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An asymptotic approach for determining periodic solutions of non-linear vibration
problems of continuous structures (such as rods, beams, plates, etc.) is proposed. Starting
with the well-known perturbation technique, the independent displacement and frequency is
expanded in a power series of a natural small parameter. It leads to in"nite systems of
interconnected non-linear algebraic equations governing the relationships between modes,
amplitudes and frequencies. A non-trivial asymptotic technique, based on the introduction
of an arti"cial small parameter is used to solve the equations. An advantage of the procedure
is the possibility to take into account a number of vibration modes. As examples, free
longitudinal vibrations of a rod and lateral vibrations of a beam under cubically non-linear
restoring force are considered. Resonance interactions between di!erent modes are
investigated and asymptotic formulae for corresponding backbone curves are derived.
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1. INTRODUCTION

Non-linear vibrations of continuous structures (such as rods, beams, plates, shells, etc.) have
been attracting many researchers. A signi"cant peculiarity of these problems is the
phenomena of internal resonances, arising in non-linear multi-degree-of-freedom structures
when natural frequencies become commensurable with each other. In general, it causes the
coupling of normal modes and results in multi-mode and multi-frequency response. Simple
models that describe these vibrations can involve non-linear second and fourth order
partial di!erential equations (PDE). The rigorous proof of the existence of periodic
solutions was given by Rabinovitz [1]. His work inspired additional investigations, some of
them are reviewed by BreH zis [2]. In contrast to ordinary di!erential equations, construction
of periodic solutions for PDEs can lead to the well-known problem of small denominators.
The Kolmogorov}Arnold}Mozer theory was originally developed to overcome small
denominator problems in celestial mechanics. Since then it has been extended for a wide
range of multi-degree-of-freedom structures (see, for example, references [3,4]). Another
approach, based on the Newton's method, was proposed by Bourgain [5]. His procedure
may be used for obtaining periodic solutions for equations on spatial domains of arbitrary
022-460X/02/030465#17 $35.00/0 ( 2002 Academic Press



466 I. V. ANDRIANOV AND V. V. DANISHEVS'KYY
dimension as well as quasiperiodic solutions for equations on one- and two-dimensional
domains. The Ritz, Galerkin and harmonic balance methods allow the dynamic behaviour
of structures with large non-linearities to be predicted correctly, as was pointed out by Ling
and Wu [6], Cheung and Lau [7] and by Lewandowski [8-10].

One of the most popular analytical approaches for studying non-linear structural
vibrations are perturbation methods. A detailed review of the subject can be found in the
monographs of Awrejcewicz et al. [11], Kevorkian and Cole [12], Nayfeh and Mook [13],
and Troger and Steindl [14]. The methods have returned to the Lindstedt}PoincareH
procedure, which was employed by earlier astronomers and laid the foundations of the
modern perturbation theory. It allows the periodic vibrations to be determined directly.

In contrast to the classical Lindstedt}PoincareH technique, the method of multiple time
scales can provide more general solutions (periodic as well as quasiperiodic), which are able
to treat internal resonance phenomena and to investigate stability of motions (see papers of
Lau et al. [15], Abel-Rohman [16], Ladygina and Manevitch [17], Boertjens and Van
Horssen [18}20] Lacarbonara et al. [21], Nayfeh et al. [22] and Chin et al. [23]). Detailed
investigations on comparing the multiple time scales procedure with low order Galerkin's
method are presented in references [24, 25].

Another powerful asymptotic approach is the averaging method, and its strong
theoretical bases relating to PDEs were given by Mitropolsky et al. [26].

The method of normal forms also allows the resonance phenomena in continuous
structures to be described [27}29].

As a rule, perturbation methods are e!ectively used for studying weakly non-linear
structures. Bender et al. [30}32] proposed an interesting asymptotic procedure which can
give the possibility of taking strong non-linear e!ects into account. According to this
approach, an arti"cial small parameter d is introduced into the exponent of non-linear term
(e.g., u3Pu1`2d), so that d represents a measure of non-linearity of the problem. Solution is
sought as formal asymptotic expansions of d. Numerical results are obtained by setting
d"1. This method was shown to be e!ective for ordinary non-linear di!erential equations.
It is supposed that it could be successfully extended to non-linear PDEs [33, 34].

Continuous structures are in"nite degree of freedom. In this case, use of known methods
leads to in"nite systems of non-linear algebraic or ordinary di!erential equations. For its
solution truncation procedures are applied. Many studies have been restricted by
considering only a few (usually two) mode representations. However, in some instances
neglecting the subsequent modes without justi"cation is not suitable and may even cause
signi"cant errors. For example, Boertjens and Van Horssen showed [18] that for bridges
under non-linear drag and lift loads caused by wind #ow at least four modes have to be
taken into account for some values of restoring force.

In this paper, an asymptotic approach for deriving periodical solutions of non-linear
vibration problems of continuous structures is proposed. An advantage of the procedure is
the possibility of taking a number of vibration modes into account. As examples, free
longitudinal vibrations of a rod (the second order PDE) and lateral vibrations of a beam
(the fourth order PDE) under a cubically non-linear restoring force au#eu3 are considered.
Here u is a displacement, a*0, e@1. Studying free vibrations provides one with the basic
knowledge of the proper characteristics of a structure, and this is the starting point for
investigations of more complicated dynamical problems, such as forced vibrations,
dissipation e!ects, etc. Initially, the well-known perturbation technique is used and the
independent variable u and frequency expanded in power series of the natural small
parameter e. It leads to in"nite systems of the interconnected non-linear algebraic equations
governing relationships between mode amplitudes and frequencies. For its solution,
a non-trivial asymptotic approach is used, based on the introduction of an arti"cial small
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parameter [35, 36]. As the result, resonance interactions between di!erent modes are
investigated and the corresponding backbone curves are evaluated.

The outline of the paper is as follows. In section 2, the proposed asymptotic technique
and the study of longitudinal vibrations of the rod is introduced. In the general case
a3(0;R), there are no interactions between modes with zero initial energy up to the O(e)
approximation. But for speci"c values of the restoring force (when a"0), internal
resonances occur in the O(e0) approximation for an in"nite number of all odd modes. In
order to better understand the behaviour of the structure near the resonance, a detuning
case aP0, aO0 is also examined. In section 3, the developed method is used for
investigating lateral vibrations of the beam. In the O(e0) approximation, resonances can
occur between two odd modes m, n if a"m2n2. However, simultaneous interactions of more
than two modes are not possible. Here, resonance coupling of the "rst and third modes
when a"9 is considered. The detuning case aP9, aO9 is also studied. Section 4 provides
some concluding remarks.

2. LONGITUDINAL VIBRATIONS OF THE ROD

2.1. THE ASYMPTOTIC PROCEDURE

Free longitudinal vibrations of a clamped}clamped rod in non-linear elastic medium are
considered. Following standard textbooks [37}39], the governing equation can be written
in the form

ESu
,xx

"oSu
,tt
#F(u), (1)

where u is the longitudinal displacement, o is the density of the rod, S is the area of
cross-section, E is Young's modulus, and F(u) is the restoring force per unit length acting on
the rod from the surrounding medium. The length of the rod equals l. Suppose that the
non-linear force has a symmetric characteristic and can be expanded in a Taylor series with
F(0)"0: F(u)"g

1
u#g

3
u3#g

5
u5#2. This expansion is restricted by two leading

terms.
Let the dimensionless variables xN "(n/l)x, uN "(l/S)u, tN"(n/l) (E/o)1@2t be introduced

Equation (1) becomes

uN
,xN xN

"uN
,tN tN
#auN #euN 3, (2)

where a"g
1

l2/n2ES, e"g
3

S/n2E. Restoring force is supposed to be weakly non-linear, so
that e@1. The case of one potential well is studied, a*0. Next, for the simplicity, dashes in
(2) are dropped and denote uN "u, xN "x, tN"t.

As an illustrative example consider the case of zero initial displacement, although the
proposed method can be extended for di!erent initial conditions.

Now the input boundary value problem can be formulated as follows:

u
,xx

"u
,tt
#au#eu3,

u(0,t)"u(n,t)"0,

u(x,0)"0,u
,t
(x,0)"uH(x). (3)
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In the linear case (for e"0), displacement u can be found as superposition

ulin"
=
+
i/1

a
i
sin ix sin ulin

i
t, (4)

where ulin
i
"Ji2#a are frequencies, a

i
are amplitudes of modes. Next, stationary

solutions of the non-linear problem (3) are sought. Let a change of the time scale be
introduced.

q"ut (5)

and represent the solution in the form of asymptotic expansions

u"u
0
#eu

1
#e2u

2
#2, (6)

u2"u2
0
#em

1
#e2m

2
#2, (7)

where u
0
"ulin

1
"J1#a is the frequency of the normal mode in the linear case e"0.

Substituting series (6), (7) into problem (3) and splitting it with respect to e gives a recurrent
system of linear PDEs:

u
0,xx

"u2
0
u
0,qq

#au
0
, (8)

u
1,xx

!u2
0
u
1,qq

!au
1
"m

1
u
0,qq

#u3
0
,

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) (9)

The boundary conditions can be rewritten as follows:

u
i
(0,q)"u

*
(n,q)"0, i"0, 1, 2,2. (10)

Solution of the boundary value problem (8), (10) yields the O(e0) approximation:

u
0
"

=
+
i/1

a
i
sin ix sin

ulin
i

u
0

q"
=
+
i/1

a
i
sin ix sin X

i
t. (11)

In the linear case (for e"0) expression (11) coincides with representation (4). For non-linear
vibrations (when eO0), unknown frequencies of the modes with respect to time t are

X
i
"

ulin
i

u
0

u"S
i2#a
1#a

J(1#a)#em
1
#e2m

2
#2, i"1, 2, 3,2. (12)

The next O(e) approximation is derived from the boundary value problems (9)and (10).
The terms containing sin ix sin(ulin

i
/u

0
)q, i"1, 2, 3,2 in the right-hand side of equation (9)

will produce secular terms, which should not be parts of the uniformly valid expansion (6).
In order to eliminate the secular terms, coe$cients of sin ix sin(ulin

i
/u

0
)q have to be zero.

This condition leads to an in"nite system of non-linear algebraic equations

a
i
m
1

(i2#a)

(1#a)
"

=
+
k/1

=
+
l/1

=
+

m/1

C(klm)
i

a
k
a
l
a
m
, i"1, 2, 3,2. (13)
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Here coe$cients C(klm)
i

are evaluated after substituting expression (13) into the right-hand
side of equation (9) and expanding it using the goniometric relation

sinb sinc sinh

"

1

4
(sin(b#c!h)!sin(b!c!h)!sin(b#c#h)#sin(b!c#h)). (14)

Solution of system (13) provides the next term m
1

of the frequency expansion (7) and allows
relationships between the amplitudes a

i
to be obtained. Having known m

1
and a

i
the term

u
1

can be determined from the boundary value problems (9) and (10). Later, the asymptotic
procedure can be continued routinely for evaluating higher order approximations.

In"nite systems such as (13) may be obtained in various ways (e.g., by means of Galerkin
method [6, 9, 24, 25], by multiple time scales technique [15}23] or by the averaging
procedure [26]. Existence of non-trivial solutions in the case of internal resonance is shown
in papers [1}5]. In practical problems, these systems are usually treated by truncation
procedures, and many studies consider only a few mode representations. Meanwhile, in
some instances, neglecting the subsequent modes leads to losing information of higher order
internal resonances, which can produce signi"cant errors in the solution. Due to this,
solving system (13) should be started with a detailed investigation of probable mode
interactions, and truncation can be allowed only for those modes which are not involved in
the resonance coupling. In this paper, the asymptotic approach for analytical solution of the
non-linear system (13) is proposed. This procedure gives the possibility of taking an
arbitrary number of modes into account. The proposed technique is based on the
introduction of an arti"cial small parameter [35, 36].

The arti"cial small parameter k is introduced into the right-hand side of system (13) near
the terms satisfying condition (k'i)X(l'i)X(m'i). For example, consider three leading
equations of system (13)

a
1
m
1
"C(111)

1
a3
1

#C(112)
1

a2
1
a
2
#C(122)

1
a
1
a2
2
#C(222)

1
a3
2

#C(113)
1

a2
1
a
3
#C(133)

1
a
1
a2
3
#C(123)

1
a
1
a
2
a
3

#C(223)
1

a2
2
a
3
#C(233)

1
a
2
a2
3
#C(333)

1
a3
3
#2, (15)

a
2
m
1

(4#a)

(1#a)
"C(111)

2
a3
2

#C(112)
2

a2
1
a
2
#C(122)

2
a
1
a2
2
#C(222)

2
a3
2

#C(113)
2

a2
1
a
3
#C(133)

2
a
1
a2
3
#C(123)

2
a
1
a
2
a
3

#C(223)
2

a2
2
a
3
#C(233)

2
a
2
a2
3
#C(333)

2
a3
3
#2,

a
3
m
1

(9#a)

(1#a)
"C(111)

3
a3
1

#C(112)
3

a2
1
a
2
#C(122)

3
a
1
a2
2
#C(222)

3
a3
2

#C(113)
3

a2
1
a
3
#C(133)

3
a
1
a2
3
#C(123)

3
a
1
a
2
a
3
#C(223)

3
a2
2
a
3

#C(233)
3

a
2
a2
3
#C(333)

3
a3
3
#2,

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) .
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k is introduced in the following way:

a
1
m
1
"C(111)

1
a3
1

#k(C(112)
1

a2
1
a
2
#C(122)

1
a
1
a2
2
#C(222)

1
a3
2

#C(113)
1

a2
1
a
3
#C(133)

1
a
1
a2
3
#C(123)

1
a
1
a
2
a
3
#C(223)

1
a2
2
a
3

#C(233)
1

a
2
a2
3
#C(333)

1
a3
3
#2), (16)

a
2
m
1

(4#a)

(1#a)
"C(111)

2
a3
2

#C(112)
2

a2
1
a
2
#C(122)

2
a
1
a2
2
#C(222)

2
a3
2

#k(C(113)
2

a2
1
a
3
#C(133)

2
a
1
a2
3
#C(123)

2
a
1
a
2
a
3

#C(223)
2

a2
2
a
3
#C(233)

2
a
2
a2
3
#C(333)

2
a3
3
#2),

a
3

(9#a)

(1#a)
"C(111)

3
a3
1

#C(112)
3

a2
1
a
2
#C(122)

3
a
1
a2
2
#C(222)

3
a3
2

#C(113)
3

a2
1
a
3
#C(133)

3
a
1
a2
3
#C(123)

3
a
1
a
2
a
3

#C(223)
3

a2
2
a
3
#C(233)

3
a
2
a2
3
#C(333)

3
a3
3
#k(2),

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) .

This perturbation is such that at k"0 system (16) turns into a triangular form and is
reduced to a recurrent equations sequence, and at k"1 it restores to the original form (15).

Here, m
1
can be considered as a kind of eigenvalue, which is associated with the speci"c set

of eigensolutions a
i
. Perturbed eigensolutions of system (16) are sought near the given

unperturbed eigensolutions. Unperturbed eigenvalue m(0)
1

can be obtained from the "rst
equation of system (16) when k"0:

m(0)
1
"C(111)

1
a2
1
. (17)

The physical sense of solution (17) is that interconnections between di!erent modes are
neglected and vibrations in only one fundamental mode with amplitude a

1
are considered.

The following formal asymptotic expansions in powers of k starting from the unperturbed
eigensolution are proposed.

m
1
"m(0)

1
#km(1)

1
#k2m(2)

1
#2, (18)

a
j
"a(0)

j
#ka(1)

+
#k2a(2)

+
#2, j"2, 3, 42. (19)

Starting values of amplitudes a(0)
j

are calculated by substituting expression (17) into the
subsequent (second, third and so on) equations of system (16) at k"0. In the subsequent
approximations by k, representations (18), (19) allow modes resonance interactions to be
taken into account and the eigenvalue m

1
to be de"ned. Calculating coe$cients in

expansions (18), (19) it is supposed "nally that k"1.
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2.2. GENERAL CASE: a3(0;R)

Now an investigation of system (13) is considered. On the basis of expression (11) and
relation (14) one could determine that only some terms a

k
a
l
a
m

with speci"c combinations of
k, l, m contribute to the right-hand side of system (13). So,

C(klm)
i

O0 if G
$k$l$m"$i,

$Jk2#a$Jl2#a$Jm2#a"$Ji2#a.
(20)

In general case a3(0;R) system (13) can be written as follows:

a
i
m
1

(i2#a)

(1#a)
"

9

16
a3
i
#

3

4
a
i A

i~1
+
k/1

a2
k
#

=
+

k/i`1

a2
kB, i"1, 2, 3,2. (21)

In"nite algebraic systems with cubic non-linearity such as (13) may have three non-trivial
solutions, which describe di!erent resonance interactions between modes. However, in the
case under consideration a3(0;R), simple numerical analysis can show that system (21)
does not have real solutions describing resonance interactions: all three non-trivial
solutions are imaginary. If real roots are sought by means of the approach of arti"cial small
parameter, then it would be found that expansion (19) diverges rapidly. The only possible
solutions are:

m
1
"

9

16

(1#a)

(i2#a)
a2
i
, i"1, 2, 3,2;

a
j
"0, j"1, 2, 3,2, jOi. (22)

Relations (22) correspond to the case when in the O(e0) approximation the rod is able to
vibrate in only one ith mode (i"1,2,3,2). These vibrations are periodical with frequency

X
i
"Ji2#a A1#

9

32

(a2
*
)

(i2#a)
eB#O(e2). (23)

The amplitude of the excited mode a
i
can be evaluated from initial conditions:

a
i
"S

2

nX2
i
P

n

0

uH(x)2 dx. (24)

Amplitudes of all other modes equal zero: a
j
"0, j"1, 2, 3,2, jOi. In the O(e0)

approximation more than one mode cannot be excited simultaneously. The structure could
be reduced to a one-degree-of-freedom oscillator [40]. In this case, mode interactions may
take place only between modes with non-zero initial energy (up to O(e)). So, if one starts
with zero initial energy in the jth mode there will be no energy present up to O(e). This
allows truncation to the modes with non-zero initial energy.

2.3. INTERNAL RESONANCES: a"0

When the linear part of restoring force is absent (a"0), extra contributions to the
right-hand side of system (13) occur. System (13) has the form

a
1
m
1
"

9

16
a3
1
#

3

4
a
1
(a2

2
#a2

3
#a2

4
#a2

5
)#

3

8
(a

1
a
2
a
4
#a

2
a
3
a
4
#a

1
a
3
a
5
#a

2
a
4
a
5
)

#

3

16
(a2

1
a
3
#a2

2
a
3
#a2

2
a
5
#a2

3
a
5
)#2 ,
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4a
2
m
1
"

9

16
a3
2
#

3

4
a
2
(a2

1
#a2

3
#a2

4
#a2

5
)#

3

8
(a

1
a
2
a
3
#a

1
a
3
a
4
#a

1
a
2
a
5
#a

1
a
4
a
5

#a
3
a
4
a
5
)#

3

16
(a2

1
a
4
#a2

3
a
4
)#2,

9a
3
m
1
"

1

16
a3
1
#

9

16
a3
3
#

3

4
a
3
(a2

1
#a2

2
#a2

4
#a2

5
)#

3

8
(a

1
a
2
a
4
#a

2
a
3
a
4

#a
1
a
3
a
5
#a

2
a
4
a
5
)#

3

16
(a

1
a2
2
#a2

1
a
5
#a2

4
a
5
)#2 , (25)

16a
4
m
1
"

9

16
a3
4
#

3

4
a
4
(a2

1
#a2

2
#a2

3
#a2

5
)#

3

8
(a

1
a
2
a
3
#a

1
a
2
a
5
#a

2
a
3
a
5
#a

3
a
4
a
5
)

#

3

16
(a

2
a2
1
#a

2
a2
3
)#2,

25a
5
m
1
"

9

16
a3
5
#

3

4
a
5
(a2

1
#a2

2
#a2

3
#a2

4
)#

3

8
(a

1
a
2
a
4
#a

2
a
3
a
4
)

#

3

16
(a

1
a2
2
#a2

1
a
3
#a2

3
a
1
#a

3
a2
4
)#2,

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) .

Note that expressions (22) satisfy system (25). Besides this, system (25) may have three
non-trivial solutions describing resonance interactions. In the case under consideration
(a"0) two of them are imaginary, and only one solution is real and has got physical sense.
For its evaluation an arti"cial small parameter k is introduced in the following way:

a
1
m
1
"

9

16
a3
1
#k A

3

4
a
1
(a2

2
#a2

3
#a2

4
#a2

5
)#

3

8
(a

1
a
2
a
4
#a

2
a
3
a
4
#a

1
a
3

a
5
#a

2
a
4
a
5
)

#

3

16
(a2

1
a
3
#a2

2
a
3
#a2

2
a
5
#a2

3
a
5
)#2B,

4a
2
m
1
"

9

16
a3
2
#

3

4
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1
a
2
#k A

3

4
a
2
(a2

3
#a2

4
#a2

5
)#
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8
(a

1
a
2
a
3
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1
a
3
a
4
#a

1
a
2
a
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#a
1
a
4
a
5
#a

3
a
4
a
5
)#
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(a2

1
a
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3
a
4
)#2B,
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3
m
1
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#

9
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4
a
3
(a2

1
#a2
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a
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2
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)
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5
)#

3

16
(a2

1
a
5
#a2

4
a
5
)#2B, (26)



TABLE 1

Comparison of asymptotic solution with numerical data

Variable Asymptotic solution (27) Numerical results

m
1

0)565376a2
1

0)565360a2
1

a
2

0 0
a
3

a
3
"1)449]10~2a

1
a
3
"1)442]10~2a

1
a
4

0 0
a
3

a
5
"2)071]10~4a

1
a
5
"2.049]10~4a

1
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16a
4
m
1
"

9

16
a3
4
#

3

4
a
4
(a2

1
#a2

2
#a2

3
)#

3

8
a
1
a
2
a
3
#

3

16
(a

2
a2
1
#a

2
a2
3
)

#k A
3

4
a
4
a2
5
#

3

8
(a

1
a
2
a
5
#a

2
a
3
a
5
#a

3
a
4
a
5
)#2B,

25a
5
m
1
"

9

16
a3
5
#

3

4
a
5
(a2

1
#a2

2
#a2

3
#a2

4
)#

3

8
(a

1
a
2
a
4
#a

2
a
3
a
4
)

#

3

16
(a

1
a2
2
#a2

1
a
3
#a2

3
a
1
#a

3
a2
4
)#2,

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) .

The solution is sought as asymptotic series (18), (19). Being restricted by two leading
terms in expansion (18), one obtains

a
j
"0, j"2,4,6,2; a

3
"1)449]10~2 a

1
, a

5
"2)071]10~4 a

1
,2; (27)

m
1
"

9

16
a2
1
#

3

4
(a2

3
#a2

5
)#

3

8
a
3
a
5
#

3

16
a
1
a
3
#

3

16

a2
3
a
5

a
1

#2+0)565376a2
1
.

Here, the approach of an arti"cial small parameter yields very accurate results. In Table 1,
expressions (27) are compared with numerical solutions of the non-linear system (25). The
numerical data were calculated in the Mathematica program package by truncating system
(25) to "ve leading equations.

According to expressions (27), in the O(e0) approximation an in"nite number of all odd
modes are involved in resonance interactions. This provides energy transfers between odd
modes, and the truncation may not be valid. The physical meaning of this phenomenon is
that if the rod initially vibrates in a high mode, then low modes can be excited. This can lead
to large-amplitude oscillations of the structure. Taking into account relations (27), mode
frequencies can be expressed as functions of the fundamental amplitude a

1
:

X
i
"i (1#0)282688a2

1
e)#O(e2), i"1, 3, 5,2 (28)

where a
1

is determined from the initial conditions

a
1
"S

2

nX2
1
P

n

0

uH(x)2 dx!9a2
3
!25a2

5
!2+S

2

1)001891nX2
1
P

n

0

uH(x)2 dx. (29)
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It should be pointed out that for a"0 the ratio of frequencies of interacting modes equals
the ratio of their wave numbers:

X
m

X
n

"

m

n
, m, n"1, 3, 5,2. (30)

Therefore frequencies of all excited modes are commensurable with each other. In this case
the O(e0) approximation formula (11) describes periodical vibrations with the general period
¹"2n/X

1
.

2.4. THE DETUNING CASE: aP0, aO0

The behaviour of the rod near the resonance is considered below. In order to introduce
detuning it is supposed that aP0, but aO0. Here, the parameter a shows how far the
structure is from the pure resonance state. Changing the scale of time (5), the solution of the
input boundary value problem (3) as asymptotic expansions by powers of a is as follows:

u"u(0)#au(1)#a2u(2)#2, (31)

u"m(0)#am(1)#a2m(2)#2. (32)

Here, each term is represented by a series

u(n)"u(n,0)#eu(/,1)#e2u(n,2)#2, (33)

m(n)"m(n,0)#em(n,1)#e2m(n,2)#2, n"0, 1, 2,2, (34)

where m(0,0)"1. Splitting problem (3) with respect to a and e gives the recurrent sequence of
equations

u(0,0)
,xx

!u(0,0)
,qq "0, (35)

u(0,1)
,xx

!u(0,1)
,qq "2m(0,1)u(0,0)

,qq #(u(0,0))3, (36)

u(1,0)
,xx

!u(1,0)
,qq "2m(1,0)u(0,0)

,qq #u(0,0), (37)

u(1,1)
,xx

!u(1,1)
,qq "2m(1,0)u(0,1)

,qq #u(0,1)#2(m(0,1)m(1,0)#m(1,1))u(0,0)
,qq

#2m(0,1)u(1,0)
,qq #3(u(0,0))2u(1,0), (38)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with boundary conditions

u(n,m)(0,q)"u(n,m)(n, q), m, n"0, 1, 2,2. (39)

Solution of the boundary value problems (35) and (39) provides

u(0,0)"
=
+
i/1

aN
i
sinix sin iq. (40)

The next approximation u(0,1) is evaluated from the boundary value problems (36)and
(39). In order to prevent secular terms in expansion (33), coe$cients of sinixsiniq in the
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right-hand side of equation (36) have to be equated to zero. This condition leads to an
in"nite system of non-linear algebraic equations

2aN
i
m(0,1)i2"

=
+
k/1

=
+
l/1

=
+

m/1

C(klm)
i

aN
k
aN
l
aN
m
, i"1, 2, 3,2, (41)

the right-hand side of which is identical to the right-hand side of system (25). System (41)
gives the solution

aN
j
"0, j"2, 4, 6,2; aN

3
"1)449]10~2aN

1
, aN

5
"2)071]10~4 aN

1
,2; (42)

m(0,1)"
9

32
aN 2
1
#

3

8
(aN 2

3
#aN 2

5
)#

3

16
aN
3
aN
5
#

3

32
aN
1
aN
3
#

3

32

aN 2
3
aN
5

aN
1

#2+0)282688aN 2
1
.

Function u(0,1) can be represented as the harmonic expansion by q:

u(0,1)"
=
+
i/1

f
i
(x)(d (1)

i
siniq#d (2)

*
cos iq), (43)

where f
i
(x), d(1)

i
, d(2)

i
are some functions and coe$cients. The term u(1,0) is determined from

the boundary value problems (37) and (39). Eliminating secular terms in expansion (31), the
right-hand side of equation (37) yields

m(1,0)"
1

2i2
, (44)

where i is the mode number. Then

u(1,0)"
=
+
i/1

bM
i
sinix sin iq. (45)

The boundary value problems (38) and (39) allow u(1,1) to be evaluated. Satisfying the
condition of absence of secular terms in expansion (33), the right-hand side of equation (38)
gives an in"nite linear system for coe$cients bM

i
(see Appendix A). It provides bM

i
and m(1,1):

bM
j
"0, j"2, 4, 6,2; bM

3
"1)443]10~2bM

1
,bM

5
"2)004]10~4bM

1
,2; (46)

m(1,1)+0)565352aN
1
bM
1
!0)141344

aN 2
1

i2
.

Even in the pure resonance case a"0 all odd modes take part in resonance interactions
in the O(e0) approximation. From expressions (42), (44) and (46), the asymptotic formula is
given for unknown frequencies as:

X
i
"Ji2#a A1#0)282688

aN 2
1
i2

i2#a
eB#0)565352iaN

1
bM
1
ea

!0.141344
aN 2
1

i2
ea#o(e)#o(a)#o(ea), i"1, 3, 52.

(47)

The mode amplitudes being equal to a
i
"aN

i
#abM

i
, a

1
is evaluated by formula (29). For

simplicity it can be assumed that bM
i
"0, a

i
"aN

i
. The solution correctly represents the

behaviour of the structure in &&limiting'' cases. So, for e"0 formula (47) is in agreement with
relations (23), and for a"0 formula (47) coincides with expression (28). It should be noted
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that in the detuning case the ratio of frequencies of interacting modes di!ers from the ratio
of their wave numbers:

X
m

X
n

"

m

n
#O(a), m,n"1, 3, 5,2. (48)

Actually, in this case the ratios of the frequencies (48) may be irrational numbers. The
general solution (11) can then describe quasiperiodical motions.

3. LATERAL VIBRATIONS OF THE BEAM

In this section, the asymptotic approach is extended to study the solutions of the fourth
order PDE. Free vibrations of a simply supported beam on a non-linear elastic foundation
are considered. The governing equation can be written as follows [37}39]:

EIw
,xxxx

!

ES

2l
w
,xx P

l

0

w2
,x

dx#oSw
,tt
#F(w)"0, (49)

where w is the lateral displacement, and I is the moment of inertia of the cross section. As in
the previous example, the non-linear restoring force per unit length is assumed to be in the
form F(w)"g

1
w#g

3
w3.

The term (ES/2l) w
,xx

: l
0

w2
,x

dx in equation (49) represents the so-called geometrical
non-linearity of the beam and describes the in#uence of a dynamical axial force. If the ends
of the beam are immovable, the axial force appears due to a change of the beam length
during bending. However, it is well known [37}39] that in many practical problems when
the displacements w are essentially smaller than the typical size of the cross-section, the term
(ES/2l) w

,xx
: l
0

w2
,x

dx can be neglected when comparing it with the "rst term of equation (49)
EIw

,xxxx
. Here, this approximation and a geometrically linear problem are assumed without

taking into account axial force. Vibrations of a geometrically non-linear beam were studied
Lewandowski [9].

Introducing the dimensionless variables xN "(n/l)x, wN "(l/S)w, tM"(n2/l2) (EI/oS)1@2t,
equation (49) becomes

wN
,xN xN xN xN

#w
,tM tM
#awN #ewN 3"0, (50)

where a"g
1

l4/n4EI, e"g
3

l2S2/n4EI, if e@1 and a*0. Next these dashes in equation (50)
are omitted and uN "u, xN "x, tN"t. The case of zero initial displacement is considered.

The input boundary value problem is formulated as follows:

w
,xxxx

#w
,tt
#aw#ew3"0, (51)

w(0,t)"w(n,t)"0,

w(x,0)"0, w
,t
(x,0)"wH(x).

For solving problem (51) the asymptotic technique, introduced in the previous section is
used. All intermediate evaluations remain the same, and only "nal results are displayed
below. In the O(e0) approximation

w"

=
+
i/1

a
i
sinX

i
t sin ix#O(e). (52)
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In the general case for a"[0;R), aOm2n2, m,n"1,3,5,2 there are no mode
interactions up to O(e). Frequencies X

i
are determined as follows:

X
i
"Ji4#a A1#

9

32

a2
i

i4#a
eB#O(e2), i"1, 2, 3,2, (53)

where amplitudes are

a
i
"S

2

nX2
*
P

n

0

wH(x)2dx. (54)

The structure can be truncated to the modes with non-zero initial energy.
Resonance coupling in the O(e0) approximation can occur only for two odd modes m and

n if

m

n
"S

m4#a
n4#a

"

X
.

X
/

, m,n"1, 3, 5,2. (55)

Equation (55) determines the speci"c values of a which allow interactions and energy
transfers between the mth and nth modes: a"m2n2. In this case, independent of the
distribution of the initial energy, both the mth and nth modes can be excited. For example,
when a"9, there is a coupling of the "rst and third modes, and

a
3
"1)449]10~2a

1
, (56)

X
i
"iJ1#a A1#A

9

32
a2
1
#

3

32
a
1
a
3
#

3

8
a2
3B

e
1#aB#O(e2), i"1,3.

The asymptotic relations (56) may be rewritten in the form

X
i
"iJ10(1#0)0282679a2

1
e)#O(e2), i"1,3, (57)

where the fundamental amplitude a
1

is evaluated from the initial conditions:

a
1
"S

2

nX2
1
P

n

0

wH(x)2 dx!9a2
3
"S

2

1)001869nX2
1
P

n

0

wH(x)2 dx. (58)

In the detuning case aP9, aO9, condition (55) is not satis"ed strictly. The frequencies
X

1
, X

3
are determined as follows:

X
i
"iAJ1#a#

J1#a
2(i4#a)

(a!9)#0)282679
aN 2
1

J1#a
e#0)565357

aN
1
bM
1

J1#a
(a!9)e

!0)141339
aN 2
1

J1#a(i4#a)
(a!9)eB#o(e)#o(a!9)#o(e(a!9)), i"1,3.

(59)
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The mode amplitudes are a
i
"aN

i
#(a!9)bM

i
; here, aN

3
"1)441]10~2aN

1
,

bM
3
"1)441]10~2bM

1
. One can suppose that bM

i
"0, a

i
"aN

i
. a

1
is given by expression (58).

Equation (59) correctly represents &&limiting'' cases: for e"0 it corresponds to relation (53)
and for a"9 it takes the form of equation (57).

4. CONCLUSIONS

In this paper, an asymptotic approach for periodical solutions of non-linear vibration
problems of continuous structures is proposed. Using perturbation technique, in"nite
non-linear algebraic systems for mode frequencies and amplitudes were obtained. To solve
this, the asymptotic approach of arti"cial small parameter was introduced. The procedure
allows one to take into account a number of modes. Longitudinal vibrations of the rod and
lateral vibrations of the beam under non-linear restoring force were studied. Internal
resonance interactions between di!erent modes were considered and asymptotic formulae
for the corresponding backbone curves have been derived. The results of interest are that for
speci"c values of parameter a energy transfers among resonance modes can lead to exciting
modes of zero initial energy. From the practical point of view, this means that a small
external high-frequency excitation in a high mode can cause a large low-frequency response
of the structure in a low mode.

Formal asymptotic approximations were constructed. Rigorous estimations of
asymptotic convergence for the perturbation technique are given by Mitropolsky et al. [26].
The accuracy of the approach of arti"cial small parameter was veri"ed by comparison with
numerical data.

The procedure developed can be used e!ectively in conjunction with other analytical
methods. Thus, its implantation together with multi-time scale techniques would allow the
study of quasiperiodic motions and forced vibrations. Di!erent types of non-linearity can
be taken into account (e.g., Rayleigh perturbation [18] e(w

,t
!(1/3) w3

,t
), non-linear

boundary conditions, etc.). The stability analysis can also be performed. Extension to
structures of higher order spatial dimensions is possible.
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APPENDIX A

In"nite linear algebraic system for coe$cients bM
i
and m(1,1)is:

2

3
(m(0,1)m(1,0)aN

1
#m(1,1)aN

1
#m(0,1)bM

1
)

"A
9

16
aN 2
1
#

1

4
(aN 2
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#aN 2
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#aN 2
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#aN 2

5
)#

1

8
(aN
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aN
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)BbM 1

#A
1

2
aN
1
aN
2
#

1

8
(aN

2
aN
3
#aN

1
aN
4
#aN

3
aN
4
#aN

2
aN
5
#aN

4
aN
5
)BbM 2

#A
1

16
(aN 2

1
#aN 2

2
)#

1

2
aN
1
aN
3
#

1

8
(aN
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