low- and high- frequency asymptotics (only the first two terms of expansion are taken into account). The dotted line represents the values of the frequency determined by numerical methods. Curve V corresponds to the matched spectrum expression.
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Fig. 9. Matching by the TPPA of homogenized and higher-frequency solutions.


The plots in Fig. 9 show that the values of frequency obtained using the approximate analytical and numerical methods are inside the region bounded by the curves 1 and 2. This result ascertains the physical nature of the problem and confirms reliability of the solution. Furthermore, the comparison with the numerical data shows that for 0 < k < ( the curve V coincides satisfactorily with the numerical solution. Thus, the TPPA method provides the closed analytical formula for the total spectrum of the plate natural frequencies (see also Andrianov et al., 1997).


For application of TPPA in the wave theory the reader is encouraged to see references of Ortoleva (1978, 1980).

It can happen that during investigations of increase dynamical problems the methods of frequency analysis can be applied (Jones et al., 1994; Jones et al., 1993).

3.1.6. Matching of limiting asymptotics in the homogenization problem


The theory of homogenization has been developed for perforated media by many authors in recent years (see Bakhvalov and Panasenko, 1989). The main problem in this field is solving of the so called cell (or local) boundary value problem for the periodically repeated element with conditions of periodicity. This problem has usually been studied by means of numerical methods. For solving the cell problem asymptotic methods were used by Andrianov and Shevchenko (1988, 1989), Andrianov et al. (1995). Consider the example of the bending of rectangular plate with circular perforations. Analytical solutions for small and large holes were obtained by Andrianov and Shevchenko (1989) by using the asymptotic methods (perturbation of the domain and boundary form). For the coefficients A and B of the homogenized equation
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we have the following expressions (for ( = 0.3):
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where ( = b/a, b is diameter of the hole, a is length of the square cell side.


Fig. 10 shows the numerical results for A and B.
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Fig. 10. Comparison of the TPPA solution for homogenized coefficients of perforated plates with other analytical approaches and experimental data.


The values of coefficients are compared with the theoretical results, obtained by means of the two-period elliptic functions method A = B; (then Grigolyuk and Phil'shtinsky, 1970), curve 1 on Fig. 10) and experimental results (points on Fig. 10; Grigolyuk and Phyl'shtinsky, 1970). The accuracy of the TPPA method is obvious.

3.1.7. Theory of composite materials


Elastic coefficients of composite materials may be evaluated effectively using the method of bounds. The bounds become increasingly accurate when more information on geometrical properties of the medium is known. For two-component isotropic composites, the PAs bounds for the effective constants 
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 already exists (Bergman, 1978; Milton and Golden, 1986; May et al., 1994). These bounds are usually obtained in the form of CFs on the basis of the analytic properties of 
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. The Stieltjes functions have been extensively studied in the mathematics literature and their PAs and CFs representations are well known (Gilewicz, 1978; Lorentzen and Waadeland, 1992; Jones and Thron, 1980, 1983; Baker and  Graves-Morris, 1981, 1996).


On the contrary, the analytic properties of TPPAs generated by two different power expansions of Stieltjes function have not been examined as deeply as the PAs. The above authors concerned themselves mostly with the TPPAs using equal number of coefficients of two power expansions at zero and infinity ("balanced" situation).


The convergence of TPPAs has been investigated by (Jones and Thron, 1970; Gragg, 1980; Jones et al., 1983). In the paper of Casasus and Gonzalez-Vera (1985) the relation of a special type of TPPAs to the Stieltjes functions are examined. Monotone sequences of TPPAs forming upper and lower bounds for the Stieltjes functions have been reported by Gonzalez-Vera and Njåstad (1990).


Recently (Tokarzewski et al., 1994a; Tokarzewski, 1996a,b) investigated the TPPAs for a  non-equal, finite number of terms of two power expansions of the Stieltjes functions at zero and infinity ("unbalanced" situation). Under some assumptions they proved that the diagonal TPPAs form sequences of lower and upper bounds uniformly converging to the Stieltjes function.


The general "unbalanced" situation, i. e., the TPPA corresponding to an arbitrary number of terms of power expansions at zero and infinity has been studied in the real domain by Bultheel et al. (1995) and independently by Tokarzewski and Telega (1996b, 1997). They extended the fundamental inequalities derived for the PAs (Baker, 1975) to the general "unbalanced" TPPAs case. They proved the following theorem very useful for practical applications.

Theorem. The TPPAs for the Stieltjes function 
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obey for k = 1, 2,..., 2M  (k = 1, 2, ..., 2M + 1) the following inequalities:
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where R(x) stands for the limit as M tends to infinity of [M / M] k, ([(M + 1) / M] k), and x is real and positive 
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Here k denotes the given number of coefficients of power expansions at infinity matched by the TPPA represented by [M / N] k. The above inequalities have the consequence that [M/M]k and [(M + 1) / M] k form upper and lower bounds on R(x) obtainable using only the given number of coefficients, and that the use of additional coefficients (higher M) improves the bounds.


This theorem has been successfully used (Tokarzewski et al., 1994b) for the study of the effective heat conductivity 
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 are shown in Fig. 11. The best bounds obtained by the TPPAs method, namely [18 / 18]1 and [18 / 18]2, are presented in Fig. 12. In both Fig. 11 and Fig. 12 the asymptotic solution obtained by McPhedran et al. (1988) is drawn for comparison.


It follows that the TPPAs approach allow us to evaluate the effective moduli for a range of parameters much larger then the PAs methods reported in literature (McPhedran and Milton, 1981; May et al., 1994). For example, for ( = 0.78539 the 

TPPAs approach leads to very restrictive bounds, whereas the PAs methods fails, Figs. 11a and 12a.


The TPPA method presented in this Section can be applied to calculation of the bounds on dielectric constants, magnetic permeabilities, viscous coefficients, elastic constant and others (Galka et al.,1997; Tokarzewski et al., 1994b; Tokarzewski  et al., 1997a, b; Tokarzewski and Telega, 1996a).


For some special input data also three- and four-point PAs were used for estimation of the effective conductivity of a two-component medium (Helsing, 1993, 1994).


Now we show an application of the QA. Let us consider a problem of effective heat conductivity k of a periodic cubic array (with side length 1) of perfectly conducting spheres of volume (, embedded in a matrix material with conductivity 1. 


Maxwell was the first to calculate the effective thermal conductivity k of a composite material volume fraction of dispersed spheres ( << 1. For a perfectly conducting sphere
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Rayleigh extended this analysis to spheres arrayed in a simple cubic lattice, obtaining for perfect conducting spheres
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Rayleigh gave the value ( = 1.65. This was later corrected by Runge to 0.523.

Sangani and Acrivos (1983) obtained the following expression for perfectly conducting spheres
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 Expressions (31) - (33) give us perturbation solutions for ( << 1.


In their turn Batchelor and O'Brien (1977) showed that for perfectly conducting spheres and ( tending to the limit value (/6, the effective conductivity k has the following asymptotic form 
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Fig. 11. The sequences of [M/M]0, [M/M]1 and [M/M]2,   M = 2, 4, 6, 12, 18 uniformly converging to the effective conductivity 
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 of square array of cylindres. The curves [M/M]2 are indistinguishable (solid line - (a)). The bounds [18 / 18]1 and [18 / 18]2 are very restrictive.
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Fig. 12. The TPPA upper and lower bounds on the effective conductivity for a square array of densly packed highly conducting cylinders. For ( = 0.785 the bounds coincide. For ( = 0.7853, 0.78539 are very restrictive. For higher volume fractions ( ( 0.78539816 the difference between lower and upper bounds increases rapidly.

Some numerical results are displayed in Fig. 13. As one can easily see, taking into account the term of higher order in the perturbation series does not lead to a satisfactory agreement between the exact and perturbative solutions. Thus, the asymptotic solution can not be used for small (. This is the heuristic reason for the attempt of matching the perturbative and asymptotic solutions.
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Fig. 13. Effective conductivity k of a simple cubic array of perfectly conducting spheres as a function of volume fraction (. The order of the theory is indicated. Numbers 1-5 correspond to the theories of Maxwell (31), Rayleigh (32), Sangani and Acrivos (1983) (33), exact value (McKenzie and McPhedran, 1977) and asymptotic formula of Batchelor and O'Brien (1977) (34).

We now present results for the effective conductivity coefficient, which were obtained by using QA.


QA for our case may be written as follows:
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On the other hand, we may construct the approximation as a logarithm of rational function in such a way that its perturbative expansions 
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Some numerical results are displayed in Fig. 14. For comparison we also show the empirical formula by Keller (1963)
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Fig. 14. The experimental measurements of Kharadly and Jackson (Meredith and Tobias, 1962) (+) and of Meredith and Tobias (1960, 1962) (*) are compared with the QA (35), (36); Keller's (1963) empirical formula (37) and exact theoretical curve (McKenzie and McPhedran, 1977) (curve 1, 2, 3, and 4, respectively).

This formula gives a good agreement with the exact solution, but can't give the correct asymptotic behaviour for 
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It is clear that formula (35) better describes the solution for 
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, but the discrepancy between them is not large, and this fact justifies the above mentioned procedure.


The Qas have been successfully applied in a theory of composites (Andrianov et al. (1996); Andrianov et al. (1998, 1999); Andrianov et al. (1999), Andrianov et al. (2000)).

3.1.8. Analytical construction of homoclinic orbits


An analytical construction of a homoclinic orbit belongs to important problems of modern non-linear mechanics (Guckenheimer and Holmes, 1983). In this contribution the following Duffing equation with a small forcing term is considered:
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where 
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Vakakis (1994) proposed an analytical solution using series related to the small parameter (. However, using this approach some of the possible wide varieties of system behaviour are not exhibited.


For ( = 0 one obtains the equation
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which has the solution
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The solution (40) decreases in time for 
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with the corresponding solution
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Therefore, a typical situation occurs for the two-scale approach. Namely, for a different interval changes of the independent variable, different analytical expressions exist. A uniform solution can be obtained by an asymptotic matching of the series (Smith, 1998). Contrary to this approach we propose a procedure of QA. According to the last method we find the following solution for 
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where
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The solution (43) is valid for arbitrary values of (. An account of higher approximations is related to the construction of the successive approximations in the interval 
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Other applications of TPPA and QA in this field are described by (Mikhlin, 2000; Vakakis and Azeez, 1998).

3.2. Other matching procedures


There is no hope to get universally valid approaches applied to different problems, therefore other matching procedures will be briefly discussed.

3.2.1. Method of asymptotic analogies


The method can be briefly described in the following way (Dil’man and Polyanin, 1988; Polyanin and Dil’man, 1985). Let 
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If, using the relation
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one is able to define the parameter ( via 
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, then the following dependence can be obtained
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It is clear, that a most tedious step is related to an inverse procedure. However, sometimes to omit the mentioned problem some of the existing approximation techniques can be used.

3.2.2. Variational - asymptotical methods


Sometimes an occurrence of the existing limiting asymptotics allows for a guess, using an adaptive or multiplicative approaches, of the character of the approximating functions for any of the used variational method (Kan et al., 1988; Lugovoi and Meish, 1987). It seems that potential abilities of the method are strong and not used enough  yet. Besides, the method can be linked with the other methods or in order to check an accuracy of the last ones.

3.2.3. Method of asymptotic in a transitional zone during an integration procedure


Barantsev (1974), Barantsev and Ryvkin (1983), Barantsev and Semchenko (1975) developed the method of asymptotic calculation in a transitional zone. Let the function f(x) being integrated have the simply defined asymptotics in the neighbourhoods of the analised interval ends:
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A simple extrapolation of f1 and f2 into a transitional zone can lead to a serious lack of accuracy while finding an asymptotics of an integral. Therefore a proper coefficient in the asymptotics can be found via a proper choice of the constants. In other words, the simple asymptotics can be linked in such a point of a transitional layer, where the "left" and the "right" errors annihilate each other (Barantsev, 1974).

3.2.4. Synthesis of the limiting states


Problems related to the stress-strain state definition within the Kirchhoff-Love model can be reduced to that of the solution of a system of partial differential equations of the eight order. The method of asymptotic integration of a general theory of shells proposed by Gol’denveizer (1961) split the strain state of a shell into a series of the elementary states: semi-membrane and moment theories, edge effects, theory of shallow shells, bending and tangential states. The synthesis of a full strain state and using the above mentioned equations still seems to be an open problem. There are not enough accurate criteria for defining the limits of linking the approximated solutions obtained due to application of the approximate equations. A serious problems occur when a strain state of a shell is described by functions which exhibit changes in wide intervals (for instance, if local forcing acts on a shell). However, principles for the stress states synthesis yielding criteria for the estimation of the approximated equation and their solutions used for further linking procedures are successfully formulated. By synthesis we mean here a reduction (or unification) to a one full solution representing the particular ones describing the special simple stress-strain states.


The following methods of asymptotic synthesis (MAS) of the stress-strain states of circular cylindrical shells are widely used (Nerubaylo, 1979a, b, 1983, 1990; Obraztsov and Nerubaylo, 1983a, b).


In the first MAS which secures a minimum asymptotic error, the equations of the semi-membrane theory of shells, edge effect and Vlasov-Donnell model or shallow shells theory are applied. 


The second MAS is related to application of the fourth order equation because of a longitudinal co-ordinate for both low and high harmonic numbers (semi-membrane theory, edge effect, bending of a plate and plane stresses problems). For average harmonic values the Vlasov-Donnel equations are used.


The third approach is oriented in direction of application of only fourth order equations (Nerubaylo, 1983).

3.2.5. Method of composite equations


The method of so called composite equations has been developed mainly in hydrodynamics (Van Dyke, 1975a, 1991). The method is devoted to constructing uniformly suitable solutions where the non-homogeneous states occur. A fundamental idea of the method can be formulated in the following way. First, the components of the governing equations are detected, neglect of which leads to non-homogeneous terms in the zero order approximation. Second, the mentioned components are defined in a relatively simple way (they must include essential properties in the non-homogeneous states).


The method of composite equations has been successfully applied in order to avoid the non-homogenities of the series related to the space variables while solving the hydromechanics equation (Van Dyke, 1975a). The method has been used also in the mechanics of thin-walled structures.


In the papers by Andrianov, 1986, 1991a; Andrianov and Pasechnik, 1986a, b; Obraztsov et al., 1991, a link between the limiting relations of the asymptotic splitting valid for both small and large parameters values of the state is presented. In a case of the theory of shells a composite equation of the stress-strain fundamental state has been obtained, unifying the semi-membrane and membrane theories and a plane plate deformation. A simple edge effect and a bending of a plate are included in a composite equation of the edge effect. In addition, using the described procedure, displacements, deformations, stresses, forces and moments are also obtained. As a result of the unification of the limiting states, the composite equations have the fourth order because of a longitudinal variable and are applicable in a whole range of different loading.


It should be noted, that the etalon function method is somewhat similar to the method of composite equations. While constructing a solution in a neighbourhood of the turning point the governing equations are substituted by an etalon equation. The solutions to the etalon equation must have the same asymptotic properties as the solutions to the governing equation, and they should be simpler (Babič and Buldyrev, 1991).

4. ASYMPTOTIC TECHNIQUES, QUASI-PERIODICITY AND CHAOS


It seems to be interesting to follow how the asymptotic techniques attack newly developed branches of non-linear mechanics. A detection of chaotic behaviour of simple deterministic systems belongs to the main achievements of 20th century non-linear mechanics and even in this field the role of asymptotic methods can not be neglected, which forced us to include this item as a part of our review. Also a problem of tracking quasi-periodic solutions, their stability and bifurcation can not be solved without asymptotic approaches.

4.1. Quasi periodic solutions


Although in non-linear mechanics periodic, quasi-periodic and chaotic dynamics occur, the periodic oscillations are so widely described in references and books that this question is here omitted.


Quasi-periodic solutions, which recently focused the attention of many researchers because of a possible scenario leading to chaos (Schuster (1989)), already have a long history and were first analysed using perturbation techniques (Awrejcewicz (1996b), Bogolyubov (1964), Brommundt (1970), Krylov and Bogolyubov (1937), Mitropolsky (1971), Mitropolsky and Samolienko (1964), Moser (1965) and Sacker (1962)).


The papers by Samoilenko (1980a, b, c; 1997) related to perturbation theory of smooth invariant tori of dynamical systems are especially remarkable.


He considered a system of differential equation of the form
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Here, 
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for all 
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The manifold (45), (46) is a toroidal invariant manifold, m-dimensional, r times continuously differentiable (i. e., of the smoothness class 
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Perturbation theory primarily solves the problem of existence of an invariant manifold of (44) of the form
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Here I = [0, (0], (0 > 0 is sufficiently small, and 
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The condition of invariance of manifold (44) derived in Samoilenko (1991) leads to the following differential equation for to the function u:
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where * is the operator of conjugation of a matrix, and 
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The investigation of equation (48) does not give any results even within the framework of the asymptotic theory related to the construction of a function 
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Thus, for the first term 
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Equation (50) determines the general form of the homological equation for construction of expansions (49).


As it has been pointed by Samolienko, none of the known methods (in particular, the Galerkin method (Samolienko, 1991), the Friedrichs method (Friedrichs, 1958), and the Moser method (Moser, 1965)) can be applied to the problem of solvability of equation (47) in 
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The perturbation theory of manifolds M is developed under the assumption of the possibility of representation of system (44) in the neighbourhood of M as a system in the space 
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The goal of the perturbation theory for system (44) is to find the invariant manifold of this system
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in 
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. For s = 0, this problem is equivalent to the problem of finding generalized solutions of equation (51).


Samoilenko, (1991) discussed a problem of variations of solutions on the manifold M, preservation of the smooth invariant torus of a dynamical system under perturbations as well as the conditions of roughness for the Green's function of linear extension of a dynamical system on a torus.


It should be emphasised that many problems of quasi-periodic solutions are not solved. Among other, we must mention the problems with existence of proofs of torus solutions to general dynamical systems.


On the other hand, a serious mathematical treatment of a problem is rather complicated (Samolienko, 1991) and therefore some numerical approaches have been recently proposed (Bernet, 1995 and the references cited therein).


In nature and technology there exist many processes which can be modelled by autonomous or heteronomous differential equations and which exhibit the quasi-periodic solutions (Awrejcewicz and Reinhardt 1990a, b, Chua and Ushida, 1976, Philippow and Büntig, 1992, and Rand and Holmes, 1980).


The paper by Awrejcewicz (1995) discusses two theoretical approaches concerning the way of finding quasi-periodic solutions in the deterministic discrete dynamical systems, i.e. the analytical and numerical techniques. Both of the methods are supported by computer assisted studies. In the first case symbolic computational analysis (Mathematica package) is conducted, whereas in the second case the FORTRAN program has been developed on the basis of the IMSL-library routines. The analytical approach is based on the double perturbation method, when one of the perturbation parameters (() is strictly connected with the system, and the other (() is treated as a control, or, in the sense of singularity theory, as the bifurcation parameter. It should be pointed out that instead of the delay some other parameters can be used as control parameters - particularly those whose small changes cause large changes in the phase flow. The unknown quasi-periodic solutions xs and the corresponding set of frequencies (s is sought in the form of double asymptotically convergent series in powers of the parameters ( and (. Such an approach possesses some benefits in comparison with the others.


Another application of two independent perturbation parameters to both discrete and continuous mechanical systems can be found in the references  (Awrejcewicz, 1988, 1990, 1991b, 1993, 1996a; Awrejcewicz and Someya, 1991, 1993; Awrejcewicz, 1993).


It is natural to attempt to extend of Floquet theory to the quasi-periodic solution. Also there exists some theoretical hints given by Broer et al. (1990), but this problem needs to be more clarified.


As it has been already mentioned the problems of quasi-periodic solutions must be successively solved in the future in order to give more light in the relation to chaotic orbits, coexistence and transition to chaos (see, among others, Dixon et al., 1996; Grebogi et al., 1983, 1985 and Jensen et al.,  1983).

4.2 Chaos


After the appearence of first reports showing chaotic behaviour of simple non-linear dynamical systems a natural type question occurred: how to attack the problems, at least behaviour related to transition to chaotic motions, using the classical tools of non-linear dynamics, i. e. the approximate analytical techniques?


The analytical technique has been successfully applied to a study of sub, ultra and principal resonances, jump phenomena, problems of stability of various approximate solutions and their domains of attraction (Awrejcewicz, 1989, 1991a, b, 1996a; Hayashi, 1964; Nayfeh, 1981; Nayfeh and Mook, 1979). 


Therefore, hope for an application of analytical approaches to analysis of chaos occurrence appeared. The series of works of Szemplińska-Stupnicka are devoted to study of periodic solutions, their local stability and period doubling bifurcations using approximate analytical tools (Szemplińska-Stupnicka, 1990). Among other things, it has been shown, that chaotic motion appears in the neighbourhood of the stability limit of the 1/2 subharmonic resonance and forms a transition zone between the subharmonic and principal resonance solutions, and an analytical prediction of period doubling threshold bifurcation has been formulated (Rega, 1995; Rega et al., 1991).


Analytical approaches to many different simple nonlinear periodically driven oscillators and their bifurcation and chaotic behaviour have been investigated by Awrejcewicz (1989).


Simplified predictive criteria for the onset of chaos, using an approximate analytical approach, have been discussed and formulated by Dowell and Pezeshki (1988), Dowell et al. (1994).


Weakly nonlinear and resonantly forced multidegree-of-freedom mechanical systems in relations to bifurcations and chaotic motions using the method of averaging have been extensively studied by Tousi and Bajaj (1985), Miles (1984).


Another field of application of perturbation technique is related to Melnikov's method to predict a chaotic dynamics.


A criterion for the existence of chaos by using a modification of a global perturbation technique was given by Holmes (1983, 1985).


Wiggins and Holmes (1987) extended application of Melnikov's method to analyse small time constants. Another branches of generalization of Melnikov's method are reported in Guckenheimer and Holmes (1983), Wiggins (1988, 1990).


Salam (1987) applied Melnikov's method to obtain a region where chaos may exist. It has been proved that chaotic motions may exist in an adaptive control system subjected to periodic disturbance or periodic reference input signal (then existence of chaos have been shown numerically by others).


A pendulum subjected to linear feedback control with periodic desired motion after introduction of a small parameter has been studied by (Genchev et al., 1983; Hockett and Holmes, 1986; Li and Moon, 1990; Salam, 1987; Salam and Sastry, 1985). The problem has been reconsidered by Yagasaki (1992), where computation of the Melnikov functions was performed by a numerical method, and the theoretical predictions of chaos were compared with numerical simulation results (see also Yagasaki (1995)).


Recently Cveticanin (1993) proposed an extension of Melnikov's theory for the differential equation with complex function, where a sufficient condition for the existence of a homoclinic orbit in the solutions of a perturbed equation is given.


A prediction of stick-slip chaotic dynamics in very weakly forced oscillator using the Melnikov's technique has been proposed by Awrejcewicz and Holicke (1999), which then has been confirmed by numerical simulations.

CONCLUDING REMARKS. PERSPECTIVES AND OPEN PROBLEMS


This item we start white the phrase of  Vorovich (1999): “The ways to increase the effectivity of the methods of small parameters are far from having been exhausted. New venues are suggested if one considers the great number of deep results in the theory of analytical functions, in which their global properties are established based on the properties of their Taylor series expansions, and the possibility of automating algebraic and other computations on a computer”.


The main advantage of the PAs, TPPAs and QAs methods is simplicity of algorithms allowing for solving the complicated problems. For the control of the correctness of the matching realized by the PAs, TPPAS and QAs the numerical methods (Brezinski, 1983, 1988, 1989; Gilewicz and Pindor, 1998; Kaas-Petersen, 1987; Krasnosel'ski et al., 1972) or procedures of recalculations of the matching parameters (Bensaadi and Potier-Ferry, 1993; Cochelin et al., 1994) may be applied. To this end one-point PAs constructed for the expansions 
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 can be used (Mason, 1964, 1981), as well as other methods of interpolation (Bakhavlov et al., 1987; Brezinski and Redivo Zaglia, 1991; Cheney, 1966; Krylov, 1988; Litvin and Rvachev, 1973; Vinogradov et al., 1987). 


The TPPA still waits its application to the integral equations of mechanics (Grundy, 1978a, b).

A strategy of application of the summation methods needs to compute tens or hundreds terms of the perturbation theory. Then it is not difficult to analyse a structure of the being sought functions using a PA (Andersen and Geer, 1982; Andersen et al., 1984; Bender and Boettcher, 1994a), Domb-Sykes plot (Hinch, 1991, Van Dyke, 1974, 1975a, b, 1977, 1991), resurgent analysis (Balser, 1994, Balser et al., 1991), or by removing the singularity of a solution (Kublanovskaya, 1959). However, Yukalov and Yukalova (1999) have pointed out that: ‘It is not to realise to hope to reach tens or hundreds of perturbative terms to complicated problems, such as field theory, usually allowing just a few terms’.


Besides, the used one point PA does not allow to estimate a convergence of the series. This observation concerns, for instance, the anharmonic oscillators (Reed and Simon, 1978). However, it is possible to omit this problem using two points PA. Cizek et al. (1996) write: ‘There are cases in which both weak coupling and strong coupling expansions can be constructed. In such a case, it should be possible to apply summation techniques that use simultaneously information from the weak coupling as well as from the strong coupling expansion. Obviously, such a dual approach should at least in principle be capable of producing better results that a summation technique, which only uses information from either the weak coupling or the strong coupling expansion.


If both a weak coupling and a strong coupling expansion is available, it is an obvious idea to use two-point Padé approximants’.
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