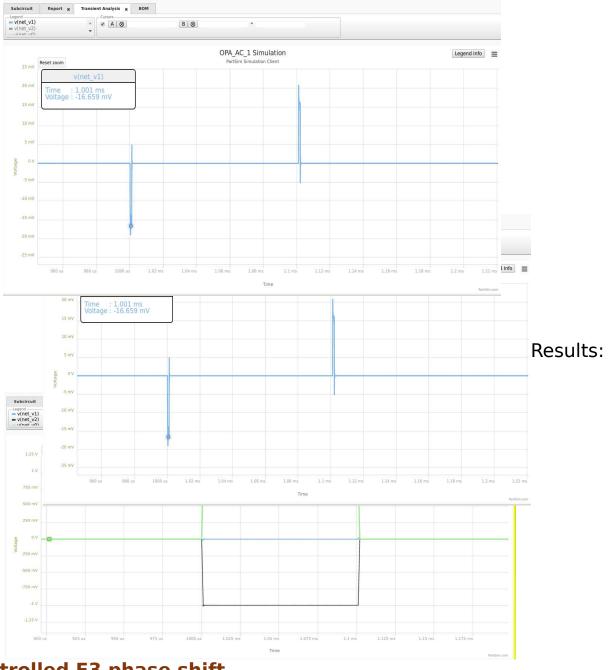

Chapter: AFX_rFilter_OPA 1/6

Chapter: GC_ET-OPA-AC

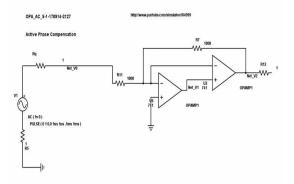
Circuit: Op Amp with Active Compensation for inherent F3 phase shift


Generously suggested by Dr. Barry Gilbert, Analog Devices, Inc.

Chapter: AFX_rFilter_OPA 2/6

Chapter: AFX_rFilter_OPA 3 / 6

Transient Plot:



Chapter: AFX_rFilter_OPA 4/6

Chapter: AFX_rFilter_OPA 5/6

Circuit: Op Amp with Active Compensation for F3 phase shift inherent to OPA

hcircuit Re (net_v1) (net_v2) deat w01		Conon	BOM	8 ⊗							
1.25 V Reset a	Time Voltag	V(net_v0) Time : 901.727 us Voltage : 48.182 fV		OPA_AC_1 Simulation PartSin Sensition Client						Legend info	
750 mV											
500 MV											
250 mV				_				-			
ov _0					_			-			
-250 mV											
500 mV											
750 mN											
-1 V				-							
-3.25 V											
900 us	925 us	950 us	975 us	1000 us	1.025 ms	1.05 ms	1.075 ms	1.1 ms	1.125 ms	1.15 ms	1.175 ms

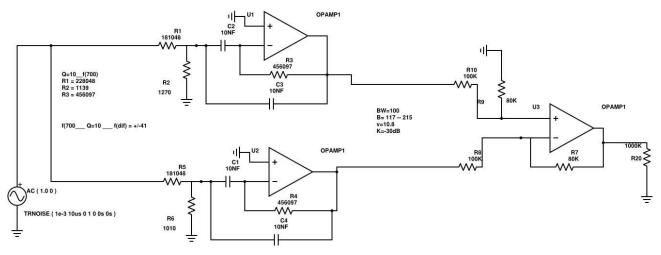
Chapter: AFX_rFilter_OPA 6 / 6

/(net_v1) /(net_v2)	ŚA Ś	B						
Reset :	v(net_v0)		OPA_AC_1 Simulation Partsim Simulation Client					
1.25 V	Time : 901.727 us Voltage : 48.182 fV							
1 V	Tonag							
750 mV								
500 mV								
250 mV								
ov								
0 V								
-500 mV								
-750 mV								
-1 V								
-1.25 V								
-1.25 V								

Chapter: AFX_mFilter_4_P2A 210801 1/5

AFX_mFilter_4_P2A Chapter:

version A "P2"

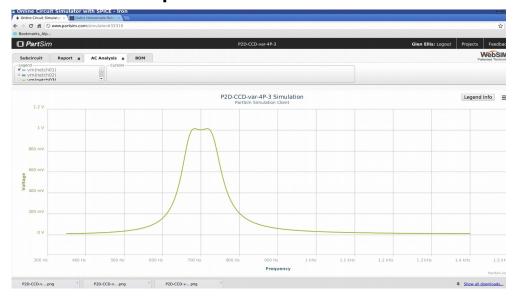

Resonant Dual-Channel Audio Filters

Circuit : PC2D - CCD - 100x - 4P

*** The Final Narrow BandPass is BW=100 @ -3dB, and BW=150 @ -12dB. *** 'v' = 5

*** Slope of bandpass is a variation of 5 Hz per dB of attenuation.

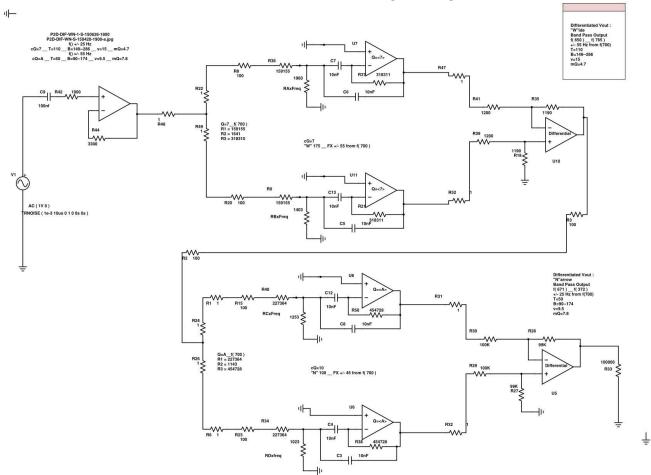
*** Several versions of this design have been tested, and results are similar. P2D-CCD-100x-4P-1-S-150623-1400 Parallel Cheby Four Pole 700 Hz Differentiated to f(700) Q=10 ____ f(dif) = +/- 42 Hz



Chapter: AFX_mFilter_4_P2A 210801 2/5

Bode Plot : PC2D-CCD-100x-4P

*** Narrow BandWidth of 100 Hz, with 7 Hz spread per dB attentuation. *** Notice the Flat-Top PassBand of this Narrow filter.

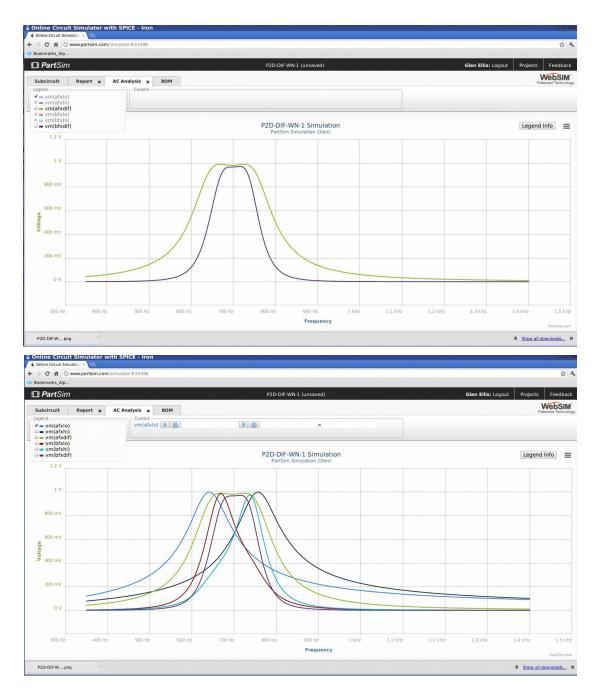

*** Dual Notches are used to attenuate the sidebands.

Chapter: AFX_mFilter_4_P2A 210801 3/5

Circuit: P2D-DIF-WN-1-S

*** Narrow BandWidth of 90 Hz, with 7 Hz spread per dB attentuation.

Chapter: AFX_mFilter_4_P2A 210801 4/5


Bode Plot : P2D-DIF-WN-1-S

*** Notice the Flat-Top PassBand of this Narrow filter.

*** Developed into a "W"ide and "N"arrow circuit :

BW=175Hz and BW=90Hz

****** Showing the f(0) Pass-Band and four auxillary peaks.

Chapter: AFX_mFilter_4_P2A 210801 5 / 5

Chapter: AFX_rFilter_5_P2S 210801 1/20

Chapter : AFX_mFilter_5_P2B

"P2" version B

Resonant Dual-Channel Audio Filters

The designed advantages coming from the this approach are :

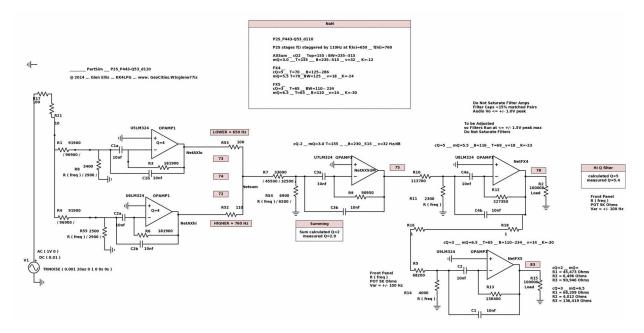
- 1) a flat-topped Passband, for easier capture of CW signals.
- 2) steeper sideband skirts,

(one circuit at 12 stages approachs Brick-Wall measurements).

The disadvantage is greater complexity in tuning the many dual channel stages.

Chapter: AFX_rFilter_5_P2S 210801 2/20

Circuit: P2S-P442-Q53 Description: P2S-P442-Q53


"P2S" Triplet Filter plus two "Q" stages for five stages. This "P2S" circuit is applied as a Narrow CW Filter using two Triplet Roof-Filters , and two Hi 'Q' filters, totaling Five stages.

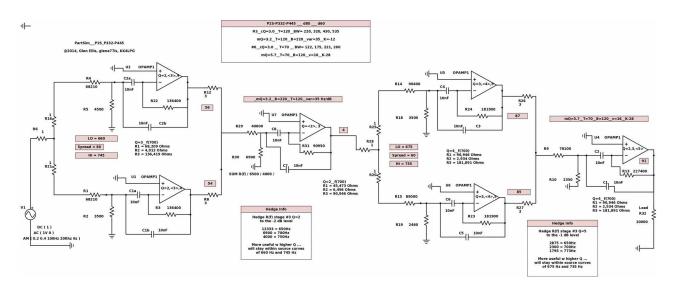
Filter, selectable "W"ide (BW=235) and "N"arrow (BW= 110 Hz) SideBand skirts are very steep. Dual Channels are 110 Hz apart. This circuit works good for a 5 stage filter.

Results depend on exact amount of Dual-Channel Spread and number of "Q" Filter Stages.


In each of the Triplet Groups, the OpAmp filters #1 and #2 are staggered (hi / lo of each other)

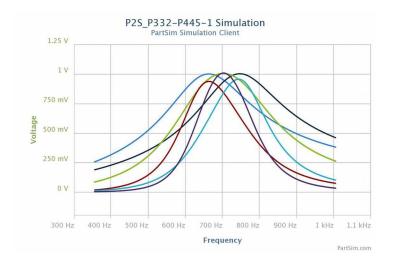
and #3 is a Summing stage with a Low "Q". The result is a Flat-Top f(0) Bode plot, and steeper than normal SideBand Skirts. Variance = 14 Hz sideband spread per -dB attenuation.

Chapter: AFX_rFilter_5_P2S 210801 3/20


Bode Plot :

Top = 65Hz __ at -1dB and BW = 110 __ at -3dB Variance = 14 Hz per dB attenuation __ Last Stage Filter: measured "Q" = 6.5 __max Chapter: AFX_rFilter_5_P2S $_{210801}$ 4/20

Circuit: **P2S-P332-P445**

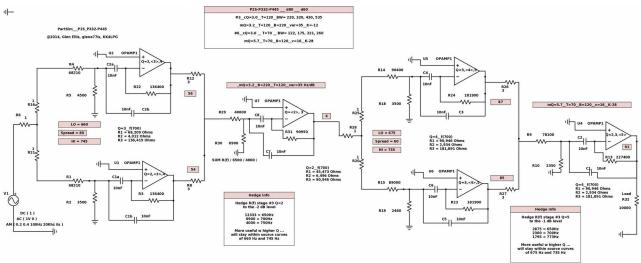

This circuit is developed as a Narrow CW Filter in six stages. Two sets of Dual-Channel filters.

Results depend on specfic amount of Dual-Channel Spread and "Q".

Wide mQ=3.0_T=120_BW=220_var=35_K=-12 Narrow mQ=5.7_T=70_BW=120_var=16_K=-28

measured "Q" = 5.7 _ Top = 70Hz _ BW = 120 _ Variance = 16 Hz per dB attenuation _ Kilo = -28dB at 1000 Hz

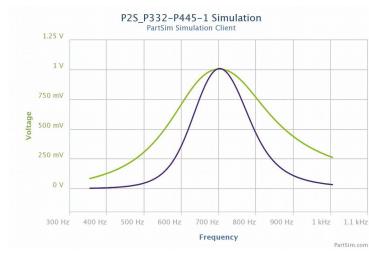
Chapter: AFX_rFilter_5_P2S 210801 6/20


Chapter: AFX_rFilter_5_P2S $_{210801}$ 7/20

In each of the Triplet Groups, the OpAmp filters #1 and #2 are staggered (hi / lo of each other)

and #3 is a Summing stage with a Low "Q". Staggers here are +/- 45Hz for First Triplet, and then +/- 30Hz for Second Triplet.

The result is a Flat-Top Bode plot, and steeper than normal SideBand Skirts.


Circuit: P2S-P332-P445

where the P2S triplet filter is "Q" = 3, 3, 2, and "Q"=4, 4, 5" .

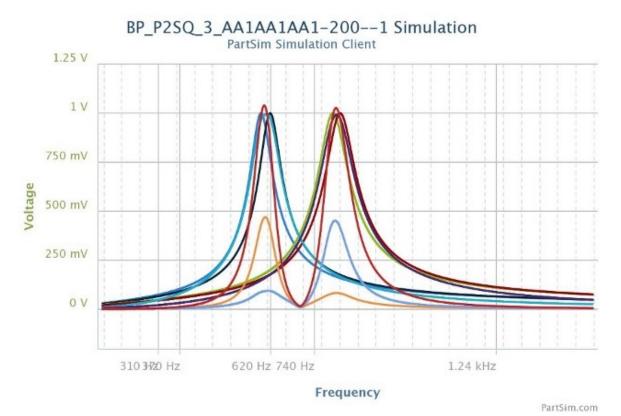
Resulting Final Top BW at -1 dB is 70 Hz (Flat). Resulting Final BandWidths are 120, 195, 240, 285 at the -3dB, -6dB, -9dB, -12dB levels. Resulting Final Variance of BandWidth is 16 Hz per dB attenuation

Resulting Final Variance of BandWidth is 16 Hz per dB attenuation (Extremely Steep).

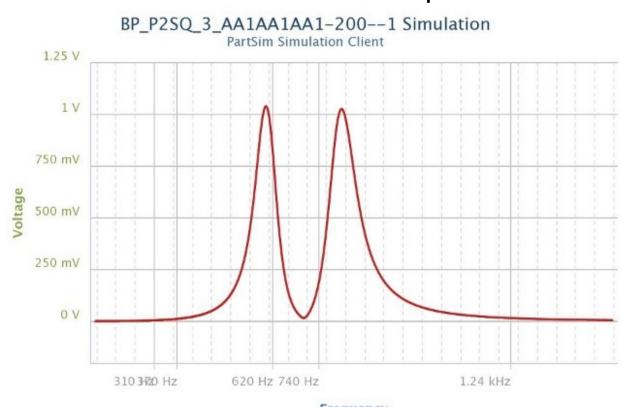
Resulting signal level of K = -28 dB at 1000 Hz. Results depend on amount of Dual-Channel Spread. No precision components required. Caps are +/- 5%, f() is corrected by the MFB circuit at R(freq) for each stage.

The P2SQ Triplet Filter #1 is caculated as Q=3,3,2, and measured as Q=3.0, 3.0, 4.0, due to the cumulative effect of sequental stages.

The P2SQ Triplet Filter #2 is caculated as Q=4,4,5, and measured as Q= 4.0, 4.0, 6.0 ,


due to the cumulative effect of sequental stages.

Stage #1 & #2: R(freq) is R5 and R2 for the base parallel filters. Stage #3: R(freq) is R30, for the Summing "W"ide filter. Chapter: AFX_rFilter_5_P2S 210801 10/20

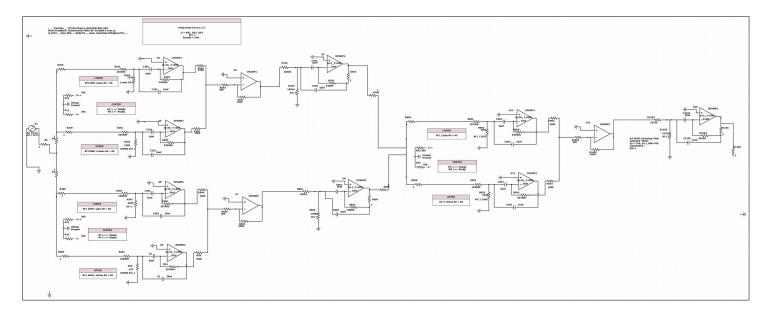

Circuit: **P2S-3-AA1A1AA1** special RTTY Filter*

This "P2" filter is applied as an Audio R.T.T.Y. Filter, at 600 Hz & 800 Hz. The RTTY Twin-Peak has been phase inverted and acts as a Twin-Notch around the narrow C.W. filter. (see below)

Designed for WB8YYY. *** Cumulative Filter Bode for RTTY Filter, all phases showing :

Chapter: AFX_rFilter_5_P2S 210801 12/20

P2S-PAA1AA1AA1


*** RED trace shows -48 dB Notch between RTTY peaks :

Frequency

PartSim.com

Chapter: AFX_rFilter_5_P2S 210801 13/20

Circuit: **P2S-PAA1AA1AA1** *** Schematic of RTTY audio filter (12 filter stages). Designed for WB8YYY.

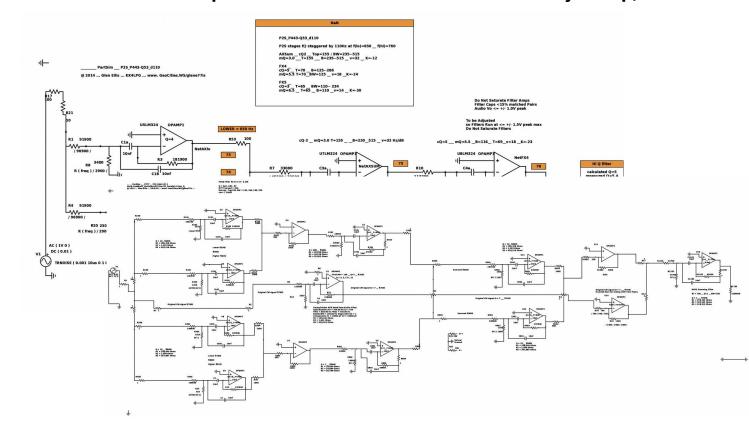
Chapter: AFX_rFilter_5_P2S 210801 14/20


Circuit: **P2S-PAA1-Q7**

an Audio C.W. Filter, Final Q=7, at 700 Hz,

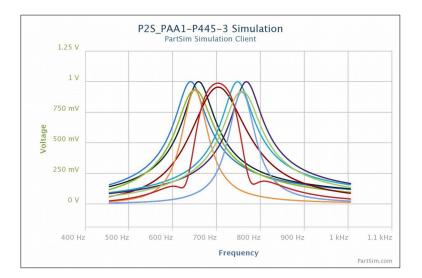
Design goal was to broaden the Top of the BandPass at the -3dB level and Steepen the SideBand Skirts between -3dB and -30 dB.

Here, the Twin-Peak signal is phase inverted and acts as a Twin-Notch when summed around the narrow C.W. signal.


This Q=7 BandPass is about 100 Hz wide at -3dB, Extremely steep skirts, spreading at <u>7 Hz per dB</u> attenuation down to -30dB.

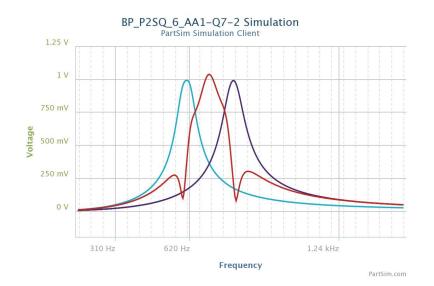
Chapter: AFX_rFilter_5_P2S 210801 15/20

Circuit: **P2S-PAA1-445-Q7**

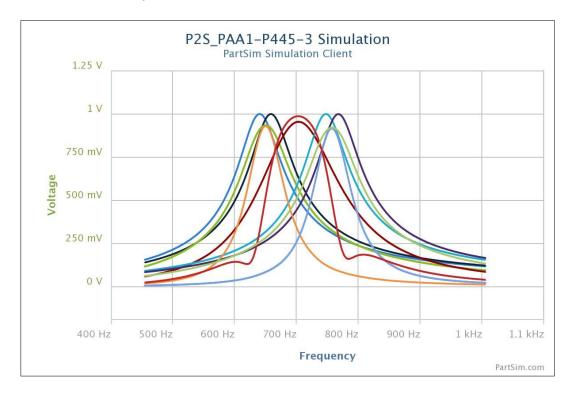

Schematic (18 stages) Design goal was to broaden the Top of the BandPass, and Steepen the SideBand Skirts. Documentation embedded : P2S-PAA1-P445 This filter circuit has aprox. BW=90 and Sidebands Extremely Steep,

Chapter: AFX_rFilter_5_P2S 210801 16/20

Bode: **P2S_PAA1-P445-3_**

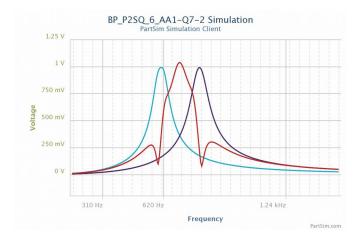

<u>Final Stage Measurements :</u> <u>BW=100,120,130,145 @ -3dB,-6dB,-9dB,-12dB,</u> <u>Variance=5 Hz per dB and K=-24 dB</u>

Chapter: AFX_rFilter_5_P2S 210801 17/20


P2SQ_6_AA1_Q7-2 : Magnitude plot.

The sideband steepness has a rating a v=5 rating, K=-27and will sound like a brick wall to signals outside of BP=120Hz.

P2S_PAA1-P445-3_: Final Stage Measurements : Bode plot


<u>BW=100,120,130,145 @ -3dB,-6dB,-9dB,-12dB</u> Variance=5 Hz per dB and K=-24 dB

The Dark-Red trace is the broader original CW signal The Light-Red trace is the narrow Double-Notched PassBand Signal.

Not a Club Kit Project ! Tuning is very critical. Interaction between the the (inverted) Notch Peaks is always nearby. Chapter: AFX_rFilter_5_P2S 210801 19/20

P2SQ_6_AA1_Q7-2 : Magnitude plot. The sideband steepness has a rating a v=5 rating, K=-27 and will sound like a brick wall to signals outside of BP=120Hz.

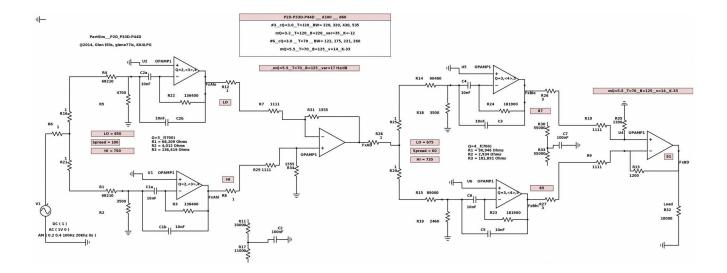
Chapter: AFX_rFilter_5_P2S 210801 20/20

Chapter: AFX_mFilter_6_P2C 1 / 8

Chaper: AFX_mFilter_6_P2C

"P2" version C

Resonant Dual-Channel Audio Filters

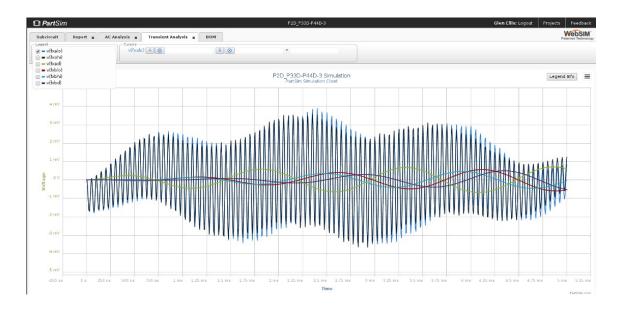

The designed advantages coming from the this approach are : 1) a flat-topped "W"ide Passband, for easier capture of CW signals. 2) a "N"arrow Passband with extremely steep sideband skirts, 3) uses Parallel Filters followed by un-tuned Differential stages 4) if followed by a MFB Q=7 stage, then a single R(freq) can vary the f() narrow passband frequency.

Note: In the following diagrams, R2 to Virtual Ground is the R(freq) for adjusting f(center) Note: the -3dB level is equivalent to the 700 mV level in these Bode Plots.

Circuit: P2D-P33D-P44D

Special Differentiated Stages to replace Filter stages. Two Tuned Summing Stages replaced by Two Un-Tuned Differentiation Stages. Same Results !!!

Chapter: AFX_mFilter_6_P2C 3 / 8


Bode Plot: P2D-P33D-P44D

Transient Plot: P2D-P33D-P44D

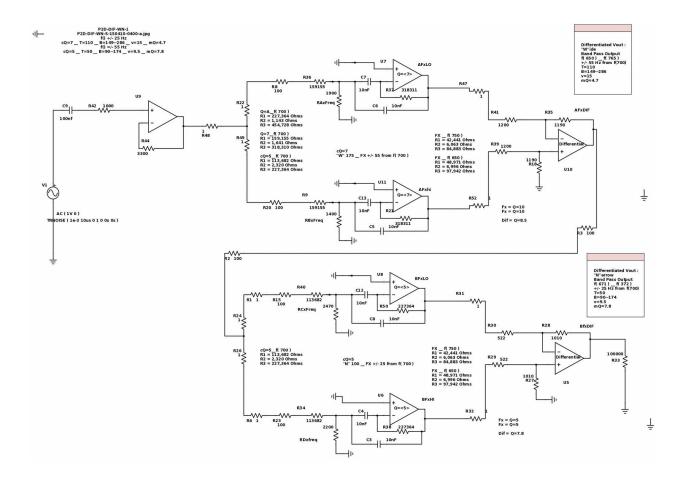
Analysis, Sine Input,

showing Phase-Shifting to obtain the required Band-Pass.

Chapter: AFX_mFilter_6_P2C 4 / 8

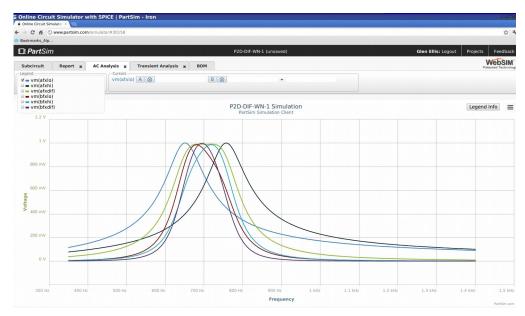
Intro: **P2D-DIF-WN**

P2D-P77D-P55D


This design is- for extremely steep "N" sidebands. Special Differentiated Stages to replace Filter stages. Two Tuned Summing Stages replaced by Two Un-Tuned Differentiation Stages. Same Results !!!

First Triad is Q=7 +/- 50 Hz , then Differentiated. Second Triad is Q=5 +/- 25 Hz , then Differentiated.

First Triad is "W"ide v=15. Pass-Band is extremely steep for a "W"ide Filter.


Second Triad is "N"arrow v=9.5 !!! Pass-Band sidebands are Close to DSP and already analog for Audio Output. At +/-90 degrees from f(700) the signal is near -48dB down.

Circuit: P2D-DIF-WN

Bode Plot: **P2D-DIF-WN**

Differential Traces are : "W"ide GREEN . "N"arrow Black . There are two passbands for "W" and two passbands for "N", each passband is followed by a Differential Stage.

Transient Plot: P2D-DIF-WN

Signal injected was "Noise". Shown is the effectiveness of a Differentiator in eliminating Common Mode noise signal.

Chapter: AFX_mFilter_6_P2C 7 / 8

Conclusions: about the **P2'C'** design approach :

The Parallel designs have been intriguing to develop. These are really radical 'techy' circuits and good to brag about. * The 12 stage (P2S-QAA-P445) circuit produces a "N"arrow filter output that compares favorably with DSP (after run through a DAC for the earphone signal).

but are very ticky to construct and very tricky to tune.

Compared to the P2'A' and P2'B' design approach : * The P2'C' designs are much simpler, and produce passbands similar to DSP, and are easy to tune, * The P2'A' and P2'B' designs are much simpler, and produce passbands similar to DSP, but are difficult to tune.

* The <u>AFX-RSF-S4-Q7</u> version #8 Filter circuit could be improved by using the P2D-DIF filter section.

AFX design , the thrust of this "AFX" project with

- (1) Roofing stage based on P2D triad,
- (2) driving the log-limiter,
- (3) driving the Quad Filter Stage,
- (4) followed by the "W" Integrated and "N" Differentiated Stages

can produce excellent results, and is a well-developed good-working project.

AFX "W"ide and "N"arrow stages produce similar results, and is much better for building and tuning.

That is the author's General Conclusion on this series of **P2'C'** filters.

Chapter: AFX_mFilter_6_P2C 8 / 8

Chapter: AFX_rFilter_5_PFB 1 / 30

Chapter: AFX_mFilter_5_PFB

Resonant Filter Positive-Feed-Back

GC_ET_PFB.html

2021-01-06 11:31:45

Associate Professor **Dr.** <u>Josef Punčochář</u> <u>VŠB-Technical University of Ostrava</u>, · Department of Electrical Engineering

<u>Original Design for Positive-FeedBack BandPass Filter.</u> (<u>GC_ET_PFB-rg.html</u>)

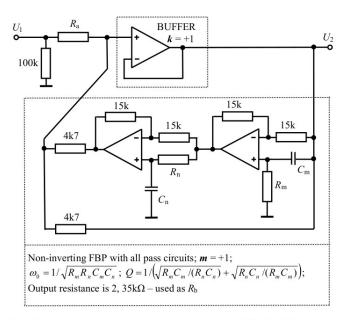
GC_ET_PFB-rg.html

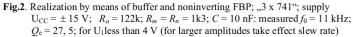
2018-01-10

11:08:01

Chapter: AFX_rFilter_5_PFB 2 / 30

Based on circuit design by Dr. Josef Punchochar

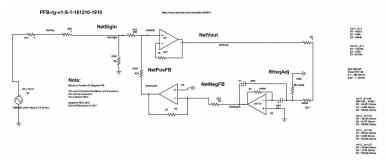

Associate Professor


<u>VŠB-Technical University of Ostrava</u>, Ostrava · Department of Electrical Engineering

Copy from Josef Punchochar article :

This is a frequency dependent positive feedback - under-critical (a "bootstrap") if $k \cdot m = 1$ - only on the frequency ω_0 is on output FBP voltage U₁ - input divider therefore does not apply. The input divider is beginning "to work" for all other frequencies. **The circuit can operate with amplitudes of volts order - without degrading of performance.** Decisive is basically the size of the supply voltages, which defines the limitation of signal.

An example for |k| = |m| = 1 is in Fig.2. The R_b was realized by means of output resistance of the FBP in 1987.



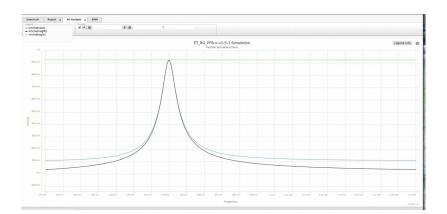
Developed into this by Glen Ellis :

Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-Feedback Band Pass Filter.

Advantage is : Adjust f(0) via a single resistor R(freqAdj) +/- 300 Hz.

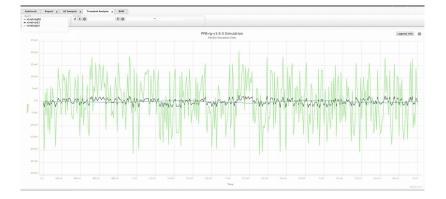
Chapter: AFX_rFilter_5_PFB 3 / 30

SPICE circuit, 161210, Glen Ellis.


Based on circuit design by Josef Punchochar, Research Gate Net Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-Feedback Band Pass Filter. Advantage : Adjust f(0) via a single resistor R(freqAdj) +/- 300 Hz.

Balance between Positive & Negative FB

Too much FeedBack will transform circuit into a Notch Filter.


V(out) is NetVout f(0) = 700 Hz FeedBack Q=2 Effecive Q=7 BW=100 Hz

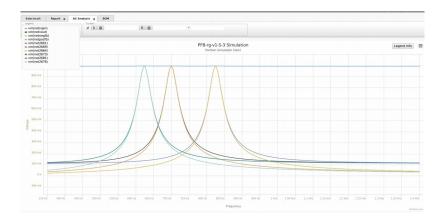
Original NetSigIn (source signal) is flat (green). FeedBack inverted (black) (generated at Q=2) Overall Response is Q=7 Positive BandPass (blue).

Transient Plot

Chapter: AFX_rFilter_5_PFB 4 / 30

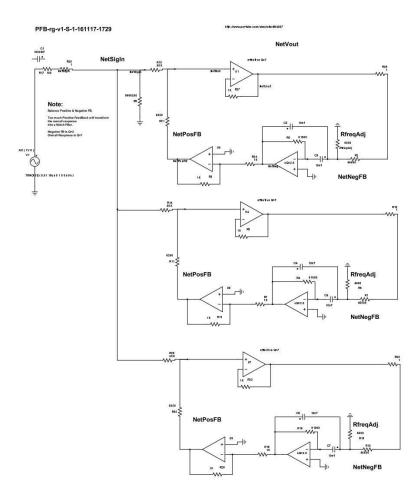
Adjust f(0) via a Single Resistor R(freqAdj) +/- 300 Hz. Change f(0) via R6 . Initially R(freq) is 6500 Ohm. Adjust : Up = lower f(0) and Down = higher f(0).

In f(0) change,


Gain will change as the minor ratio of R(in) / R(freq).

Q will change as squareroot of delta(f) change.

But BW will remain same.


(Author uses this method for adjusting f(0) change of +/- 300 Hz.)

*** Demonstrating shifting f(0) via R(freqAdj)

*** Demonstrating circuit to generate bode of shifting f(0) via R(freqAdj)

Chapter: AFX_rFilter_5_PFB 5 / 30

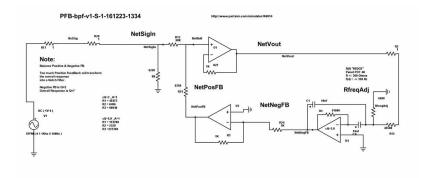
Chapter: AFX_rFilter_5_PFB 6 / 30

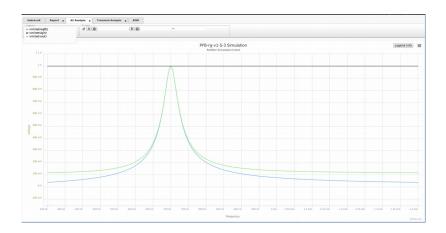
<u>Further Reading on Positive Feed-</u> <u>Back developments :</u>

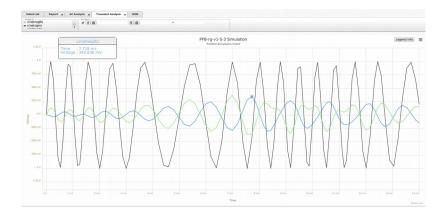
AAA GC_ET_PFB-bpf.html

GC_ET_PFB-bpf.html 2018-01-10 11:05:01

*** Based on circuit design by Dr. Josef Punchochar , Research Gate Net

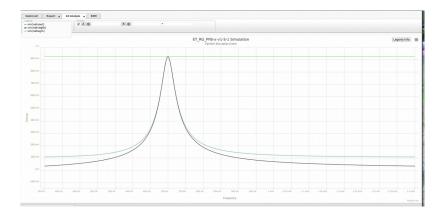

*** the Positive-FeedBack Band-Pass Filter, with single resistor f() control. Negative FeedBack is Q2 and PFB BandPass V(out) is Q7

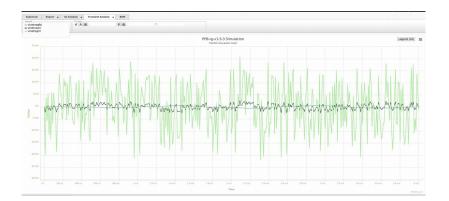

Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-Feedback Band Pass Filter.


Advantage is : Adjust f(0) via a single resistor R(freqAdj) +/- 500 Hz.

*** SPICE circuit, Glen Ellis.
*** Example of circuit modification to handle Positive Boot-Strap Feedback via MultipleFeedback Band Pass Filter.
*** Advantage : Adjust f(0) via a single resistor R(freqAdj) +/- 300 Hz.

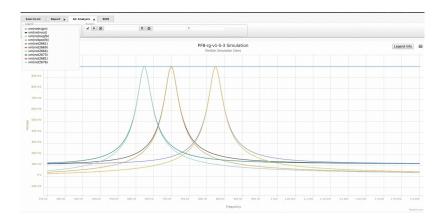
*** Balance between Positive & Negative FB *** else will transform circuit into a Notch Filter or into an Oscillator.



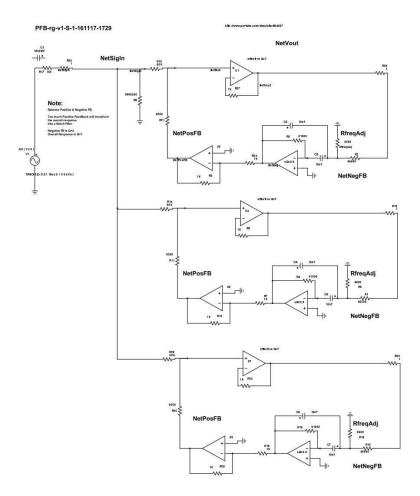


V(out) is NetVout f(0) = 700 Hz FeedBack Q=2 Effecive Q=7 BW=100 Hz

*** Original NetSigIn (source signal) is flat (green).
*** FeedBack inverted (blue) (generated at Q=7)
*** Overall Response is Q=7 Positive BandPass (black).


Transient Plot : Noise Input and Positive-FeedBack and f(700) filtered V(out) . Green Noise, Black Positive-FeedBack, Blue f(700) V(out) .

Adjust f(0) via a Single Resistor R(freqAdj) +/- 300 Hz. Change f(0) via R6 [R(freq)]. Initially R(freq) is 6500 Ohm. Adjust : Up = lower f(0) and Down = higher f(0).


In f(0) change, Gain will change as the minor ratio of R(in) / R(freq). Q will change as squareroot of delta(f) change. But BW will remain same. (Author uses this method for adjusting f(0) change of +/- 300 Hz.)

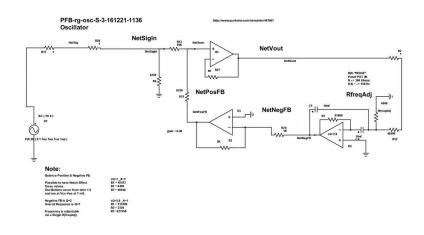
*** Demonstrating shifting f(0) via R(freqAdj)

*** Demonstrating circuit to generate bode of shifting f(0) via R(freqAdj)

Chapter: AFX_rFilter_5_PFB 10 / 30

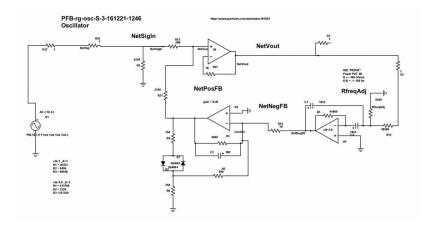
Chapter: AFX_rFilter_5_PFB 11 / 30

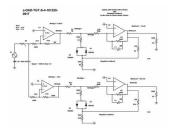
BBB GC_ET_PFB-osc.html

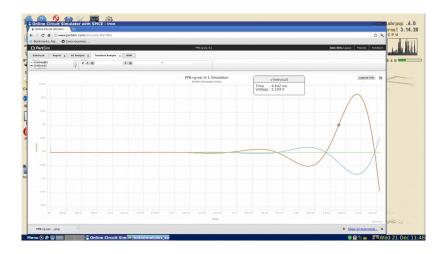

GC_ET_PFB-osc.html

2018-03-08 19:06:07

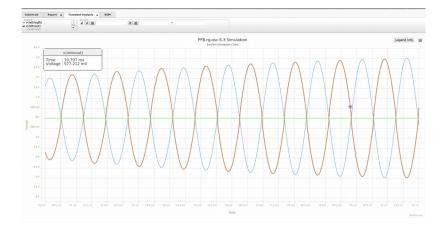
***** Our further development of the Positive Feed-Back Oscillator concept.


***** Positive Feed-Back with NO limiter control


***** produces a "SQUARE" V(out), with single resistor f() control.



***** Positive Feed-Back with limiter control ***** produces a "SINE" V(out) , with single resistor f() control.


Chapter: AFX_rFilter_5_PFB 12 / 30

Chapter: AFX_rFilter_5_PFB 13 / 30

GC_ET_PFB.html

2021-01-06 11:31:45

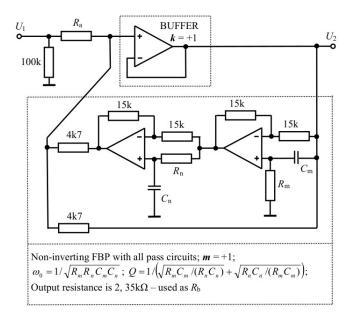
Associate Professor **Dr.** <u>Josef Punčochář</u> <u>VŠB-Technical University of Ostrava</u>, · Department of Electrical Engineering Chapter: AFX_rFilter_5_PFB 14 / 30

<u>__Original Design for Positive-FeedBack BandPass Filter.</u> (<u>GC_ET_PFB-rg.html)</u>

GC_ET_PFB-rg.html 2018-01-10 11:08:01

Based on circuit design by Dr. Josef Punchochar

Associate Professor

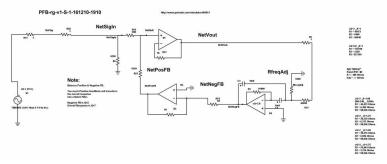

<u>VŠB-Technical University of Ostrava</u>, Ostrava · Department of Electrical Engineering

Chapter: AFX_rFilter_5_PFB 15 / 30

Copy from Josef Punchochar article :

This is a frequency dependent positive feedback - under-critical (a "bootstrap") if $k \cdot m = 1$ - only on the frequency ω_0 is on output FBP voltage U₁ - input divider therefore does not apply. The input divider is beginning "to work" for all other frequencies. The circuit can operate with amplitudes of volts order - without degrading of performance. Decisive is basically the size of the supply voltages, which defines the limitation of signal.

An example for |k| = |m| = 1 is in Fig.2. The R_b was realized by means of output resistance of the FBP in 1987.


Fig.2. Realization by means of buffer and noninverting FBP; ",3 x 741"; supply $U_{CC} = \pm 15$ V; $R_a = 122k$; $R_m = R_n = 1k3$; C = 10 nF: measured $f_0 = 11$ kHz; $Q_e = 27$, 5; for U₁less than 4 V (for larger amplitudes take effect slew rate)

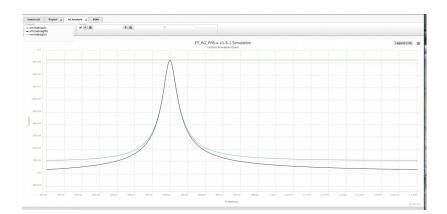
Developed into this by Glen Ellis :

Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-Feedback Band Pass Filter.

Advantage is : Adjust f(0) via a single resistor R(freqAdj) +/- 300 Hz.

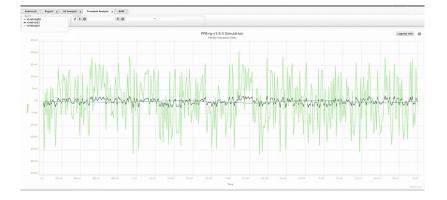
Chapter: AFX_rFilter_5_PFB 16 / 30

SPICE circuit, 161210, Glen Ellis.


Based on circuit design by Josef Punchochar, Research Gate Net Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-Feedback Band Pass Filter. Advantage : Adjust f(0) via a single resistor R(freqAdj) +/- 300 Hz.

Balance between Positive & Negative FB

Too much FeedBack will transform circuit into a Notch Filter.


V(out) is NetVout f(0) = 700 Hz FeedBack Q=2 Effecive Q=7 BW=100 Hz

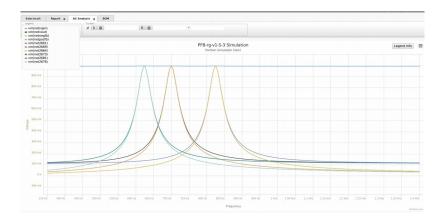
Original NetSigIn (source signal) is flat (green). FeedBack inverted (black) (generated at Q=2) Overall Response is Q=7 Positive BandPass (blue).

Transient Plot

Chapter: AFX_rFilter_5_PFB 17 / 30

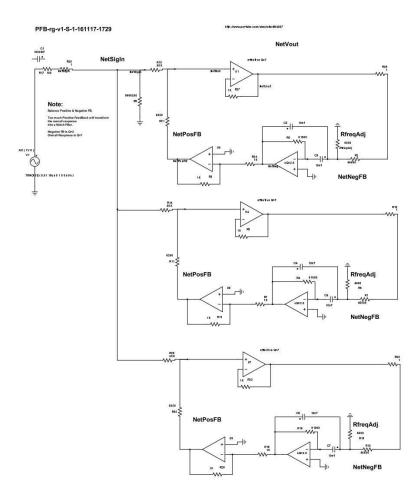
Adjust f(0) via a Single Resistor R(freqAdj) +/- 300 Hz. Change f(0) via R6 . Initially R(freq) is 6500 Ohm. Adjust : Up = lower f(0) and Down = higher f(0).

In f(0) change,


Gain will change as the minor ratio of R(in) / R(freq).

Q will change as squareroot of delta(f) change.

But BW will remain same.


(Author uses this method for adjusting f(0) change of +/- 300 Hz.)

*** Demonstrating shifting f(0) via R(freqAdj)

*** Demonstrating circuit to generate bode of shifting f(0) via R(freqAdj)

Chapter: AFX_rFilter_5_PFB 18 / 30

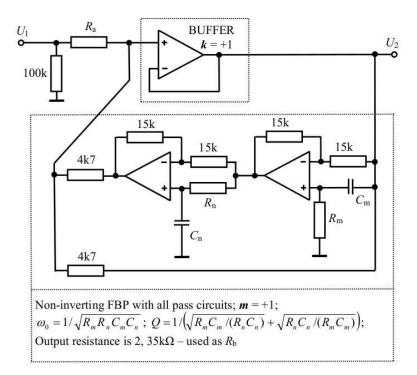
Chapter: AFX_rFilter_5_PFB 19 / 30

<u>Circuit: Positive-Boot-Strapped Band-Pass</u>

GC_ET_PFB-bpf.html 2018-01-10 11:05:01

*** Based on circuit design by Dr. Josef Punchochar , Research Gate Net

Positive Boot-Strap Feedback



Circuit: Positive-FeedBack Filter – by Dr. Punchochar

*** the Positive-FeedBack Band-Pass Filter, with single resistor f() control. Negative FeedBack is Q2 and PFB BandPass V(out) is Q7

This is a frequency dependent positive feedback - under-critical (a "bootstrap") if $k \cdot m = 1$ - only on the frequency ω_0 is on output FBP voltage U₁ - input divider therefore does not apply. The input divider is beginning "to work" for all other frequencies. **The circuit can operate with amplitudes of volts order - without degrading of performance.** Decisive is basically the size of the supply voltages, which defines the limitation of signal.

An example for |k| = |m| = 1 is in Fig.2. The R_b was realized by means of output resistance of the FBP in 1987.

Fig.2. Realization by means of buffer and noninverting FBP; ",3 x 741"; supply $U_{CC} = \pm 15$ V; $R_a = 122$ k; $R_m = R_n = 1$ k3; C = 10 nF: measured $f_0 = 11$ kHz; $Q_e = 27$, 5; for U₁less than 4 V (for larger amplitudes take effect slew rate)

Chapter: AFX_rFilter_5_PFB 21 / 30

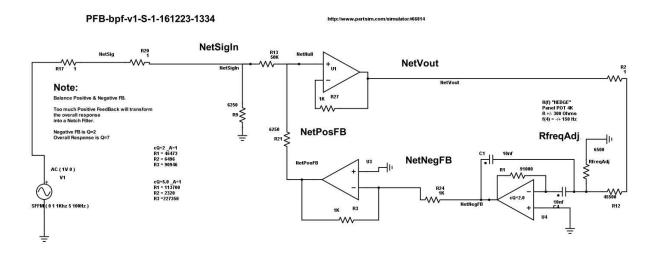
Chapter: AFX_rFilter_5_PFB 22 / 30

Circuit: Positive-FeedBack-by Glen Ellis

Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-Feedback Band Pass Filter. Advantage is : Adjust f(0) via a single resistor R(freqAdj) +/- 500 Hz.

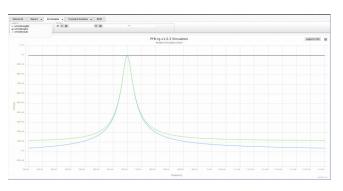
Circuit: Positive Feed-Back Filter

*** SPICE circuit, Glen Ellis.

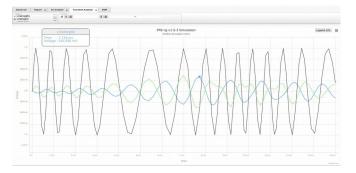

*** Example of circuit modification to handle Positive Boot-Strap Feedback via Multiple-

Feedback Band Pass Filter.

*** Advantage : Adjust f(0) via a single resistor R(freqAdj) +/- 300 Hz.


*** Balance between Positive & Negative FB

*** else will transform circuit into a Notch Filter or into an Oscillator.

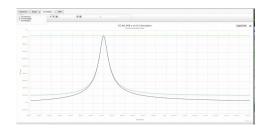


Chapter: AFX_rFilter_5_PFB 23 / 30

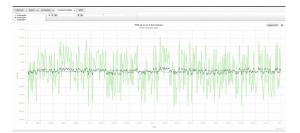
Bode Plot: **Positive Feed-Back Filter**

Transient Plot: **Positive Feed-Back Filter**

Chapter: AFX_rFilter_5_PFB 24 / 30


Plots: Positive Feed-Back Filter

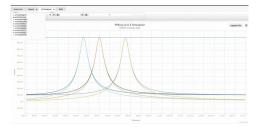
```
V(out) is NetVout
f(0) = 700 Hz
FeedBack Q=2
Effecive Q=7
BW=100 Hz
```


*** Original NetSigIn (source signal) is flat (green).

*** FeedBack inverted (blue) (generated at Q=7)

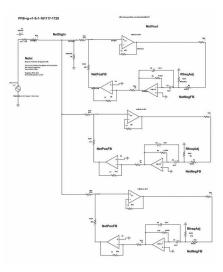
*** Overall Response is Q=7 Positive BandPass (black).

Transient Plot : Noise Input and Positive-FeedBack and f(700) filtered V(out) . Green Noise, Black Positive-FeedBack, Blue f(700) V(out) .



Chapter: AFX_rFilter_5_PFB 25 / 30

Adjust f(0) via a Single Resistor R(freqAdj) +/- 300 Hz. Change f(0) via R6 [R(freq)]. Initially R(freq) is 6500 Ohm. Adjust : Up = lower f(0) and Down = higher f(0).


In f(0) change, Gain will change as the minor ratio of R(in) / R(freq). Q will change as squareroot of delta(f) change. But BW will remain same. (Author uses this method for adjusting f(0) change of +/- 300 Hz.)

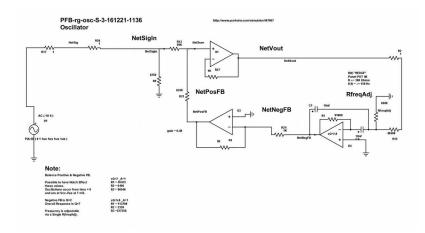
*** Demonstrating shifting f(0) via R(freqAdj)

Chapter: AFX_rFilter_5_PFB 26 / 30

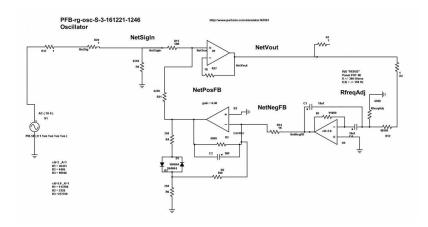
*** Demonstrating circuit to generate bode of shifting f(0) via R(freqAdj)

Chapter: AFX_rFilter_5_PFB 27 / 30

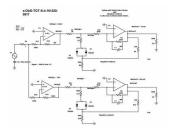
BBB GC_ET_PFB-osc.html

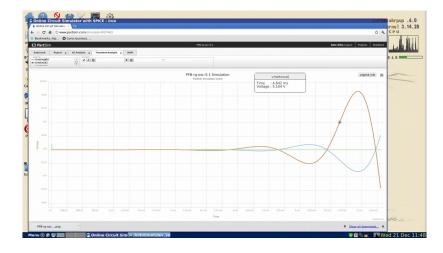

GC_ET_PFB-osc.html

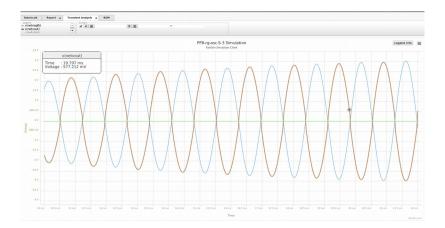
2018-03-08 19:06:07



Chapter: AFX_rFilter_5_PFB 28 / 30


***** Our further development of the Positive Feed-Back Oscillator concept. ***** Positive Feed-Back with NO limiter control ***** produces a "SQUARE" V(out) , with single resistor f() control.




***** Positive Feed-Back with limiter control ***** produces a "SINE" V(out) , with single resistor f() control.

Chapter: AFX_rFilter_5_PFB 29 / 30

**

Chapter: AFX_rFilter_5_PFB 30 / 30