Chapter: AFX 'V'ariable
this is the Best-of-AFX Phase-Filter Circuit Design

Non-Resonant Dual-Notch Phase-Filter-

$4 *$
******* Goals achieved in AFX-'V':
*** (1) Simpler design,
*** (2) Simpler construction,
*** (3) Simpler adjustment.
*** (4) Enhanced Variability f(0)

Continued Design features from AFX:
*** Improved design from building-block modules
3 Filters are Q=3, 1 Filter Q=5, all R(freq) aprox. Same.
Enables use of single control of four \mathbf{R} (freq) stages.
*** Designed so that the High 'Q' Sharp Filter is also variable within the main band-pass.
*** Designed so that the Dual-Notches are $<-60 \mathrm{~dB}$ and the Stop-Band $<-\mathbf{1 0 0} \mathrm{dB}$.

Design choices:

*** Simple repetitive application of Modified Deliyannis-Friend-Multple-FeedBack design.
*** MFB topology was chosen because :
*** (1) input vs output impedances match well, loading is naturally controlled.
*** (2) single resistor frequency control each stage.
*** (3) frequency adjustments alters gain by only the square-root of the $f(c h a n g e)$.

Just for reference:
Delyannis-Friend Multiple-Feed-Back design

To design the filter, choose C3.
Then
$k=2 \pi F_{0} \mathrm{C} 3$
$C 4=C 3$
$R 1=\frac{1}{H k}$
$R 2=\frac{1}{(2 Q-H) k}$
${ }^{\mathrm{RS}}=\frac{20}{k}$
Delyannis-Friend Multiple-Feed-Back design

Chapter: AFX_pFilter_1_AFV 210807 3/10

Circuit: "AFX-V-3RL-v4F-D-vQ-Fet"

Bode Plot: AFV-3RL-v4F-D-vQ-Fet
Roofing Filter Output is (red), very wide which contains the variability of the central f() signal

f() signal

variability of the central

Notice that the 600 --- 800 waveforms have good central Band-Pass shapes.

Bode Plot: advanced AFV circuit utilizes
Three Triad-Roofing-Differential Filters for for max sideband control.
*** Dual-Notches are very Deep and Octave Stop-Band very low. *** Main Filter $f(0)$ is Variable 600-700-800 by user in real-time. *** Sharp $\mathbf{Q}=20$ filter is variable within the selected PassBand.
*** Here, the $\mathbf{R}(f r e q)$ is currently controlled by one $R(f r e q)$ Pot, which can be mounted on the front panel, for real-time control.
*** The Four FET controllers are driven by a single Voltage Source, controlled by a Panel Mounted Pot.
*** Front Panel Rotary Switch allows User to send any stage into the Audio Section.
*** Front Panel Switch
can be utilized to drive FxQ20 from any filter stage.

Chapter: AFX_pFilter_1_AFV 210807 6/10
Magnitude Plot: AFV-3RL-v4F-D-vQ-Fet

At 900 Hz, the Red Dot on Notch
indicates -86 dB attenuation for the $\mathrm{f}(700)$ trace.
Trace to 1400 Hz is -76 dB attenuation.

Circuit: AFV-3RL-V4F-D-VQ-Man-

******* AFX 'V' with MANUAL TUNING via Four 5K rear-panel mounted pots.

Designed to control all four Filter $f(0), \mathbf{6 0 0} \mathbf{~ H z}$ to $\mathbf{8 0 0 ~ H z}$, manually.
This is the Simplest approach and meets requirements.

Chapter: AFX_pFilter_1_AFV 210807 8/10

circuit: Sample: 'AFV_3RL-v2F-vQ-v1-S'

This simple circuit was NOT spectacular but was given a fair test.
... Goal was to prove the use of only Two MFB filters which would require only a single dual-Pot for control of $f(0)$..
*** AFV_3RL-v2F-vQ-v1-S design :
*** (1) with Three Roof Filters
*** (2) with only Two MFB filter stages
*** (3) with R(freq) controlled by a Two-Gang Pot

Results: use of only Two MFB filters which would require only a single dual-Pot for control of $f(0)$..
... Dual Notches could not be well developed when using only Two MFB filters.
... More Phase-Alignment in the filter module is required to generate the Dual Notches.
... Therefore,
No notches are presented in the below plots, and this is the best Bode Plot .
The Sharp Band-Pass comes from the two $\mathbf{Q}=3$ final filters.

Chaper: AFX_pFilter_2_AFT ..210807... 1/7
Chapter: AFX_Filter_"T"
Non-Resonant Dual-Notch Phase-Filter-
An AFX filter
Emphasizing the Roofing Filters "T" to supress the sidebands
*** Triple Roof-Triad-Differential Filters preparing the signals
*** to drive a single Q=7 MFB bandpass filter
*** Triple Roof-Triad-Filter is $1400 \mathrm{~Hz}=\mathbf{- 7 6} \mathbf{~ d B}$ per octave.
*** Last stage $\quad \mathrm{Q}=7 \mathrm{MFB}$ is $1400 \mathrm{~Hz}=\mathbf{- 9 8} \mathrm{dB}$ per octave.
*** Last stage $\quad \mathrm{Q}=\mathbf{2 0} \mathbf{~ M F B}$ is $\mathbf{1 4 0 0} \mathbf{~ H z ~ = - 1 1 0 ~ d B ~ p e r ~ o c t a v e . ~}$

*** Roof-Triad-Filter info :
*** all sections with same $f(0)$ and same components .
*** design is very tolerant of minor component variations.
*** "cQ" is the calculated ' Q ' for each stage :
f(585) cQ=3.0 R(5800)
f(700) cQ=3.0 R(4000)
f(830) cQ=3.0 R(2800)
*** "mQ" is the measured ' Q ' accumulated through to the last stage.

Chaper: AFX_pFilter_2_AFT ..210807... 2/7

Circuit: AFT_v1-3-S-p1

*** Triple Roof-Triad-Differential Filters plus one Q7 Filter.

Chaper: AFX_pFilter_2_AFT ..210807... 3/7

Results: AFT_v1-3-S-p1

Roof Results: FIRST Roof Triad

> calc design $\mathrm{BW}=325 \mathrm{~Hz}$ at -3 dB
> $* * *$ ie $, 700 \mathrm{~Hz}=0 \mathrm{~dB}, 1400 \mathrm{~Hz}=-26 \mathrm{~dB}$
> $* * *$ ie $, 700 \mathrm{~Hz}=0 \mathrm{~dB}, 350 \mathrm{~Hz}=-13 \mathrm{~dB}$
> $* * *$ SideBand FallOff is -26 dB per Octave;

Roof Results: SECOND Roof Triad

calc design $\mathrm{BW}=325 \mathrm{~Hz}$ at -3 dB
*** ie, $700 \mathrm{~Hz}=0 \mathrm{~dB}, 1400 \mathrm{~Hz}=-54 \mathrm{~dB}$
*** ie, $700 \mathrm{~Hz}=0 \mathrm{~dB}, \mathbf{3 5 0 H z}=-15 \mathrm{~dB}$
*** SideBand FallOff is $\mathbf{- 5 4} \mathrm{dB}$ per Octave;

Roof Results: THIRD Roof Triad

calc design $\mathrm{BW}=325 \mathrm{~Hz}$ at -3 dB
$* * *$ ie $, 700 \mathrm{~Hz}=0 \mathrm{~dB}, 1400 \mathrm{~Hz}=-75 \mathrm{~dB}$
$* * *$ ie $, 700 \mathrm{~Hz}=0 \mathrm{~dB}, 350 \mathrm{~Hz}=-18 \mathrm{~dB}$
*** SideBand FallOff is -75 dB per Octave;

```
*** Design for Sharp Filter \({ }^{* * * * * * * * * * * * * * * * * * * * * * * * ~}\)
calc Design Final MFB filter, \(\mathrm{Q}=7\)
*** BW = 100 @ -3 dB range=100---225, v=14,
*** \(1000 \mathrm{~Hz}=-45 \mathrm{~dB}\),,, \(1400 \mathrm{~Hz}=-98 \mathrm{~dB}\)
```

*** Cumulative Results after the Sharp Filter
*** cumulative measured results: $\mathbf{Q}=\mathbf{2 0}$
*** cumulative measured -98dB per octave
*** BW = 35 @ -3dB , range $35--126, ~ v=10$,
*** $1000 \mathrm{~Hz}=-75 \mathrm{~dB}$,,, $1400 \mathrm{~Hz}=-110 \mathrm{~dB}$

Chaper: AFX_pFilter_2_AFT ..210807... 4/7
Bode Plot: AFT_v1-3-S-p1

Triple Roof-Triad-Differential Filters plus one Q7 Filter. .
Most complex waveforms displayed.
Red trace is $\mathbf{Q}=7$ signal Before Roofing Filters. Yellow trace is $\mathbf{Q}=\mathbf{7}$ signal After Roofing Filters.

*** Notice the Roof Filters contribute to sideband suppression.

Chaper: AFX_pFilter_2_AFT ..210807... 5/7

Circuit: AFT_v1-3-S-p1

a Developed 'AFT’ Circuit

*** No Dual Notches ***
with PreAmp + three Roof-Filters + Active-Limiter + Q20 Filter + Audio :

Circuit: for single Narrow Filter:

Chaper : AFX_pFilter_2_AFT ..210807... 6/7

Bode Plot: AFT_v1-3-S-p1

$f(0)$ adjusted 600-700-- 800

Chaper: AFX_pFilter_2_AFT ..210807... 7/7
$* *$

Chapter: AFX_pFilter_3_APC_ 210903 1/14
Chapter: All-Pass Band-Pass Filter

Phase-Filter Non-Resonant Dual-Notch

We examine a Phase-Filter-built from All-Pass Filters

Circuit: AFC core
1Lo-12Hi All-Pass

Some Electrical Theory from common Electrical Enginering textbooks :

First-Order Allpass Phase Response (let $g=r e^{j \theta}$)
$\Theta(\omega) \triangleq \angle H\left(c^{j \omega}\right)=-\omega-2 \tan ^{-1}\left[\frac{r \sin (\omega-\theta)}{1-r \cos (\omega-\theta)}\right]$

"The All-Pass filter has frequency responses which must be zero at $\mathbf{w = 0}$ and at $\mathbf{w = p i}$." wiki

This paper presents
a Non-Resonant Dual-Notch Phase-Filter producing a Band-Pass function as an "ngSPICE project" produced via the PartSIM.com browser based Simulator.

Introduction:
In all researched texts, the traditional academic texts specify that All-Pass filters CanNOT be used for Low-Pass nor High-Pass functions, nor for Band-Pass functions.
*** However, the author has developed working Dual-Notch Band-Pass circuits *** which utilize the All-Pass Filter in both LoPass and HiPass configurations

In this \#1 circuit,
$f(L o)=700 \mathrm{~Hz}$ and $f(\mathrm{Hi})=700 \mathrm{~Hz}$
This accentuated the "w" notches at :
each "0" point
each "pi" point
in the spectrum.
*** In the \#1 fully developed working circuit,
*** based on normal $f($ Lo $)=700 \mathrm{~Hz}$ and $f(\mathrm{Hi})=700 \mathrm{~Hz}$
*** we preceeded and followed the All-Pass array
*** with Multi-FeedBack Band-Pass OpAmp filters
*** to reduce unwanted side-band signals (away from $f(0)=700 \mathrm{~Hz}$).

*** Experiments were done using the"UnBalanced" design
*** with (1) AP-Lo at 700 Hz and (12) AP-Hi at 700 Hz
*** to observe the patterns ,with good results.

*** Our design is presented here.
*** (with (1) AP-Lo at 700 Hz and (12) AP-Hi at 700 Hz)

700 Hz All-Pass resonance is based on $\mathrm{R}=10 \mathrm{~K}$ and $\mathrm{C}=23 \mathrm{nF}$.

* All observations confirm the validity of this design.

Circuit: \#1 Developed working circuit, on next page *** Using the "UnBalanced" topology
*** ONE f(Lo) $=700 \mathrm{~Hz}$ and Twelve $f(\mathrm{Hi})=700 \mathrm{~Hz}$.
*** 700 Hz resonance is based on $\mathrm{R}=10 \mathrm{~K}$ and $\mathrm{C}=23 \mathrm{nF}$. *
*** Combined Lo and Hi to produce *** a Band-Pass Filter Signal.
*** U09 and U10 are Voltage Buffers.
*** U23 "APadjust" is a voltage-combining circuit.
*** Combining $\mathrm{f}(\mathrm{Lo})$ and $\mathrm{f}(\mathrm{Hi})$
*** to produce a Dual-Notched Filter Signal.
*** Final Filters: Fx02 Q=5, and Fx03 Q=10 pull out a very usable Narrow Dual-Notched Band-Pass signal.

Circuit: "APC" (AP24-1RL-1F-12F-Unb-Sum)

All-Pass Non-Resonant Phase-Filter Band-Pass which produces Dual-Notch Band-Pass.

```
Chapter: AFX_pFilter_3_APC_ 210903 6/14
```

Below: Detail: APC
All-Pass module generates Dual-Notches :
The All-Pass-Lo and the All-Pass-Hi are Buffered and Summed to generate the Narrow Dual-Notch Pass-Band. .

Dual Notch Bode Plot generated from this stage.

Below: Detail: APC Hi 'Q' Filters sharpen the Band-Pass inside of the Dual-Notches :

Final Filter 03 and Filter 04 are for producing an enhanced Narrow Band-Pass.

Notes: AFC

\#\#\# Bode Plot: Yellow trace is AllPass output.
\#\#\#
\#\#\# Plots LiteBlue, Red, DarkBlue show Filter-02 Q=3
when tuned $+/-70 \mathrm{~Hz}$ (-3 dB)
\#\#\# within the All-Pass Output Yellow Trace.
\#\#\# The flat-topped trace is the "Roofing-Filter" which preceeds the Limiter circuit,
\#\#\# Notice the -27 dB per Octave attenuation of side-band signals, outside of $\mathrm{BW}=350 \mathrm{~Hz}$.
*** This Version used Fx-02 Q=3 (red) and Fx-03 Q=10 (narrow blue)
*** Scale : 700mV = -3dB; 500mV = -6dB
*** Notch High 900 Hz =-53 dB, Notch BW = 360 Hz

Bode plot: AFC

*** Notice the Dual-Notches Red trace, around $\mathbf{f}(0)$
*** Yellow trace is the final filter, with Sharp Band-Pass.
*** Notice: Fx-02 Q=3 and Fx-03 Q=10 are for extremely narrow Band-Pass, inside of Dual-Notches.

Chapter: AFX_pFilter_3_APC_ 210903 8/14

Magnitude Plot: AFC

*** Below : YELLOW trace is final $\mathrm{Q}=20$ result shown is the $f(0)$ changed $+\backslash$ - to $-3 d B$ points. *** $f(0)$ Shifts are confined to the AllPass Ouput plot.

Chapter: AFX_pFilter_3_APC_ 210903 9/14

Magnitude Plot : $\quad * * *$ Magnitude Scale readings: $\mathrm{V}=-\mathrm{dB}$

*** Magnitude Scale readings: V = -dB
These Band-Pass signals-are NOT a Gaussian Shape.
*** Yellow trace Filter-03 at Hi-Notch $=-70 \mathrm{~dB}$
*** Yellow Spreads at the rate of 5.2 Hz per -dB attenuation (aprox "Brick-Wall").

Circuit: AFX_3RL-F8AFQ

\#\#\# Special Advanced All-Pass Band-Pass circuit combining AFX and APC concepts.
*** Two Variable MFB Filters
with 8 All-Pass stages inserted in the middle An effective combo-design, which is simpler
but not as effective as the AFX'V'-3RL-V4F-D-VQ version. Result One Dual-Pot can control $\mathbf{f}(\mathbf{0})+/-75 \mathrm{~Hz}$, reading at the -3 dB level.

?

Bode Plot: AFX_3RL-F8AFQ

Frequency: 697.892 Hz
Voltage $: 1.014 \mathrm{~V}$

Results: AFX_3RL-F8AFQ with Dual-Notches.

*** Compared to the AFX'V' ("AFV-3RL-V4F-D-VQ" version)
(1) BW @ -3dB is wider ; 160 Hz vs 90 Hz .
(2) Dual Notch BW is wider; 380 Hz vs 330 Hz . but the FX Q20 will narrow this to 35 Hz .
(3) Variability of $f(0)$ is much narrower ; $+/-75 \mathrm{~Hz}$ is good (at-3dB), vs $+/-100 \mathrm{~Hz}$ for the AFX'V' versions.
At $f(700 \mathrm{~Hz}),+/-75 \mathrm{~Hz}$ is similar to +/- one piano note.
Changing the $f(0)$ of the All-Pass stages and/or the gain of AP stages
(1) will change the $f(0)$ of the AP notches up/dn factor of 2 .
(2) will change the Band-Width of the notches w / n factor of 2 ..
$\mathrm{F}(700)$ is best freq for the intended usage of this Filter Circuit,
and is a compromise the author selected for this project.
(4) Variable $f(0)$ controlled physically by a Single Panel-Mounted dual-gang Pot is a good feature, even if not very much variation.

Magnitude Plot: AFX_3RL-F8AFQ

Magnitude Plot clearly shows the Notch Depth while shifting $f(0)+/-100 \mathrm{~Hz}$
*** Notch Generator freq tracks with f(0)
*** at +/- 100 Hz
*** $\mathrm{Fx}(100 \mathrm{~Hz})$ is -0.5 dB down
*** $\mathrm{Fx}(35 \mathrm{~Hz})$ is -1.0 dB down
*** At f(700) normal settings Deep Notch (Yellow/Black trace) is -82 dB 920 Hz .

note:
*** Also authors explored the "UnBalanced" (7 Hz and 700 Hz) approach.
*** The All-Pass-Lo is tuned to 6.20 Hz (aprox. 7 Hz)
*** The All-Pass-Hi is tuned to 692 Hz . (aprox. 700 Hz)
*** Results: equal success in circuit performance.
*** Further experiments were done using the"UnBalanced" design
*** with $f(0)$ at $70,137,175,350,650 \mathrm{~Hz}$ vs. 750 Hz
to observe the patterns, with good results.

*** Further experiments were done using the"UnBalanced" design
*** with filter pairs of $2,4,6,8,10,12,14,16,18,24$
to observe the patterns , with good results.
*** These circuits are not discussed in this paper.
$* *$

PAGE LEFT INTENTIONALLY LEFT BLANK FOR HARDCOPY VERSIONS OF THIS DOCUMENT

