

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage 5.5 V
Operating Free Air Temperature Range

DM54
DM74
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM5490			DM7490A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.8			-0.8	mA
l_{OL}	Low Level Output Current				16			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 5)	A	0		32	0		32	MHz
		B	0		16	0		16	
tw	Pulse Width (Note 5)	A	15			15			ns
		B	30			30			
		Reset	15			15			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 5)		25			25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'90A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \text { (Note 4) } \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
IIH	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	A			80	$\mu \mathrm{A}$
			Reset			40	
			B			120	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	A			-3.2	mA
			Reset			-1.6	
			B			-4.8	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-57	mA
			DM74	-18		-57	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			29	42	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $I_{O L}=$ Max plus the limit value of I_{L} for the B input. This permits driving the B input while maintaining full fan-out capability.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'90A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		MHz
		B to Q_{B}	16		
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to Q_{B}, Q_{C}		40	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { SET-0 } \\ & \text { Any Q } \end{aligned}$		40	ns

Recommended Operating Conditions						
Symbol	Parameter		DM7493A			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
IOH	High Level Output Current				-0.8	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current				16	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 5)	A	0		32	MHz
		B	0		16	
tw	Pulse Width (Note 5)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {REL }}$	Reset Release Time (Note 5)		25			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

'93A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max}(\text { Note } 4) \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\begin{aligned} & V_{C C}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \end{aligned}$	Reset			40	$\mu \mathrm{A}$
			A			80	
			B			80	
$I_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	Reset			-1.6	mA
			A			-3.2	
			B			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$		-18		-57	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			26	39	mA

[^0]Note 2: Not more than one output should be shorted at a time.
Note 3: $I_{C C}$ is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded
Note 4: Q_{A} outputs are tested at $l_{O L}=$ Max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'93A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		MHz
		B to Q_{B}	16		
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { A to } \\ Q_{A} \end{gathered}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} A \text { to } \\ Q_{A} \end{gathered}$		18	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{B} \text { to } \\ \mathrm{Q}_{\mathrm{B}} \\ \hline \end{gathered}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \text { B to } \\ Q_{B} \\ \hline \end{gathered}$		21	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$B \text { to }$ Q_{C}		32	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \text { B to } \\ \mathrm{Q}_{\mathrm{C}} \\ \hline \end{gathered}$		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \hline \text { B to } \\ Q_{D} \end{gathered}$		51	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { SET-0 } \\ & \text { to } \\ & \text { Any Q } \end{aligned}$		40	ns

Function Tables (Note D)

90ABCD Count Sequence(See Note A)					$\begin{gathered} \text { 90A } \\ \text { BCD Bi-Quinary (5-2) } \\ \text { (See Note B) } \\ \hline \end{gathered}$					$\begin{gathered} \text { 93A } \\ \text { Count Sequence } \\ \text { (See Note C) } \end{gathered}$				
Count	Outputs				Count	Outputs				Count	Outputs			
	$Q_{\text {D }}$	Q_{C}	Q_{B}	$Q_{\text {A }}$		$Q_{\text {A }}$	Q_{D}	Q_{C}	Q_{B}		$Q_{\text {D }}$	Q_{C}	Q_{B}	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L	0	L	L	L	L	0	L	L	L	L
1	L	L	L	H	1	L	L	L	H	1	L	L	L	H
2	L	L	H	L	2	L	L	H	L	2	L	L	H	L
3	L	L	H	H	3	L	L	H	H	3	L	L	H	H
4	L	H	L	L	4	L	H	L	L	4	L	H	L	L
5	L	H	L	H	5	H	L	L	L	5	L	H	L	H
6	L	H	H	L	6	H	L	L	H	6	L	H	H	L
7	L	H	H	H	7	H	L	H	L	7	L	H	H	H
8	H	L	L	L	8	H	L	H	H	8	H	L	L	L
9	H	L	L	H	9	H	H	L	L	9	H	L	L	H
										10	H	L	H	L
										11	H	L	H	H
										12	H	H	L	L
										13	H	H	L	H
										14	H	H	H	L
										15	H	H	H	H

90A									
Reset Inputs						Outputs			
R0(1)	R0(2)	R9(1)	R9(2)	Q $_{\text {D }}$	Q $_{\text {C }}$	Q $_{\mathbf{B}}$	Q $_{\mathbf{A}}$		
H	H	L	X	L	L	L	L		
H	H	X	L	L	L	L	L		
X	X	H	H	H	L	L	H		
X	L	X	L		COUNT				
L	X	L	X		COUNT				
L	X	X	L		COUNT				
X	L	L	X		COUNT				

Reset Inputs		Outputs			
R0(1)	RO(2)	Q_{D}	Q_{C}	Q_{B}	$Q_{\text {A }}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	L			L
te A: Ou te B: Ou te C: Ou te D : H	Q_{A} is conn Q_{D} is conn Q_{A} is conn Level,		for BC	unt. y cou are.	

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

DM5490A - http://www.ti.com/product/dm5490a?HQS=TI-null-null-dscatalog-df-pf-null-wwe
DM7493A - http://www.ti.com/product/dm7493a?HQS=TI-null-null-dscatalog-df-pf-null-wwe
DM7490A - http://www.ti.com/product/dm7490a?HQS=TI-null-null-dscatalog-df-pf-null-wwe

[^0]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

